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Abstract In this paper we have studied the anisotropic
Kantowski-Sachs, locally rotationally symmetric (LRS)
Bianchi type-I and LRS Bianchi type-III geometries filled
with dark energy and one dimensional cosmic string in the
Saez-Ballester theory of gravitation. To get physically valid
solution we take hybrid expansion law of the average scale
factor which is a product of power and exponential type
of functions that results in time dependent deceleration pa-
rameter (q). The equation of state parameter of dark energy
(ωde) has been discussed and we have observed that for the
three models it crosses the phantom divide line (ωde = −1)
and shows quintom like behavior. The density of dark energy
(ρde) is an increasing function of redshift and remains posi-
tive throughout the evolution of the universe for the three
models. Moreover in Kantowski-Sachs and LRS Bianchi
type-I geometries the dark energy density dominates the
string tension density (λ) and proper density (ρ) throughout
the evolution of the universe. The physical and geometrical
aspects of the statefinder parameters (r, s), squared speed of
sound (v2

s ) and ωde–ω′
de plane are also discussed.

Keywords Kantowski-Sachs space-time · LRS Bianchi
type-I space-time · LRS Bianchi type-III space time · Dark
energy · String tension density · Scalar tensor theory of
gravitation

1 Introduction

Recently, there has been a considerable interest in cosmo-
logical models with dark energy due to the accelerated ex-
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pansion of the universe. Astronomical observations indicate
that our universe is flat and currently consists of about 70%
dark energy and 30% in the form of non relativistic mat-
ter (including both baryons and dark matter). Cosmologi-
cal observations such as type Ia supernovae (SNe Ia) indi-
cate that the universe is undergoing accelerated expansion
as described by Riess et al. (1998), Perlmutter et al. (1999),
Spergel et al. (2007), Spergel (2003), Bennett et al. (2003),
Tegmark et al. (2004), Abazajian et al. (2003). Cosmological
models of the universe are central in understanding the mys-
teries of the early stages of its evolution. Dark energy (DE) is
a component to the matter distribution of the universe with a
large negative pressure. The nature of dark energy as well as
dark matter is unknown. Recent studies to extract the prop-
erties of a dark energy component of the universe from ob-
servational data focus on the determination of its equation
of state (ωde), which is the ratio of the dark energy’s pres-
sure (pde) to its energy density (ρde), ωde = pde

ρde
, which is

not necessarily constant. Sahni and Starobinsky (2006) have
developed a method for revival of the quantity ωde from ex-
perimental data. Also Sahni et al. (2008) analyzed to get ωde

as a function of cosmological time. The simplest dark en-
ergy candidate is the vacuum energy (ωde = −1), which is
mathematically equivalent to the cosmological constant (�).
The other conventional alternatives, which can be described
by minimally coupled scalar fields, are quintessence (−1 <

ωde ≤ 0), phantom energy (ωde < −1) and quintom (that
can cross from phantom region to quintessence region as
evolved) and have time dependent EoS parameter. Due to
lack of observational evidence in making a distinction be-
tween constant and variable ωde, usually the equation of
state parameter is considered as a constant, Bartelmann et al.
(2005), Kujat et al. (2002) described ωde with phase wise
values −1,0,1/3 and 1 for vacuum fluid, dust fluid, radia-
tion and stiff matter dominated universe, respectively. But in
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general ωde is a function of time or redshift Das et al. (2005),
Jimenez (2003).

Thorne (1967) has described that Kantowski-Sachs class
of metric represents homogeneous but anisotropically ex-
panding (contracting) cosmologies and provides models
where the effect of anisotropy can be estimated and com-
pared with FRW class of cosmologies. Rahaman et al.
(2002), Rao and Neelima (2013) and Santhi et al. (2016)
are some authors who worked on Kantowski-Sachs cosmo-
logical model.

The spatially homogeneous and anisotropic Bianchi type
space-time presents a “middle way” between the FRW
model and inhomogeneous anisotropic universe. It thus
plays an important role in modern cosmology. Some works
on LRS Bianchi type-I and LRS Bianchi type-III models can
be found in Rao et al. (2012), Adhav et al. (2013), Bali and
Upadhaya (2003), Deo et al. (2016).

Alternative theories of gravitation become important in
the field of cosmology, this is because of the fact that general
relativity does not fully incorporate Mach’s principle. To do
this Brans and Dicke (1961) scalar–tensor theory of grav-
itation has been formulated which develops Mach’s prin-
ciple by assuming interaction of inertial masses of funda-
mental particles with some cosmic scalar field coupled with
the large scale distribution of matter in motion. Following
Saez and Ballester (1986) developed a scalar–tensor theory
of gravitation in order to solve dark matter problem in which
the metric is coupled with a dimensionless scalar field φ in a
simple manner. Rao and Prasanthi (2017), Rao et al. (2011),
Rao et al. (2007), Rao et al. (2008), Ramesh and Umadevi
(2016) have studied some Bianchi type cosmological mod-
els in Saez-Ballester theory of gravitation. Some works on
Saez-Ballester theory can be found in Pradhan et al. (2012),
Naidu et al. (2012) and Pawar and Solanke (2016). In-
spired by the above in the present paper we have stud-
ied Kantowski-Sachs, LRS Bianchi type-I and LRS Bianchi
type-III cosmological models in Saez-Ballester theory of
gravitation with dark energy and one dimensional cosmic
string.

In our work the present value of the deceleration param-
eter is calculated. The plots of some of the cosmological
parameters versus red shift are presented to show their phys-
ical properties. Equations of state parameter for the dark
energy, the string and isotropic fluid has been considered.
In addition to the anisotropic DE fluid, cosmic strings as-
signed along x-direction are also considered to comprise
some anisotropic effect (Mishra et al. 2017).

The paper is organized as follows. In Sect. 2, we discuss
about the basic formulation of field equations followed by
the solution of the field equations of the three models. In
Sect. 3, we discussed about exact solution of scalar field (φ),
in Sect. 4 we discuss about some important properties of the
models and we summarize the results of the three models in
the last section.

2 Basic formalism

The field equations of Saez and Ballester scalar–tensor the-
ory (8πG = 1 and c = 1) (Saez and Ballester 1986) are

Rij − 1

2
Rgij = −Tij + ωφn

(
φ,iφ,j − 1

2
gijφ,βφ,β

)
(1)

and the scalar field φ satisfies the equation

2φnφi
;i + nφn−1φ,βφ,β = 0, (2)

where Rij is the Ricci tensor, R is the scalar curvature, the
energy momentum tensor for a given environment of two
non interacting fluids is given by

Tij = T de
ij + T λ

ij , (3)

where, T de
ij is the stress energy tensor of the dark energy

and T λ
ij is the stress energy tensor of one dimensional cos-

mic string. φ is a dimensionless scalar field which is a func-
tion of cosmic time t alone. ω and n are constants. Comma
and semicolon denote partial and covariant differentiation,
respectively.

Also, we have energy conservation equation as

T
ij

;j = 0. (4)

The energy-momentum tensor of the dark energy is given by

T de
ij = diag[1,−ωde,−ωde,−ωde]ρde, (5)

where ωde = pde
ρde

is the dark energy equation of state param-
eter (EoS) and pde and ρde are pressure and density of the
dark energy, respectively.

For fluid containing one dimensional cosmic string, the
energy momentum tensor is given by Mishra et al. (2017),
Letelier (1980) and Stachel (1980)

T λ
ij = (ρ + p)uiuj − pgij − λxixj . (6)

Here uiuj = 1, xixj = −1 (along x-direction). In the co-
moving coordinate system ui is the four velocity vector and
p is the isotropic pressure of the fluid. ρ is the proper density
and is composed of energy density due to massive particle
and string tension density λ. In the absence of any string
phase, the total contribution to the baryonic energy density
comes from particles only. In contrast to isotropic pressure
of usual cosmic fluid, we wish to incorporate some degree
of anisotropy in the dark energy pressure.

Now we consider the metric

ds2 = dt2 − D2(t) dr2 − E2(t)
[
dθ2 + F 2

l (θ) dψ2], (7)
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where

F 2
l (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin2 θ, when l = 1
(Kantowski-Sachs model),

θ2, when l = 0
(LRS Bianchi type-I model),

sinh2 θ, when l = −1
(LRS Bianchi type-III model).

(8)

Here l is the spatial curvature index and the above three
models are closed, Euclidean and semi-closed respectively
(Shamir 2010).

2.1 Case (i): l = 1, Kantowski-Sachs space-time

We consider the spatially homogeneous and anisotropic
Kantowski-Sachs space-time given by Kantowski and Sachs
(1966), equations (7) and (8) in the form

ds2 = dt2 − D2(t) dr2 − E2(t)
[
dθ2 + sin2θ dψ2], (9)

where D and E are the functions of cosmic time t only.
For the metric given by (9), using (3), (5) and (6), the

field equations (1) and (2) can be written as

Ė2

E2
+ 2

Ë

E
+ 1

E2
− 1

2
ωφnφ̇2 = λ − p − ωdeρde, (10)

D̈

D
+ Ë

E
+ ḊĖ

DE
− 1

2
ωφnφ̇2 = −p − ωdeρde, (11)

2
ḊĖ

DE
+ Ė2

E2
+ 1

E2
+ 1

2
ωφnφ̇2 = ρ + ρde, (12)

φ̈ + φ̇

(
Ḋ

D
+ 2

Ė

E

)
+ n

2

φ̇2

φ
= 0. (13)

The energy conservation equation (4), yields

ρ̇ + 3(p + ρ)H − λH1 + ρ̇de + 3ρde(ωde + 1)H = 0, (14)

where H is Hubble’s parameter, H1 is directional Hubble’s
parameter and dot (.) represents derivative with respect to
cosmic time t .

2.1.1 Solutions of the field equations

From the field equations (10) to (13) we have four indepen-
dent equations with eight unknowns D, E, φ, ρde, ωde, ρ, p

and λ. In order to find a deterministic solution we take the
following two physically valid conditions.

(i) We consider the cosmological scale factor as a hybrid
expansion law (Saha et al. 2012)

R(t) = meat tb, (15)

where a ≥ 0, b ≥ 0 and m > 0 are constants.

(ii) We take the shear scalar σ in the model to be propor-
tional to the expansion scalar θ , this condition leads to
(Collins et al. 1980)

D = Ek, (16)

where k > 0 and k �= 1 is a constant.

Using (16) we get,

Ḋ

D
= k

Ė

E
. (17)

The directional Hubble parameters are,

H1 = Ḋ

D
, H2 = H3 = Ė

E
. (18)

The mean Hubble parameter is,

H = 1

3
(H1 + 2H2). (19)

Then from (17)–(19) it follows that

H1 = 3k

k + 2
H, H2 = H3 = 3

k + 2
H. (20)

The Hubble parameter H is given by

H = Ṙ

R
. (21)

From (15) and (21) the Hubble parameter H is obtained as

H = a + b

t
. (22)

From (17)–(19) and (21) we get,

D = (
meat tb

) 3k
k+2 , (23)

E = (
meat tb

) 3
k+2 . (24)

Now the metric with (9) with the help of (23) and (24) can
be written as

ds2 = dt2 − (
meat tb

) 6k
k+2 dr2

− (
meat tb

) 6
k+2

[
dθ2 + sin2 θdψ2]. (25)

From (13), (18), (19), (21), (23) and (24) we find Saez-
Ballester scalar field as

φ =
[
n + 2

2

∫ (
ceat tb

)−3
dt + φ0

] 2
n+2

, (26)

where c and φ0 are constants of integration.
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From (10), (11), (13), (23) and (24) the string tension
density λ is obtained as

λ = 9(1 − k)

k + 2

(
a + b

t

)2

+ 3b(k − 1)

t2(k + 2)
+ 1

(meat tb)
6

k+2

. (27)

We consider,

λ = αρ, p = ωρ (28)

where α and ω are assumed to be non evolving state param-
eters.

The proper density ρ is given by

ρ = 9(1 − k)

α(k + 2)

(
a + b

t

)2

+ 3b(k − 1)

αt2(k + 2)
+ 1

α(meat tb)
6

k+2

.

(29)

The isotropic pressure of the fluid p is given by

p = 9ω(1 − k)

α(k + 2)

(
a + b

t

)2

+ 3bω(k − 1)

αt2(k + 2)
+ ω

α(meat tb)
6

k+2

.

(30)

From equations (12), (13), (23), (24), (27)–(29) the dark en-
ergy density (ρde) is obtained as,

ρde = 9

[
2αk + α + k2 + k − 2

α(k + 2)2

](
a + b

t

)2

+ α − 1

α(meat tb)
6

k+2

− 3b(k − 1)

α(k + 2)t2
+ ω

2(meat tb)6
. (31)

Using (10), (11), (13), (23), (24), (27)–(31) the EoS param-
eter (ωde) for the dark energy is calculated as

ωde =
18[α(k2+k+1)−ω(k2+k−2)

α(k+2)2 ](a + b
t
)2 + (ω(k − 1) − α(k + 1))( 6b

αt2(k+2)
) + 2ω

α(meat tb)
6

k+2
− ω

(meat tb)6

−2([ 18αk+9α−9k2−9k+18
α(k+2)2 ](a + b

t
)2 + α−1

α(meat tb)
6

k+2
− 3b(k−1)

α(k+2)t2 + ω

2(meat tb)6 )
. (32)

Using (31), (32) the pressure of dark energy (pde) is given
by

pde = −9

[
α(k2 + k + 1) − ω(k2 + k − 2)

α(k + 2)2

](
a + b

t

)2

− (
ω(k − 1) − α(k + 1)

)( 3b

αt2(k + 2)

)

− ω

α(meat tb)
6

k+2

+ ω

2(meat tb)6
. (33)

Average density parameters of the dark energy (Ωde), dark
matter (Ωm) are given by

Ωde = ρde

3H 2
= 9

[
2αk + α + k2 + k − 2

3α(k + 2)2

]

+ α − 1

3α(meat tb)
6

k+2 (a + b
t
)2

− b(k − 1)

α(k + 2)t2(a + b
t
)2

+ ω

6(meat tb)6(a + b
t
)2

, (34)

Ωm = ρ

3H 2
= 3(1 − k)

α(k + 2)
+ b(k − 1)

αt2(k + 2)(a + b
t
)2

+ 1

3α(meat tb)
6

k+2 (a + b
t
)2

. (35)

2.2 Case (ii): l = 0, LRS Bianchi type-I space-time

We consider the spatially homogeneous and anisotropic
LRS Bianchi type-I space-time given by (7) and (8) in the
form

ds2 = dt2 − D2(t) dr2 − E2(t)
[
dθ2 + θ2dψ2], (36)

where D and E are the functions of cosmic time t only.
For the metric given by (36), using (3), (5) and (6), the

field equations (1) and (2) takes the form

Ė2

E2
+ 2

Ë

E
− 1

2
ωφnφ̇2 = λ − p − ωdeρde, (37)

D̈

D
+ Ë

E
+ ḊĖ

DE
− 1

2
ωφnφ̇2 = −p − ωdeρde, (38)

2
ḊĖ

DE
+ Ė2

E2
+ 1

2
ωφnφ̇2 = ρ + ρde, (39)

φ̈ + φ̇

(
Ḋ

D
+ 2

Ė

E

)
+ n

2

φ̇2

φ
= 0. (40)

The energy conservation equation (4), yields

ρ̇ + 3(p + ρ)H − λH1 + ρ̇de + 3ρde(ωde + 1)H = 0. (41)
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2.2.1 Solutions of the field equations

From the field equations (37) to (40) we have four indepen-
dent equations with eight unknowns D, E, φ, ρde, ωde, ρ, p

and λ. In order to find a deterministic solution we take the
following two physically valid conditions.

(i) We consider the cosmological scale factor given by (15)
(ii) We take the relation given by (16).

Now the metric with equation (36) with the help of
(17)–(24) can be written as

ds2 = dt2 − (
meat tb

) 6k
k+2 (t) dr2

− (
meat tb

) 6
k+2

[
dθ2 + θ2 dψ2]. (42)

The Saez-Ballester scalar field is given by (26).
From (23), (24), (37), (38) and (40) the string tension

density λ is obtained as

λ = 9(1 − k)

k + 2

(
a + b

t

)2

+ 3b(k − 1)

t2(k + 2)
. (43)

Using the relations given by (28), the proper density ρ is
given by

ρ = 9(1 − k)

α(k + 2)

(
a + b

t

)2

+ 3b(k − 1)

αt2(k + 2)
, (44)

and the isotropic pressure of the fluid p is given by

p = 9ω(1 − k)

α(k + 2)

(
a + b

t

)2

+ 3ωb(k − 1)

αt2(k + 2)
. (45)

From equations (23), (24), (39), (40) and (44) the dark en-
ergy density (ρde) is obtained as,

ρde = 9

[
2αk + α + k2 + k − 2

α(k + 2)2

](
a + b

t

)2

− 3b(k − 1)

α(k + 2)t2
+ ω

2(meat tb)6
. (46)

Using (23), (24), (37)–(40), (43)–(46) the EoS parameter
(ωde) for the dark energy is calculated as

ωde =
18[α(k2+k+1)−ω(k2+k−2)

α(k+2)2 ](a + b
t
)2 − (α(k + 1) + ω(k − 1))( 6b

αt2(k+2)
) − ω

(meat tb)6

−2([9 2αk+α+k2+k−2
α(k+2)2 ](a + b

t
)2 − 3b(k−1)

α(k+2)t2 + ω

2(meat tb)6 )
. (47)

Using (46) and (47) the pressure of dark energy (pde) is

given by

pde = −9

[
α(k2 + k + 1) + ω(k2 + k − 2)

α(k + 2)2

](
a + b

t

)2

+ (
α(k + 1) + ω(k − 1)

)( 3b

αt2(k + 2)

)

+ ω

2(meat tb)6
. (48)

Average density parameters of the dark energy (Ωde), dark

matter (Ωm) are given by

Ωde = 9

[
2αk + α + k2 + k − 2

3α(k + 2)2

]
− b(k − 1)

α(k + 2)t2(a + b
t
)2

+ ω

6(meat tb)6(a + b
t
)2

, (49)

Ωm = 3(1 − k)

α(k + 2)
+ b(k − 1)

αt2(k + 2)(a + b
t
)2

. (50)

2.3 Case (iii): l = −1, LRS Bianchi type-III space-time

We consider the spatially homogeneous and anisotropic
LRS Bianchi type-III space-time given by (7) and (8) in the
form

ds2 = dt2 − D2(t)dr2 − E2(t)
[
dθ2 + sinh2θdψ2], (51)

where D and E are the functions of cosmic time t only.
For the metric given by (51), using (3), (5) and (6), the field
equations (1) and (2) takes the form

Ė2

E2
+ 2

Ë

E
− 1

2
ωφnφ̇2 = λ − p − ωdeρde, (52)

D̈

D
+ Ë

E
+ ḊĖ

DE
− 1

2
ωφnφ̇2 = −p − ωdeρde, (53)

D̈

D
+ Ë

E
+ ḊĖ

DE
− 1

D2
− 1

2
ωφnφ̇2 = −p − ωdeρde, (54)

2
ḊĖ

DE
+ Ė2

E2
− 1

D2
+ 1

2
ωφnφ̇2 = ρ + ρde, (55)

Ḋ

D
− Ė

E
= 0, (56)
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φ̈ + φ̇

(
Ḋ

D
+ 2

Ė

E

)
+ n

2

φ̇2

φ
= 0. (57)

The energy conservation equation (4), yields

ρ̇ + 3(p + ρ)H − λH1 + ρ̇de + 3ρde(ωde + 1)H = 0. (58)

2.3.1 Solutions of the field equations

From the field equations (52)–(57) we have six indepen-
dent equations with eight unknowns D, E, φ, ρde, ωde, ρ,
p and λ. In order to find a deterministic solution we take the
cosmological scale factor given by (15)

Using (56) we get,

D = c1E, (59)

where c1 is constant of integration. The directional Hubble
parameters are,

H1 = H2 = H3 = Ė

E
. (60)

The mean Hubble parameter is,

H = 1

3
(H1 + H2 + H3) = Ė

E
= Ṙ

R
. (61)

Hence taking c1 = 1 it follows that

D = E = meat tb. (62)

Now the metric with equation (51) with the help of (62)
can be written as

ds2 = dt2 −(
meat tb

)2
dr2 −(

meat tb
)2[

dθ2 +sinh2θdψ2].
(63)

From (57), (61) and (62) we find Saez-Ballester scalar
field as

φ =
[
n + 2

2

∫ (
ceat tb

)−3
dt + φ0

] 2
n+2

, (64)

where c and φ0 are constants of integration.
From (52)–(54) and (57), (62) the string tension density

λ is obtained as

λ = 0 (65)

Using (28) and (65), the proper density ρ is given by

ρ = 0. (66)

The isotropic pressure of the fluid p is given by

p = 0. (67)

From (55), (57) and (62) the dark energy density (ρde) is
obtained as

ρde = 3

(
a + b

t

)2

+ ω

2(meat tbt )6
− 1

(meat tbt )2
. (68)

Using (52)–(54), (57), (62), (65)–(68), the EoS parameter
(ωde) for the dark energy is calculated as

ωde =
−3(a + b

t
)2 + 2b

t2 + ω

2(meat tbt )6 + 1
3(meat tbt )2

3(a + b
t
)2 + ω

2(meat tbt )6 − 1
(meat tbt )2

. (69)

Using (68) and (69) the pressure of dark energy (pde) is
given by

pde = −3

(
a + b

t

)2

+ 2b

t2
+ ω

2(meat tbt )6
+ 1

3(meat tbt )2
.

(70)

Average density parameters of the dark energy (Ωde) is
given by

Ωde = 1 + ω

6(meat tbt )6(a + b
t
)2

− 1

3(meat tbt )2(a + b
t
)2

.

(71)

3 Exact solutions

In this section we search to find exact solution of scalar
field following the work of Liddle and Scherrer (1998). In
our choice of scale factor we assumed hybrid-expansion law
where R ∝ eat tb , now in order to find exact solution let us
consider two cases

Case (I) Power law where,

R ∝ tb. (72)

In this case the scalar field φ which is the solution of
(13), (40) and (57) is obtained as

φ =
[

n + 2

2(1 − 3b)
t1−3b

] 2
n+2

. (73)

Case (II) Exponent law where

R ∝ eat . (74)

In this case the scalar field φ which is the solution of
(13), (40) and (57) is obtained as

φ =
[
n + 2

−6a
e−3at

] 2
n+2

. (75)



Dark energy cosmological models with cosmic string Page 7 of 14 188

The solutions that we get for φ are particular solutions con-
taining no arbitrary constants and known as exact (singular)
solutions.

4 Some other important properties
of the models

The spatial volume of the three models with (25), (42) and
(63) is given by

V = R3 = (
meat tb

)3
. (76)

The expansion scalar θ for the three models is

θ = ui
;i = 3H = 3

(
a + b

t

)
. (77)

From (77) we observe that when t → 0, θ → ∞ and this
indicates the inflationary scenario at early stages of the uni-
verse.

The shear scalar σ for the Kantowski-Sachs and LRS
Bianchi type-I models with (25) and (42) is

σ 2 = 1

2
σ ijσij = 1

2

(
Ḋ2

D2
+ 2

Ė2

E2

)
− 1

6
θ2

= 3

(
k2 − 2k + 1

(k + 2)2

)(
a + b

t

)2

. (78)

The shear scalar σ for the LRS Bianchi type-III model with
(63) is given by

σ = 0. (79)

The average anisotropic parameter A for the Kantowski-
Sachs and LRS Bianchi type-I models with (25) and (42) is
given by

A = 1

3

3∑
i=1

(Hi − H)2

H 2
= 2

(k − 1)2

(k + 2)2
. (80)

The value of the average anisotropic parameter A is positive
constant for k �= 1 which shows that Kantowski-Sachs and
LRS Bianchi type-I models are anisotropic through out the
evolution of the universe.

The value of average anisotropic parameter A for the
LRS Bianchi type-III model with equation (63) is given by

A = 0, (81)

which shows that LRS Bianchi type-III model is isotropic
throughout the evolution of the universe.

In all the discussions of the models and graphical rep-
resentations of physical parameters we constraint the con-
stants as: a = 0.055, b = 0.29, k = 0.8, α = 0.9, m = 0.3,
ω = 0.8, ω = 50 and the cosmic time t in billion years.

Fig. 1 Plot of q versus red shift (z) for the three models

Fig. 2 Plot of ρde, λ and ρ versus red shift (z) for Kantowski-Sachs
model

The deceleration parameter (DP) q which measure the
rate of slowing down of the expansion factor, for the three
models is given by

q = −1 + d

dt

(
1

H

)
= −1 + b

(at + b)2
. (82)

Positive value of q indicates the standard decelerating
model, while negative value of q indicates inflation (Riess
et al. 1998; Bennett et al. 2003). From Fig. 1 we observed
that the values of the deceleration parameter q < 0 for
z < 1.25 indicating that the universe appears to be expand-
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Fig. 3 Plot of ρde, λ and ρ versus red shift (z) for LRS B-I model

Fig. 4 Plot of ρde, ρ, λ versus red shift (z) for LRS B-III model

ing in accelerating rate at present epoch and late time and
q > 0 for z > 1.25 indicating that the models were decel-
erating at early time. From Fig. 1 we can also observe that
q = 0 when z ≈ 1.25, therefore transition from early decel-
eration to late time inflation of the universe in our models
occurs at z ≈ 1.25. In our models the present value of decel-
eration parameter q0 ≈ −0.73, which match the observed
value (Cunha et al. 2009).

From Figs. 2, 3 and 4 we observed that the density of
dark energy (ρde) for the three models is increasing func-
tions of redshift and remains positive throughout the evo-

Fig. 5 Plot of ωde versus red shift (z) for Kantowski-Sachs model

Fig. 6 Plot of ωde versus red shift (z) for LRS B-I model

lution of the universe. From Fig. 2 and 3 we have also ob-
served that for Kantowski-Sachs and Bianchi type-I geome-
tries the dark energy density dominates the string tension
density and the proper density throughout the evolution of
the universe. From Fig. 3 we observed that the value of λ is
very small for LRS Bianchi type-I model. Form Fig. 4 we
also observed that for LRS Bianchi type-III model λ and ρ

vanishes for all t .
From (32), (47) and (69) it is clear that the equation of

state parameter of dark energy ωde is a function of time and
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Fig. 7 Plot of ωde versus red shift (z) for LRS B-III model

Fig. 8 Plot of Ωde, Ωm versus red shift (z) for Kantowski-Sachs model

in Figs. 5, 6 and 7 the equation of state of dark energy (ωde)
is plotted as function of redshift (z) and it is observed that it
crosses the phantom divide line ωde = −1. Thus ωde transits
from quintessence to phantom so it has quintom like behav-
ior and can explain the acceleration of the universe.

From Fig. 8 and 9 we observed that the average density
parameters, Ωde and Ωm are positive throughout the evolu-
tion of the universe and approaches to a number less than
one at late time. From Fig. 10 we observed that the average
density parameter, Ωde is positive throughout the evolution

Fig. 9 Plot of Ωde, Ωm versus red shift (z) for LRS B-I model

Fig. 10 Plot of Ωde, Ωm versus red shift (z) for LRS B-III model

of the universe and approaches to 1 at late time since Ωm = 0
for all t .

4.1 Classical stability of the models

In order to forecast the final evolution of the universe, it is
important to study classical stability of the models. Points
which are classically stable are exciting from cosmological
point of view.
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4.1.1 Squared speed of the sound

We now consider and study an important quantity consid-
ered in cosmology in order to check the stability of any DE
model and it is known as squared speed of sound, it is de-
noted with v2

s . The models with v2
s > 0 are stable where as

models with v2
s < 0 are unstable. The squared speed of the

sound is defined as follows (Myung 2007):

v2
s = ṗde

ρ̇de
(83)

where ṗde and ρ̇de are cosmic time derivatives of pres-
sure and density of dark energy, respectively. Using (31)
and (33), v2

s for Kantowski-Sachs model with (25) is given
by

v2
s =

[ 18b(α(k2+k+1)−ω(k2+k−2))

αt2(k+2)2 + 6ω

α(k+2)(meat tb)
6

k+2
− 3ω

(meat tb)6 ](a + b
t
) − (k − ω

α
(k − 1) + 1)( 6b

t3(k+2)
)

[−18b(2kα+α+k2+k−2)

αt2(k+2)2 − 6(α−1)

α(k+2)(meat tb)
6

k+2
− 3ω

(meat tb)6 ](a + b
t
) + 6b(k−1)

α(k+2)t3

. (84)

Using (46) and (48), v2
s for LRS Bianchi type-I model with (42) is given by

v2
s =

[ 18b(α(k2+k+1)−ω(k2+k−2))

αt2(k+2)2 − 3ω

(meat tb)6 ](a + b
t
) − (k − ω

α
(k − 1) + 1)( 6b

t3(k+2)
)

[−18b(2kα+α+k2+k−2)

αt2(k+2)2 − 3ω

(meat tb)6 ](a + b
t
) + 6b(k−1)

α(k+2)t3

. (85)

Using equations (68) and (70), v2
s for LRS Bianchi-III model

with (63) is given by

v2
s =

[ 6b

t2 − 3ω

(meat tb)6 − 2
3(meat tb)2 ](a + b

t
) − 4b

t3

[ 2
(meat tb)2 − 6b

t2 − 3ω

(meat tb)6 ](a + b
t
)

. (86)

The plot of squared speed of sound for three models with
(25), (42) and (63) is displayed against redshift in Figs. 11,
12 and 13 respectively and we have observed that the

Fig. 11 Plot of v2
s versus red shift (z) for Kantowski-Sachs model

squared speed of sound is positive throughout the evolution
of the universe and hence the three models are stable, more-
over the Kantowski-Sachs and LRS Bianchi type-I models
satisfies the inequality 0 ≤ v2

s < 1 at throughout the evolu-
tion of the universe.

4.1.2 Testing the non-negativity of the squared sound
speed against small perturbations

Assuming a small perturbation in the background energy
density, we need to observe if the perturbation grows or col-
lapse. In the linear perturbation theory, the perturbed energy
density of the background can be written as

ρde(t, x) = ρde(t) + δρde(t, x) (87)

where ρde(t) is unperturbed background energy density. The
energy conservation equation (4) yields (Peebles and Ratra
2003)

δρ̈de = v2
s �

2ρde(t, x). (88)

Solutions of (88) include two cases of interest. First when v2
s

is positive (88) becomes an ordinary wave equation whose
solutions would be oscillatory waves of the form

δρde = ρ0e
−iγ t+ik.x (89)

which indicates a propagation mode for the density pertur-
bations. The second is when v2

s is negative. In this case the
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Fig. 12 Plot of v2
s versus red shift (z) for LRS B-I model

Fig. 13 Plot of v2
s versus red shift (z) for LRS B-III model

frequency of the oscillations becomes pure imaginary and
the density perturbations will grow with time as

δρde = ρ0e
iγ t+ik.x (90)

where ρ0 is constant of integration. Here Thus the growing
perturbation with time indicates a possible emergency of in-
stabilities in the background. From Figs. 11, 12 and 13 it is
clear that v2

s > 0 hence the three models are stable within
small perturbations.

4.1.3 Possible violations of causality associated with
superluminal propagation of small perturbations

One of the criteria for cosmological models to survive is that
the speed of the sound is less than the local light speed, i.e.
vs < 1 (Garcia-Salcedo et al. 2014). From Figs. 11 and 12
we observed that the inequality vs < 1 occurs at present and
early times. Thus Kantowski-Sachs, and LRS Bianchi type-
I models did not admit superluminal fluctuations and meets
the required bound vs < 1. The requirement that the energy
density perturbations do not uncontrollably grow leads to a
classical stability v2

s < 1. But this does not happen for LRS
Bianchi type-III model, indicating violation of causality.

4.1.4 Existence/absence of curvature singularities
of sudden and big rip types

The existence of sudden singularities is stable when the den-
sity is bounded near the singularity except for some cases
with special parameter choices. This result holds regardless
of whether the background metric is spatially flat, closed or
open. The scale factor of our three models of the universe
can be written as

R(t) = mtb + matb+1 + m
a2

4
tb+2 + m

a3

6
tb+3 + · · · , (91)

hence by definition (Visser and Cattoën 2005) a sudden sin-
gularity will be said to occur at time t = 0 so that some
derivative of R(t) blows up near the singularity.

From (91) we observed that a sudden singularity for three
models occurs at t = 0, where the scale factor of the three
models is discontinuous so that some derivative of R(t)

blows up near t = 0.
We also observed that our model shows phantom prop-

erty and hence big rip singularity will takes place, which is
curvature singularity at which both the scale factor and the
energy density diverge.

4.2 State finder parameters

The investigation and the study of some important cosmo-
logical quantities like the EoS parameter (ωde), the Hubble
parameter (H ) and the deceleration parameter (q) have at-
tracted a lot of attention in modern cosmology. In cosmol-
ogy different DE models usually lead to a positive value of
the Hubble parameter H and a negative value of deceleration
parameter q at the present epoch for (z = 0). For this reason
we can conclude that the Hubble and the deceleration pa-
rameters H and q can not effectively distinguish between the
various DE models taken into account. Thus, a higher order
of derivatives with respect to the cosmic time t of the scale
factor R must be taken in order to have a better and deeper
study of the DE models. Sahni et al. (2003) and Alam et al.
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Fig. 14 Plot of r versus s for three models

(2003), considered the third derivative with respect to the
cosmic time t of the scale factor R and introduced the state
finder pair {r, s} to remove the degeneracy of H and q at the
present epoch of the universe. The state finder parameters
are defined as

r =
...
R

RH 3
, s = r − 1

3(q − 1
2 )

. (92)

Using (15) and (22) in (92) we get

r = 1 − b(3at + 3b − 2)

(at + b)3
. (93)

From (82), (92) and (93) we get

s = 2b(2 − 3at − 3b)

(6b − 9(at + b)2)(at + b)
. (94)

In r–s plane s > 0 implies a quintessences-like model
where as s < 0 indicate a phantom like model. Furthermore
an evolution from quintessence to phantom (or vice-versa)
is obtained when the point with coordinate {r, s} = {1,0}
is crossed (Wu and Yu 2010). One of the most important
properties of the statefinder parameters r and s is that the
point {r, s} = {1,0} in the r–s plane indicates the point cor-
responding to the flat �CDM model (Huang et al. 2008).
From (88) and (89) we observed that r → 1, s → 0, when
t → ∞. From Fig. 14 we have observed that the values of
state finder pair becomes r = 1, s = 0 at late time and con-
sistent with standard �CDM model.

4.3 ωde–ω′
de plane analysis

The ωde–ω′
de plane analysis is proposed by Caldwell and

Linder (2005) which is very useful tool in our modern days
cosmological analysis. Basically, it has been used to distin-
guish different DE models through trajectories on its plane.
Initially, this method has been applied on quintessence DE
model which leads to two classes of its plane the one with
ωde < 0 and ω′

de < 0 is called freezing region and the other
with the property ωde < 0 and ω′

de > 0 is known as thawing
region.

Differentiating EoS parameter ωde = pde
ρde

with respect to
(lnR) we get,

ω′
de = ṗdeρde − pdeρ̇de

Hρ2
de

. (95)

For model with (25)

ṗde =
[

18b(α(k2 + k + 1) − ω(k2 + k − 2))

αt2(k + 2)2

+ 6ω

α(k + 2)(meat tb)
6

k+2

− 3ω

(meat tb)6

](
a + b

t

)

+ 6b(ω(k − 1) − α(k + 1))

αt3(k + 2)
, (96)

ρ̇de =
[−18b(2kα + α + k2 + k − 2)

αt2(k + 2)2

− 6(α − 1)

α(k + 2)(meat tb)
6

k+2

− 3ω

(meat tb)6

](
a + b

t

)

+ 6b(k − 1)

α(k + 2)t3
, (97)

and ρde and pde is given by (31) and (33).
For model with (42)

ṗde =
[

18b(α(k2 + k + 1) − ω(k2 + k − 2))

αt2(k + 2)2

− 3ω

(meat tb)6

](
a + b

t

)

+ 6b(ω(k − 1) − α(k + 1))

αt3(k + 2)
, (98)

ρ̇de =
[−18b(2kα + α + k2 + k − 2)

αt2(k + 2)2

− 3ω

(meat tb)6

](
a + b

t

)
+ 6b(k − 1)

α(k + 2)t3
, (99)

and ρde and pde are given by (46) and (48)
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Fig. 15 Plot of ωde versus ω′
de for Kantowski-Sachs model

Fig. 16 Plot of ωde versus ω′
de for LRS B-I model

For the model with (63)

ṗde =
[

6b

t2
− 3ω

(meat tb)6
− 2

3(meat tb)2

](
a + b

t

)
− 4b

t3
,

(100)

˙ρde =
[

2

(meat tb)2 − 6b

t2

− 3ω

(meat tb)6

](
a + b

t

)
, (101)

and pde and ρde are given by (68) and (70) respectively.
From Fig. 15 and Fig. 16 we have observed that Kantowski-

Sachs and LRS Bianchi type-I models lie in freezing region

Fig. 17 Plot of ωde versus ω′
de for LRS B-III model

and from Fig. 17 we have observed that LRS Bianchi type-
III model exhibit a thawing region.

5 Conclusion

In this paper we have presented a spatially homogeneous
anisotropic Kantowski-Sachs, locally rotationally symmet-
ric (LRS) Bianchi type-I and LRS Bianchi type-III space
times filled with dark energy and one dimensional string
in the framework of Saez-Ballester scalar tensor theory of
gravitation. The spacial volume V is an increasing function
of time. The time dependent DP (q) is positive at early age
of the universe and becomes negative at present and late
time, showing that our models evolves from early deceler-
ating phase to late time accelerating phase. We have found
the present value of deceleration parameter as q0 ≈ −0.73,
which match the observed value. We have also observed that
the dark energy density (ρde) is increasing with respect to
red shift for the three models and dominates the string ten-
sion density (λ) and the proper density (ρ) throughout the
evolution of the universe in the case of LRS Bianchi type-I
and Kantowski-Sachs space time. The EoS parameter (ωde)
for three models crosses the phantom divide line ωde = −1,
thus it has quintom-like behavior. Since the squared speed of
sound v2

s is positive for the three models we have observed
that the three models are stable through the evolution of the
universe. In addition for Kantowski-Sachs and LRS Bianchi
type-I models it is observed that the values of v2

s satisfy the
inequality 0 < v2

s < 1 at present and early time so that they
do not admit superluminal fluctuations. We have observed
that the values of state finder pair becomes r = 1, s = 0 at
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late time and consistent with standard �CDM model. We
have observed that the Kantowski-Sachs and LRS Bianchi
type-I models lies in freezing region and LRS Bianchi type-
III model lies in thawing region. The models obtained and
presented here represents accelerating and expanding cos-
mological models of the universe. Thus our models are in
harmony with present cosmological observations.
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