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Abstract In this paper, we study the problem of massless
particle creation in a flat, homogeneous and isotropic uni-
verse in the framework of f (G) gravity. The Bogolyubov
coefficients are calculated for the accelerating power-law so-
lutions of the model in a matter dominated universe, from
which the total number of created particle per unit volume
of space can be obtained. It is proved that the total par-
ticle density always has a finite value. Therefore, the Bo-
golyubov transformations are well-defined and the Hilbert
spaces spanned by the vacuum states at different times are
unitarily equivalent. We find that the particles with small
values of the mode k are produced in the past and parti-
cles with large values of k are produced only in the future.
The negative pressure resulting from the gravitational par-
ticle creation is also determined. It is then argued that this
pressure even in the presence of energy density and thermal
pressure may affect significantly the cosmic expansion.

Keywords Particle creation in curved spacetime · f (G)

gravity · Negative pressure

1 Introduction

The cosmological observations developed in the last two
decades indicate that the universe is undergoing a phase
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of cosmic acceleration started after the matter domination
(Abazajian et al. 2004, 2005; Riess et al. 1998; Perlmutter
et al. 1999; Astier et al. 2006; Spergel et al. 2003, 2007).
It seems that some unknown energy components (dark en-
ergy) with negative pressure are responsible for this late-
time acceleration (Copeland et al. 2006; Cai et al. 2010).
The simplest model which successfully explains the obser-
vational data is the ΛCDM (Λ-cold dark matter) model
(Perivolaropoulos 2006; Jassal et al. 2005; Bahcall et al.
1999). But in this model, the key question about the origin
of the dark energy remains unanswered. Since the observed
value of the cosmological constant (as the density of dark
energy) is very small in comparison with the predicted vac-
uum energy of matter fields, it is not possible to attribute
the dark energy directly to the quantum vacuum energy. The
origin and the nature of dark energy is still a mystery and
its existence is beyond the domain of the standard model of
particle physics and general relativity (Padmanabhan 2003;
Peebles and Ratra 2003; Sahni and Starobinsky 2006).

Recently, an alternative approach to accommodate dark
energy is modifying the general theory of relativity on large
scales. The motivation for modifying the gravitational part
of the Einstein equation is not restricted to solve the cosmo-
logical problems. In fact, general relativity is not a renormal-
izable theory, and consequently to quantize the gravitational
fields conventionally, the Einstein-Hilbert action needs to
be supplemented by higher order curvature terms (Utiyama
and DeWitt 1962; Stelle 1977). Also, in string theory and
when quantum corrections are taken into account, the effec-
tive gravitational action at low energy level admits higher
order curvature invariants (Birrell and Davies 1982; Fulling
1989; Buchbinder et al. 1992; Vilkovisky 1992).

Among these theories, scalar-tensor theories (Perrotta
et al. 2000; Boisseau et al. 2000), f (R) gravity (Kleinert and
Schmidt 2002; Capozziello et al. 2003; Nojiri and Odintsov
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2009), DGP braneworld gravity (Dvali et al. 2000) and
string-inspired theories (Gross and Sloan 1987; Charmousis
and Dufaux 2002; Davis 2003) are studied extensively. Also,
another theory in this context is scalar-Gauss-Bonnet grav-
ity which is closely related to the low-energy string effective
action. In this proposal, the current acceleration of the uni-
verse may be caused by mixture of scalar phantom and (or)
potential/stringy effects (Nojiri et al. 2005a, 2006b; Carter
and Neupane 2006a,b). The coexistence of matter domi-
nated and accelerating power law solutions for this theory
has already been shown (Goheer et al. 2009a). It is also seen
that the Gauss-Bonnet gravity is less constrained than f (R)

gravity (De Felice and Tsujikawa 2009).
On the other hand, as was first pointed out by Zeldovich

(1970) and Hu (1982), the process of matter creation in an
expanding universe may phenomenologically be equivalent
to effective negative bulk pressure. Therefore, in this con-
text, the present accelerating stage may have two origins:
the negative pressure resulting from the gravitational parti-
cle creation and the higher order terms of the gravitational
sector.

In these connections, the process of matter creation in
an expanding universe has been extensively discussed in the
last five decades (Parker 1968; Grib and Mamayev 1969;
Pavlov 2001). The first thorough treatment of particle pro-
duction by an external gravitational filed was given by
Parker (1968, 1969, 1971, 1972, 1973). However, the self-
consistent macroscopic formulation of the matter creation
process was put forward by Prigogine et al. (1989) and Cal-
vao et al. (1992).

In flat space-time, Poincare invariance is a guide which
generally allows to identify a unique vacuum state for the
theory. However, in curved space-time, we do not have the
Poincare symmetry. The absence of Poincare symmetry in
curved space-time leads to the problem of the definition of
particles and vacuum states. The problem may be solved
by using the method of the diagonalization of instantaneous
Hamiltonian by a Bogolyubov transformation, which leads
to finite results for the number of created particles (Grib and
Mamayev 1969; Pavlov 2001). In this direction, some works
have been done in the context of modified gravity (Pereira
et al. 2010, 2011; Setare and Houndjo 2013).

In the present work, we investigate the particle produc-
tion in a f (G) theory for a flat and matter dominated uni-
verse. It is proved that the total particle density always has a
finite value. Therefore, the Bogolyubov transformations are
well-defined and the Hilbert spaces spanned by the vacuum
states at different times are unitarily equivalent (Mukhanov
and Winitzki 2007). The negative pressure resulting from the
gravitational particle creation is also obtained for adiabatic
processes, i.e. the processes in which the entropy per particle
remains constant. In this case the entropy production density
is entirely due to the increase of the number of particles (Pri-
gogine et al. 1989; Calvao et al. 1992; Zimdahl and Pavon

1993; Zimdhal et al. 2001). We show that, even if the higher
order curvature terms of the Gauss-Bonnet gravity are ig-
nored, this pressure can alone explain the present accelerat-
ing expansion. This result indicates that the pressure of the
particle creation even in the presence of energy density and
thermal pressure may affect significantly the cosmic expan-
sion. Obviously, to reach a self-consistent model at least in
a semiclassical framework one should take the back reac-
tion effect of the particle creation into account, i.e. the grav-
itational equations and the particle creation equations must
be solved simultaneously. But, since the coupling between
the gravitational background and the density and pressure
of particle creation is very complicated, it may be difficult.
Then the result of the present paper might be viewed as the
first approximation of the particle creation effect.

2 Field equations

We consider the following f (G) action which describes
Einstein’s gravity coupled with perfect fluid plus a function
of the Gauss-Bonnet term (Nojiri and Odintsov 2005b; No-
jiri et al. 2006a)

S =
∫

d4x
√−g

[
1

2k2
R + f (G) + Lm

]
, (1)

where k2 = 8πGN and the Gauss-Bonnet invariant is de-
fined as follows

G = R2 − 4RμνR
μν + Rμνλσ Rμνλσ . (2)

By varying the action with respect to gμν , it follows that

0 = 1

2k2

(
−Rμν + 1

2
gμνR

)
+ T μν + 1

2
gμνf (G)

− 2fGRRμν + 4fGRμ
ρ Rνρ − 2fGRμρστRν

ρστ

− 4fGRμρσνRρσ + 2
(∇μ∇νfG

)
R − 2gμν

(∇2fG

)
R

− 4
(∇ρ∇μfG

)
Rνρ − 4

(∇ρ∇νfG

)
Rμρ + 4

(∇2fG

)
Rμν

+ 4gμν(∇ρ∇σ fG)Rρσ − 4(∇ρ∇σ fG)Rμρνσ , (3)

where fG = f ′(G) and fGG = f ′′(G). By using the metric
of Friedmann-Robertson-Walker (FRW), we can obtain the
first FRW equation

− 3

k2
H 2 + GfG − f (G) − 24ĠH 3fGG + ρm = 0, (4)

where an over-dot denotes derivative with respect to time t

and Hubble parameter H is defined by H = ȧ
a

. Also, using
the equation of state P = wρm, the energy conservation law
can be expressed as

ρ̇m + 3H(1 + w)ρm = 0, (5)
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where ρm is the matter density. Now, by assuming an exact
power-law solution for the field equations as follows

a(t) = btc, (6)

where c and b are positive real numbers, the Friedmann
equation is exchanged as

0 = 4

c − 1
G2fGG + GfG − fG − G

1
2

k2

(
3c

8(c − 1)

) 1
2

+ ρ0

(
G

24c3(c − 1)

) 3
4 c(1+w)

. (7)

This is a differential equation for the function f (G) in G

space. The general solution of this equation is obtained as

f (G) = −1

2

[√
6c(c − 1)

k4(c + 1)2
G

1
2 + AcwG

3
4 c(1+w)

]
, (8)

where

Acw = 8ρ0(c − 1)(1382c9(c − 1)3)− 1
4 c(1+w)

4 + c[3c(w + 1)(w + 4
3 ) − 15w − 19] . (9)

As we see that a real valued solution for f (G) requires the
values c ≤ 0 or c ≥ 1. In Rastkar et al. (2012), it is shown
that only the case c > 1 leads to an accelerating universe.
Also, in order to avoid divergency in the Gauss-Bonnet term
we have to keep c and ω away from the values for which
Acw diverges according to the following equation

4 + c

[
3c(w + 1)

(
w + 4

3

)
− 15w − 19

]
= 0. (10)

For the case of matter dominated universe (w = 0), it must
be supposed c > 1 and c �= 19

8 +
√

345
8 (by noting (10)). The

Hubble parameter H = ȧ
a

= c
t

determines the actual age of
universe as t0 = c

H0
that is the order of 109 years. Before

studying the particle creation process, it is convenient to ob-
tain the scale factor a(t) in terms of the conformal time η.
The conformal time is defined as

η ≡
∫ t dt ′

a(t ′)
, (11)

then we have

a(η) = B

(−η)
c

c−1
, B = [

b(c − 1)c
] 1

1−c , (12)

where −∞ < η < 0. The early universe (the past) corre-
sponds to η → −∞ and the late universe (the future) cor-
responds to η → 0. To calculate the density of particles per
mode, we should determine the parameter b in the numer-
ator of the scale factor a(η). So, let us choose b such that

a(t0) ≡ a0 = 1, for t0 = c
H0

, i.e., the scale factor is normal-
ized to unity for the present time. To satisfy this condition
we must have b = (

H0
c

)c . Using (11) we get the value of
the present conformal time as η0 = − c

c−1
1

H0
. Therefore, the

scale factor becomes

a(η) = (−η0)
c

c−1

(−η)
c

c−1
. (13)

Although with the power-law solutions the evolution of
the universe is basically restricted, these solutions help us to
find some quantities analytically. But it is not the only mo-
tivation behind this choice. In fact, since these solutions are
corresponding to the scaling solutions in f (G) framework
(Uddin et al. 2009), they play an important role in cosmol-
ogy. They can be regarded as approximations to more realis-
tic models and provide a framework for establishing the be-
havior of more general cosmological solutions (Uddin et al.
2009). Also, it has been proved that the scaling solutions are
global attractors for a large class of cosmological models
(Copeland et al. 1998; Nunes and Mimoso 2000). Therefore,
the choice of such solutions is particularly relevant because
in the Friedmann-Robertson-Walker backgrounds, they typ-
ically represent asymptotic or intermediate states in the full
phase-space of the dynamical system representing all pos-
sible cosmological evolutions (Goheer et al. 2009b). They
then enable us to determine the asymptotic behavior and sta-
bility of a particular cosmological background (Liddle and
Scherrer 1999; Rubano and Barrow 2001; Copeland et al.
2005; Tsujikawa and Sami 2004; Steinhardt et al. 1999).

In the following sections, we are going to study the par-
ticle creation process in this model.

3 Scalar particle creation in f (G) theory

Generally, the field equation for the study of scalar particle
creation in a spatially flat Friedmann-Robertson-Walker ge-
ometry can be written as (Mukhanov and Winitzki 2007)

X ′′(x, η) − ∇2X (x, η) +
(

m2a2(η) − a′′(η)

a(η)

)
X (x, η) = 0,

(14)

where the prime denotes derivative with respect to the con-
formal time η and ∇2 is the Laplacian. Replacing the mode
expansion

X (x, η) =
∫

d3k
(2π)3/2

1√
2

[
a−
k X

∗
k (η)eik.x

+ a+
k Xk(η)e−ik.x] (15)
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in the field equation (14) implies the decoupled equations of
motion for the modes Xk(η),

X ′′
k + ω2

k(η)Xk(η) = 0, (16)

with

ω2
k(η) = k2 +m2

eff and m2
eff = m2a2(η)− a′′(η)

a(η)
, (17)

where Xk is the Fourier mode of the wave associated to the
energy of the particle through the frequency ωk , meff repre-
sents an effective mass of the particle and the prime denotes
derivative with respect to the conformal time η.

Here, the quantization can be carried out by imposing
equal-time commutation relations for the scalar field X
and its canonically conjugate momentum Π ≡ X ′, namely
[X (x, η),Π(y,η)] = iδ(x − y), and by implementing sec-
ondary quantization in the so-called Fock representation.
After convenient Bogolyubov transformations, one obtains
the transition amplitudes for the vacuum state and the asso-
ciated spectrum of the produced particles in a non-stationary
background (Grib et al. 1994; Mukhanov and Winitzki
2007). Usually, the calculations of particle production deal
with comparing the particle number at asymptotically early
and late times, or with respect to the vacuum states defined
in two different frames and do not involve any loop calcu-
lation. Since (16) is a second order differential equation, we
obtain two independent solutions.

To quantize the scalar field X (x, η) in the standard fash-
ion by introducing the equal-time commutation relations
[X (x, η),X ′(y, η)] = iδ(x − y), each mode solution Xk

must be normalized for all times according to

Wk(η) ≡ X ′
k(η)X ∗

k (η) −Xk(η)X ∗′
k (η) = 2i. (18)

If the vacuum state is defined as the lowest-energy eigen-
state of the instantaneous Hamiltonian at time η, the mode
decomposition Xk(η) corresponding to this vacuum state
should satisfy the following conditions at time η (Mukhanov
and Winitzki 2007)

Xk(η) = eiλ

√
ωk(η)

, X ′
k(η) = ieiλ

√
ωk(η), (19)

where λ is an arbitrary real number. A mode function sat-
isfying the above conditions defines a creation and anni-
hilation set of operators â±

k and then the vacuum state as
the instantaneous lowest-energy state is the state annihi-
lated by â−

k . In addition, the instantaneous Hamiltonian is
diagonal in the eigenbasis of the occupation number opera-
tors N̂k = â+

k â−
k . But ωk is not time-independent in a time-

dependent gravitational background. Therefore, the mode
function selected by the conditions (19) is time-dependent.
It means that the vacuum states at different times differ from

each other. However, these instantaneous vacuum states at
different time are related by the Bogolyubov coefficients. If
the mode function Xk(η) satisfies the conditions (19) at the
initial time ηi and if we suppose that the physical state is
the instantaneous vacuum state corresponding to this mode
function, then a straightforward calculation shows that the
final expression for the number density of created particles
in the k mode at time η > ηi is (Grib et al. 1994; Mukhanov
and Winitzki 2007)

Nk(η) = 1

4|ωk(η)|
∣∣X ′

k(η)
∣∣2 + |ωk(η)|

4

∣∣Xk(η)
∣∣2 − 1

2
. (20)

The proper density of particles per mode is given by

nk(η) = Nk(η)

a3(η)
, (21)

and the total number density of created particles is obtained
by integrating overall the modes

n(η) =
∫

nk(η)d3k. (22)

It is worthwhile to note that the Bogolyubov transformation
is well-defined only if the total particle density (22) is fi-
nite. If this is not the case, the final vacuum state is not ex-
pressible as the normalized linear combination of the initial
vacuum state and the excited states derived from it. In other
words, the two Hilbert spaces spanned by these two vacuum
states and their excited states are not unitarily equivalent.

4 The creation of massless particles

Here, by using (12), we find a′′
a

= [ c(2c−1)

(c−1)2(−η)2 ] that does not
depend on the parameter B . Equation (16) for mode function
in the case of a massless particle (m = 0) becomes

X ′′
k (η) +

[
k2 −

(
c(2c − 1)

(c − 1)2

)
1

η2

]
Xk(η) = 0. (23)

According to the normalization condition (18), the solution
of this equation is given by

Xk(η) =
√

π |η|
2

[
Jν

(
k|η|) + iYν

(
k|η|)]

=
√

π |η|
2

H(1)
ν

(
k|η|), ν ≡

√
1

4
+ c(2c − 1)

(c − 1)2
, (24)

where Jν and Yν are respectively the Bessel functions of the
first and second kind and Hν is the Hankel function. The
solution (24) satisfies the lowest-energy conditions (19) at
the initial time (η → −∞) and has the correct asymptotic
behaviour of the form

Xk → 1√
k

exp(ikη + δ), (25)
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Fig. 1 This figure shows k3Nk(η) as a function of the mode k with the
parameters c = 10

3 and η = 1. It shows that k3Nk(η) tends to zero at
k → ∞. This asymptotic behaviour is necessary to prove that the total
number density of created particles is finite

where δ is a phase. This corresponds to plane waves for the
modes k in the past. To calculate the spectrum of massless
particles created during the evolution of the universe by (20),
we have to firstly show that the total density of created par-
ticles (22) has a finite value at all times. To show this one
should prove that Nk(η) tends to zero faster than k−3 at
k → ∞. Employing the asymptotic expansion of the Han-
kel functions, i.e.

H(1)
ν

(
k|η|) =

√
2

πk|η| exp

{
i

[
k|η| −

(
ν + 1

2

)
π

2

]}

× (
Pν

(
k|η|) + iQν

(
k|η|)), (26)

where

Pν(z) + iQν(z) =
∞∑

r=0

Γ (ν + r + 1
2 )

r!Γ (ν − r + 1
2 )

(−2iz)−r , (27)

it is not difficult to see that the first non-vanishing term of
Nk(η) at k → ∞ is of order k−4. Thus, Nk(η) tends to zero
faster than k−3 at k → ∞. Substituting solution (24) into
the relation (20) and setting c = 10/3 and η = 1, we plot
k3Nk(η) as a function of k in Fig. 1. It shows that k3Nk(η)

tends to zero at k → ∞.
On the other hand, for each k there is a critical value of

η for which the number density of created particles grows
abruptly and diverges. Mathematically this occurs because
in the expression (20) the frequency ωk(η) appears in the
denominator, and when k2 = c(2c−1)

η2(c−1)2 we have ωk(η) → 0.
Physically, the significance of this divergence is that for val-
ues of k2 <

c(2c−1)

η2(c−1)2 , the frequency ω2
k becomes negative,

consequently the state of minimum energy and the quantum
vacuum are not well-defined in these cases, and the creation
ceases for these values. Therefore, the total number density
of particle should be determined as

n(η) = 1

a3(η)

∫ ∞

k2= c(2c−1)

η2(c−1)2

Nk(η)d3k. (28)

Fig. 2 The figure presents the dependence of the dimensionless total
number density of particles η3

0n(η) on η
|η0|

Fig. 3 This figure shows the evolution of density of created particle Nk

for four different values of the mode k with the parameter c = 10
3 (for

comparing with results of Pereira et al. 2011, we take c = 10
3 )

Although the first term of Nk(η), i.e.
|X ′

k(η)|2
4|ωk(η)| =

|X ′
k(η)|2

4
√

k2− c(2c−1)

η2(c−1)2

,

tends to infinity at k2 → c(2c−1)

η2(c−1)2 , its integral is finite be-
cause the following integral is convergent:

∫ b>a

a

dx√
x2 − a2

= ln

(
b + √

b2 − a2

a

)
. (29)

Then the total number density of particles has a finite value
at all times. In Fig. 2, the dimensionless total number density
of particles defined as η3

0n(η) is displayed versus η
|η0| .

Now, using (20) and (24), we can calculate the evolu-
tion of particle density Nk for each mode k. Figure 3 shows
the density of massless particle created during the evolution
of the universe as a function of η

|η0| for different values of

mode k. The value η
|η0| = −1 represents the present time.

In the past (η → −∞) the number density is zero for all
modes, but it grows throughout evolution.

By using this figure, as mentioned earlier, we can see that
for each k there is a critical value of the conformal time
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η for which the number density of created particles grows
abruptly and diverges. For k = 1 this occurs in the past when
η

|η0| ≈ −2.05, for k = 2 we have η
|η0| ≈ −1.02, very close to

the present time. But for k = 3 this will only occur in the
future, η

|η0| ≈ −0.7. A value of k < 1 is also shown in this
figure.

5 Pressure of particle creation

It is not difficult to show that the interactions wherein par-
ticle number conservation violated, including the gravita-
tional particle creation, may lead to an effective negative
pressure (Prigogine et al. 1989). From the first law of ther-
modynamics and Euler’s relation for an open system in
which the particle number N is time dependent, it follows
that

d(ρV ) + PdV − ρ + P

n
d(nV ) − T Nd

(
S

N

)
= 0, (30)

where ρ = E/V and n = N/V . The above relation is known
as the Gibbs relation. The Gibbs relation can be also written
as

dρ − ρ + P

n
dn = nT d

(
S

N

)
. (31)

If the entropy per particle S/N is constant, i.e. the entropy
production is entirely due to the increase of the number of
particles, the Gibbs relation implies that

d(ρV ) + PdV − ρ + P

n
d(nV ) = 0, (32)

or equivalently

ρ̇ = (ρ + P)
ṅ

n
, (33)

where an over-dot denotes the derivative with respect to
time. Now, by defining a supplementary pressure Pc

Pc = −ρ + P

n

d(nV )

dV
. (34)

Equation (32) can be rewritten as

d(ρV ) = −(P + Pc)dV . (35)

It means that the creation of matter corresponds to a sup-
plementary pressure Pc which must be considered as a part
of the total pressure Pt entering into the matter part of the
gravitational equations (Prigogine et al. 1989; Calvao et al.
1992; Zimdahl and Pavon 1993; Zimdhal et al. 2001), i.e.

Pt = P + Pc. (36)

Fig. 4 This figure shows the evolution of Pc/(ρ + P ) as a function of
η

|η0| . It is proved that this function has a constant value

In the case of an isotropic and homogeneous universe, one
can set V = a3(t), then

Pc = −(ρ + P)

(
ṅ

3Hn
+ 1

)
. (37)

Before determining the pressure of particle creation, it
should be noted that the distribution ωk(η)nk(η) as a func-
tion of k does not correspond to a thermodynamic equi-
librium state. Thus, similar to the Gamow condition, we
should assume that the transition rate to an equilibrium state
is faster than the particle production rate and the expansion
rate of the universe. Using (13) and (37), in Fig. 4 the be-
havior of Pc

ρ+P
as a function of η

|η0| is displayed.
It shows that the pressure of particle creation has a nega-

tive value as it is expected. It also seems that Pc

ρ+P
has a con-

stant value. This constancy is not an amazing result because
from (20), (23), (24) and (28) it follows that n(

η
α
) = α3n(η)

for all η < 0 and α > 0. Then it is not difficult to prove that
n(η) ∝ η−3, which implies ṅ

3Hn
= const.

To compare the effect of this negative pressure on the ac-
celeration of expansion with the effect of energy density and
thermal pressure which always have positive values, we can
for simplicity neglect the contribution of the higher order
curvature terms of the Gauss-Bonnet gravity. So it is enough
to restrict ourselves to general relativity. In this case, the
Einstein equations yield (Lima et al. 2008)

8πGNρ = 3
ȧ2

a2
+ 3

k

a2
, (38)

and

8πGN(P + Pc) = −2
ä

a
− ȧ2

a2
− k

a2
, (39)

which imply

2
ä

a
= −8πGN

(
Pc + P + ρ

3

)
. (40)



Particle creation in the framework of f (G) gravity Page 7 of 8 196

Taking P = ρ/3, from (37) and Fig. 4, it follows that the
right hand side of above equation has a positive value and
therefore, ä > 0. This result indicates that the pressure of
the particle creation even in the presence of energy density
and thermal pressure may affect significantly the cosmic ex-
pansion.

Obviously, to reach a self-consistent model at least in a
semiclassical framework one should take the back reaction
effect of the particle creation into account, i.e. the gravita-
tional equation (4) and the particle creation equation (23)
must be solved simultaneously. But, since the coupling be-
tween the gravitational background and the density and pres-
sure of particle creation is very complicated, it may be dif-
ficult. Then the result of the present paper might be viewed
as the first approximation of the particle creation effect.

6 Conclusions

We have investigated the problem of massless particle cre-
ation in a f (G) theory for a matter dominated universe. We
have assumed an exact power-law solution for the scale fac-
tor of universe, which leads us to an accelerated expand-
ing universe. The amount of particles created with k < 1 is
steadily increasing in the past, although the creation of such
modes stop abruptly in the past (Fig. 3). This shows that in
the past a huge amount of particles with low k were cre-
ated. These results perfectly agree with one of that obtained
in studying quantum effect in the context of f (R) gravity
(Pereira et al. 2011). It has been also proved that the total
particle density always has a finite value. Therefore, the Bo-
golyubov transformations are well-defined and the Hilbert
spaces spanned by the vacuum states at different times are
unitarily equivalent. In addition, we have shown that the
pressure of particle creation has negative value as it is ex-
pected. This pressure even in the presence of energy density
and thermal pressure may affect significantly the cosmic ex-
pansion.
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