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Abstract The power-limited solar electric propulsion sys-
tem is considered more practical in mission design. An accu-
rate mathematical model of the propulsion system, based on
experimental data of the power generation system, is used
in this paper. An indirect method is used to deal with the
time-optimal and fuel-optimal control problems, in which
the solar electric propulsion system is described using a fi-
nite number of operation points, which are characterized by
different pairs of thruster input power. In order to guarantee
the integral accuracy for the discrete power-limited prob-
lem, a power operation detection technique is embedded
in the fourth-order Runge-Kutta algorithm with fixed step.
Moreover, the logarithmic homotopy method and normal-
ization technique are employed to overcome the difficulties
caused by using indirect methods. Three numerical simula-
tions with actual propulsion systems are given to substanti-
ate the feasibility and efficiency of the proposed method.

Keywords Solar electric propulsion · Power limit · Indirect
method · Power operation detection technique

1 Introduction

The success of the first interplanetary mission propelled by
solar electric propulsion (SEP) in Deep Space 1 indicates
that SEP as an ion propulsion system (IPS) is very promising
for interplanetary missions (Rayman and Williams 2002).
This first SEP system is based on the NASA solar elec-
tric propulsion technology application readiness (NSTAR)
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system (Woo et al. 2006). The NSTAR thruster system is
also chosen for NASA’s Dawn mission, which proves the
advantages of SEP in the interplanetary flight (Dankanich
2010). The more effective IPS based on NASA’s evolu-
tionary xenon thruster (NEXT) (Soulas et al. 2003) is now
planned for future space exploration missions. Since IPS is
able to produce a higher specific impulse and has lower fuel
consumption compared to the chemical propulsion, it can
be used in a wide range of applications. Simplified mod-
els for the SEP system and its operation have been utilized
for previous mission analyses; however, some practical op-
erational details of SEP need to be considered to create an
accurate mass budget for a mission design (Gao and Kluever
2005), of which one of the most important details is power
constraint: the operating power is generated by the solar ar-
rays, so the available power to the thrusters depends on the
distance to the Sun (Bhaskaran et al. 2000). From a theo-
retical viewpoint, the maximum achievable thrust produced
by the limited power can be continuous. Thus far, there are a
few studies about low-thrust trajectory optimization concen-
trated on the continuously variable maximum thrust (Chen
et al. 2012; Mengali and Quarta 2005; Senent et al. 2005;
Zhang et al. 2014). On this occasion, before the available
power achieves the rated input power of the thrusters, the
generated thrust is approximately inversely proportional to
the square of the distance to the Sun. Once the available
power exceeds the rated power, the thrust is full during the
flight trajectory. On the other hand, when the power be-
comes insufficient, the engine is shut down. In the reality,
the thrust discretely varies with the limited power. Thus, the
discrete power-limited model is closer to actual engineering
missions. For Deep Space 1, the IPS based on NSTAR has
about 100 throttle levels, with a thrust range of 20 to 90 mN
(Bhaskaran et al. 2000). Quarta and Mengali (2011) applied
the actual NEXT system to investigate the minimum-time
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rendezvous problem. This system has 40 available operation
points and each point is characterized by a corresponding
set of values of thrust, propellant mass flow rate, and power
processing unit (PPU) input power. Quarta et al. (2013)
employed the actual NEXT model which was discussed in
Quarta and Mengali (2011) to find the minimum time opti-
mal direct transfer scenarios for a mission to the circumsolar
space. Therefore, regarding to the studies mentioned above,
considering the actual power-limited model is vital for ac-
curate low-thrust trajectory design.

Generally, low-thrust trajectory optimization aims to
solve two types of problems: time-optimal and fuel-optimal
problems. The methods for optimizing low-thrust trajecto-
ries are classified into two categories: direct methods and in-
direct methods. The solutions of indirect methods not only
have high accuracy, but are also guaranteed to satisfy the
first-order optimality conditions, which are the primary ad-
vantages of the indirect methods (Zhang et al. 2014). More-
over, the low dimensionality of the search space of indirect
methods enables the random search of initial guesses of the
unknowns (Oshima et al. 2017; Russell 2007). In the pub-
lished papers for power-limited problems, indirect methods
which are based on the Pontryagin’s maximum principle,
have been widely used (Chen et al. 2012; Chi et al. 2017;
Landau et al. 2011; Mengali and Quarta 2005; Woo et al.
2005; Zhang et al. 2014). However, there are two problems
with the convergence of indirect methods: (1) the sensitiv-
ity of initial guesses of the unknowns and discontinuous
bang-bang control for the fuel-optimal problem (2) diffi-
culty for seeking the non-intuitive initial adjoint variables.
To overcome the difficulties in convergence caused by bang-
bang control, the homotopy method with different homotopy
functions has been proposed to find the optimal solutions
(Bertrand and Epenoy 2002). Many studies in indirect meth-
ods with these techniques have successfully solved the low-
thrust trajectory optimization problems. Jiang et al. (2012)
applied the homotopy method and proposed the normaliza-
tion to the initial costates, which can be made to benefit
initial guesses. Zhang et al. (2014) developed the homotopy
method (Jiang et al. 2012) for the variable-power problems.
Yang and Baoyin (2015) investigated the trajectory prob-
lems with irregular gravity and also developed the method
of Jiang et al. (2012). Chi et al. (2017) proposed a modi-
fied homotopy method for variable-specific-impulse trajec-
tory optimization problem. Li et al. (2017) developed the
logarithmic homotopy method in solving low-thrust transfer
trajectories for multidebris removal missions considering J2
perturbation. The methods for seeking the initial values of
adjoint variables include random guess and analytic evalua-
tion. The adjoint variables in the literature mentioned above
using indirect methods are almost estimated by the use of
random initial guessing. Among analytic evaluation meth-
ods, Jiang et al. (2017) applied the linearization of motion
equation and solved the simplified optimal control problems

around shape-based path to develop the adjoint estimation
method.

However, a critical problem has not been addressed in
the discretely power-limited low-thrust trajectory optimiza-
tion problems. As the thrust produced by the limited power
varies discretely and has finite operation points, it is hard
to guarantee the integration accuracy due to the discontin-
uous right-hand sides of ordinary equation. To the best of
the authors’ knowledge, little research has been conducted
about the application of the power detection technique to the
power-limited trajectory when the thrust varies discretely.
The similar situation is that as the right hand sides of the
dynamical equations and Euler-Lagrange equations contain
control variables, it is hard to guarantee the integration ac-
curacy for bang-bang control. Jiang et al. (2012) embed-
ded the switching detection (Martinon and Gergaud 2007)
in the fourth-order Runge-Kutta algorithm with fixed step
size (RK4) to overcome this problem. Other contributions
employing this switching detection technique can be found
by Zhang et al. (2013, 2014, 2015), Yang and Baoyin (2015).
In this paper, a power operation detection technique is pro-
posed to detect the power switching points referring to the
ideas of the mentioned switching detection technique. Al-
though among previous studies, Zhang et al. (2014) pro-
posed a method aimed to detect the available input power
during the integration to determine the thrust magnitude at
each time step. This power detection technique is only used
to solve the transfer trajectories for the continuously vari-
able thrust problems. Moreover, on this occasion, only one
switching point, i.e., the rated power, was considered. In
addition, our proposed power operation detection technique
can be applied to the trajectory optimization problems with
more than one thrusters.

In this paper, the time and fuel optimizations of SEP-
based interplanetary trajectories are considered with prac-
tical discrete power constraints. The power operation detec-
tion technique is applied to overcome the difficulties caused
by the application of the practical discrete power-limited
model. With this method, the integration accuracy and the
convergence efficiency are both improved. Moreover, the
logarithmic homotopy function (Bertrand and Epenoy 2002)
and the technique of normalization (Jiang et al. 2012) are
employed for the convergence to the optimal solution and
the robustness of guessing the initial costates. The ex-
perimental data of NSTAR thrusters and the Chinese in-
development engine are used to find the optimal transfer
trajectories with high precision. Finally, an efficient low-
thrust power-limited trajectory optimization method com-
bined with the power operation detection technique is for-
mulated.

The rest of the paper is organized as follows. Section 2
presents the practical solar electric discrete power-limited
model. Additionally, in this section, the time-optimal and
fuel-optimal control problems are formulated for the low-
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thrust discrete power-limited problem. And the power op-
eration detection technique is proposed to accurately solve
the power-limited problem with finite operation points. In
Sect. 3, simulations are carried out to validate the method
proposed in Sect. 2. Finally, Sect. 4 concludes the paper.

2 Problem formulation

2.1 Mathematical model

When only considering the solar gravitational force exerted
on the spacecraft, the dynamical equations of the low-thrust
propelled spacecraft in the heliocentric ecliptic reference
frame are (Yang et al. 2015)

ṙ = v̇ (1)

v̇ = − μ

r3
r + Tmaxu

m
α (2)

ṁ = −Tmaxu

Ispg0
(3)

where r and v are the position and velocity vectors, re-
spectively, m denotes the instantaneous mass of the space-
craft, μ is the solar gravitational constant, which equals to
1.32712440018 × 1011 km3/s2, u (0 ≤ u ≤ 1) denotes the
engine thrust ratio and α is the unit vector of the thrust di-
rection, g0 = 9.80665 m/s2 is the standard value of gravi-
tational acceleration, Tmax represents the maximum achiev-
able thrust magnitude, and Isp is the thruster specific im-
pulse.

A practical SEP system has a finite number of operation
points, each one being characterized by a corresponding set
of values of thrust, specific impulse and ranges of thruster
input power. Assuming that the number of operation points
is N , consequently, the values of Tmax and Isp in discrete
power-limited model are as follows.

Tmax = T1, Isp = Isp,1, when PA ∈ [P1,∞)

· · ·
Tmax = TN−1, Isp = Isp,N−1, when PA ∈ [PN−2,PN−1)

Tmax = TN, Isp = Isp,N , when PA ∈ [PN−1,PN)

Tmax = 0, Isp = 0, when PA ∈ (0,Pmin)

where T1, . . . , TN−1, TN denote maximum achievable thrust
produced by the propulsion system. Isp,1, . . . , Isp,N−1, Isp,N

represent the thruster specific impulse by each opera-
tion points. PA denotes the available input power to the
thrusters. [P0,P1), . . . , [PN−2,PN−1), [PN−1,PN) are the
corresponding ranges of the input power. The operation
points are referred to through the value of P0, . . . ,PN−1,PN .
Pmin represents the admissible minimum input power to the

thrusters. When the thruster input power is less than Pmin,
the engine is shut down and no longer produces thrust.

The behavior of the SEP system and the way to determine
the thruster input power PA are as follows. The solar array
power PS is a function of the Sun-spacecraft distance. The
evaluation of the available input power to the thrusters PA

requires the use of a suitable mathematical model for PS

(Quarta and Mengali 2011). In this paper, the more realistic
model (Chen et al. 2012) is used for the preliminary analysis
of the interplanetary trajectory.

The expression of the solar radiation flux I is

I = I�
(

1

r

)2

(4)

where the solar constant I� is solar radiation energy per unit
area at 1 AU. The value of I� is 1367 W/m2. r represents
the Sun-spacecraft distance. The solar array power PS can
be expressed by

PS = ISγ (5)

where S and γ denote the area and the efficiency of the solar
array.

The available input power is defined as the difference
of the solar array output power and the power allocated
to operate the spacecraft systems PL (Quarta et al. 2013;
Quarta and Mengali 2011). In this paper, PL is assumed to
be constant during the whole mission, and represents the
power used by all of the on board systems except for the
propulsion system. As the available power is a nonnegative
quantity, it may be written as (Quarta and Mengali 2011)

PA =
{

PS − PL, if PS > PL

0, if PS ≤ PL

(6)

Equation (6) indicates that when PS is less than PL, the
propulsion system is not operational and the spacecraft tra-
jectory follows a Keplerian motion.

The initial mass, initial states, and final states are all
fixed. Regarding rendezvous problems, the state variables
of the spacecraft satisfy the following boundary conditions
(Quarta and Mengali 2011):

r(t0) = r0, v(t0) = v0, m(t0) = 1 (7)

r(tf ) = rf , v(tf ) = vf (8)

where the values of these parameters should be transformed
into those consistent with the non-dimensionalized units.

2.2 Time-optimal control problem

In order to minimize the transfer time, the performance in-
dex is formulated as follows

J = λ0

∫ tf

t0

1dt (9)
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where t0 and tf denote the initial and final times, respec-
tively. λ0 is a positive parameter which is necessary for the
normalization of the costate variables (Jiang et al. 2012). In-
troducing the costate vector λ ≡ [λr ;λv;λm] to the optimal
control problem, the Hamiltonian is built as (Zhang et al.
2015)

H = λr ·v+λv ·
(

− μ

r3
r +Tmax

u

m
α

)
−λm

Tmax

Ispg0
u+λ0 (10)

where λr , λv and λm are vectors adjoint to the position, the
velocity and the final mass, respectively. According to Pon-
tryagin’s maximum principle, the direction of the optimal
thrust, which minimizes the Hamiltonian, is opposite to the
primer vector λv , i.e.

α̂ = − λv

‖λv‖ (11)

where the ‖λv‖ denotes the 2-norm of λv . And the optimal
thrust magnitude is determined as
⎧⎪⎨
⎪⎩

û = 0, if ρ > 0

û = 1, if ρ < 0

û ∈ [0,1], if ρ = 0

(12)

where the expression of the so-called switching function ρ

is

ρ = −Ispg0‖λv‖
m

− λm (13)

The equations for the costate variables are called Euler-
Lagrange equations (Jiang et al. 2012; Yang et al. 2017). The
form of the Euler-Lagrange equations is formulated as

λ̇r = −∂H

∂r
= μ

r3
λv − 3μr · λv

r5
r (14)

λ̇v = −∂H

∂v
= −λr (15)

λ̇m = −∂H

∂m
= −Tmax

u

m2
‖λv‖ (16)

Generally, there is no constraints on the final mass of
the spacecraft, i.e. the final mass is free. According to the
transversality condition, the mass costate at the final time is
zero, i.e.

λm(tf ) = 0 (17)

Moreover, the normalization condition (Jiang et al. 2012)
is added
∥∥λ(t0)

∥∥ = 1 (18)

where λ(t0) = [λr(t0),λv(t0), λm(t0), λ0] is the expanded
costate vector. Through this normalization, the solution vari-
ables including eight initial costate values are restricted on

a unit 8-D hypersphere (Jiang et al. 2012). In addition,
Eq. (16) indicates that the derivative of λm with respect to
the time is always non-positive. Combining Eqs. (16) and
(17), we obtain that λm(t0) ≥ 0. Therefore, the value of the
switching function ρ in Eq. (13) is non-positive and the con-
trol variable u takes 1 all the time for the time-optimal prob-
lems.

The stationary condition corresponding to the final time
is also necessary to be considered for the time-optimal prob-
lem

H(tf ) + λ0∂φ

∂tf
+ χ · ∂ψ

∂tf
+ κ · ∂σ

∂tf
= 0 (19)

where φ is the non-integral item of the performance index.
ψ is the equality constraint with p components and σ is the
inequality constraints with q components. χ and κ denote
p-dimensional and q-dimensional numerical multipliers, re-
spectively. In solving this time-optimal problem, φ and σ are
non-existent. And ψ contains two boundary equations

ψ =
[

r(tf ) − rf = 0

v(tf ) − vf = 0

]
(20)

The transversality condition at the final time combined
with the above conditions is

−λ(tf ) + χ · ∂ψ

∂x(tf )
= 0 (21)

The numerical multiplier χ is obtained by combining
Eqs. (20) and (21)

χ = λ(tf ) (22)

Substituting Eqs. (20) and (22) into Eq. (19) yields

H(tf ) − λ(tf ) ·
[

vf

af

]
= 0 (23)

Consequently, the shooting equation for the equivalent
two-point boundary value problem (TPBVP) is extended
with nine components

Φ = [
r(tf ) − rf ,v(tf ) − vf , λm(tf ),

∥∥λ(t0)
∥∥ − 1,

H(tf ) − λr (tf ) · vf − λv(tf ) · af

]T = 0 (24)

The time-optimal control problem requires the full thrust
during all the flight time. So it is relatively easy to solve
this problem due to the continuity and differentiability of
the right hand sides of the dynamical equations and Euler-
Lagrange equations. The more complicated fuel-optimal
control problem will be discussed in the next section.
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2.3 Fuel-optimal control problem

The expression of the performance index aiming to maxi-
mize the final mass and minimize the fuel consumption is as
follows

J = λ0Tmax

Ispg0

∫ tf

t0

udt (25)

The optimal control problem can be transformed into
a TPBVP by the use of Pontryagin’s maximum principle
(PMP). So the Hamiltonian is formulated as

H = λr · v + λv ·
(

− μ

r3
r + Tmax

u

m
α

)
− λm

Tmax

Ispg0
u

+ λ0
Tmax

Ispg0
u (26)

Then, the optimal thrust direction and magnitude, which
minimize the Hamiltonian, take the same forms as Eqs. (11)
and (12). But the switching function ρ for the fuel-optimal
control problem holds the new form

ρ = 1 − Ispg0‖λv‖
m

− λm (27)

The sign of the switching function determines the mag-
nitude of thrust. Therefore, the thruster either burns with the
full thrust magnitude or it is turned off, which is typical
bang-bang control (Zhang et al. 2014). This leads to dis-
continuities in the shooting function. To avoid direct solv-
ing of the bang-bang control problem, a homotopic approach
(Bertrand and Epenoy 2002) is employed. The logarithmic
homotopy index is given as follows (Li et al. 2017)

J = λ0
Tmax

Ispg0

∫ tf

t0

{
u − ε ln

[
u(1 − u)

]}
dt (28)

where the homotopy parameter ε varies from 1 to 0. With
this modified performance index, the Hamiltonian becomes

H = λr · v + λv ·
(

− μ

r3
r + Tmax

u

m
α

)
− λm

Tmax

Ispg0
u

+ λ0
Tmax

Ispg0

{
u − ε ln

[
u(1 − u)

]}
(29)

The Euler-Lagrange equations under this logarithmic ho-
motopy index are kept the same as before (Eqs. (14)–(16)).
The optimal thrust direction is still calculated by Eq. (11).
Moreover, the optimal thrust magnitude becomes

û = 2ε

ρ + 2ε + √
ρ2 + 4ε2

(30)

where the form of the switching function ρ is modified

ρ = 1 − Ispg0‖λv‖
λ0m

− λm

λ0
(31)

By using logarithmic homotopy function the equations
that contain optimal control variables are always continuous
and differentiable. Once the solution for the energy-optimal
control (ε = 1) is obtained, the parameter ε gradually de-
creases from 1 to 0 step by step. The optimal solutions ob-
tained at the present step are substituted to the next solving
step as the initial values. The fuel-optimal solution is ob-
tained at the final step when ε = 0.

Consequently, the optimal control problem yields a TP-
BVP consisting of eight components (Jiang et al. 2012)

Φ = [
r(tf ) − rf ,v(tf ) − vf , λm(tf ),

∥∥λ(t0)
∥∥ − 1

]T = 0

(32)

Note that the condition λ0 > 0 should also be considered.
The conclusion that λm(t0) ≥ 0 from transversality condi-
tion (17) and Euler-Lagrange equation (16) is still estab-
lished.

2.4 Power operation detection technique

The right hand items of Eqs. (1)–(3) and the Euler-Lagrange
equations include Tmax, and these elements vary rapidly
around discrete operation points. In addition, as the num-
ber of operation points increases, it is more difficult to
guarantee integration accuracy and convergence efficiency.
Runge-Kutta methods with adaptive step size but without
special handling are not able to solve this problem. There-
fore, here we use fourth order Runge-Kutta algorithm (RK4)
with fixed step size (Jiang et al. 2012) combined with power
operation detection to overcome this problem. For an initial
value problem (Jiang et al. 2012)

ẋ = f (t,x), t0 ≤ t ≤ tf , x(t0) = x0 (33)

the RK4 iteration algorithm with fixed step h is formulated
as follows

xk+1 = xk + h

6
(k1 + 2k2 + 3k3 + k4)

k1 = f (tk,xk) k2 = f (tk + h/2, xk + h/2k1)

k3 = f (tk + h/2, xk + h/2k2)

k4 = f (tk + h,xk + hk3)

(34)

The one step iteration result xk+1 upon vector function
f (t,x) is denoted by

xk+1 = RK4(f , tk,xk, h) (35)

where tk and xk are initial integration time and state. The
state vector x = [r;v;m;λr ;λv;λm] includes 14 compo-
nents. And the vector function f (t,x) is the combination
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of the right-hand sides of the dynamic Eqs. (1)–(3) and the
Euler-Lagrange Eqs. (14)–(16).

For the discrete power-limited problems, the switching
points refer to the operation points characterized by the
thruster input power. If the integration time step h is small
enough, the value of the available input power at k + 1 step
PA,k+1 can be examined by the value at k-th step PA,k using
the Taylor expansion:

PA,k+1 = PA,k + ṖA,kh + 1

2
P̈A,kh

2 (36)

Substituting Eqs. (4) and (5) into Eq. (6), the available
input power at k step can be expressed by

PA,k = Ar−2 − PL (37)

where A is the product of I�, S and γ .
The first and second derivatives of PA respect to time are

determined as

ṖA,k = −2 · A · r−3 · ṙ (38)

P̈A,k = −2 · A · (−3 · r−4 · ṙ + r−3 · r̈) (39)

where r denotes the Sun-spacecraft distance and it can
be expressed through three coordinates in the heliocentric
ecliptic reference frame: r = (x2 + y2 + z2)1/2. The first
and second derivatives of r are written as

ṙ = 1

2

(
x2 + y2 + z2)− 1

2 · (2x · ẋ + 2y · ẏ + 2z · ż) (40)

r̈ = −(
x2 + y2 + z2)− 3

2 · (x · ẋ + y · ẏ + z · ż)2

+ (
x2 + y2 + z2)− 1

2

· (ẋ2 + ẏ2 + ż2 + x · ẍ + y · ÿ + z · z̈) (41)

Since the difference of the available input powers at k-
step and at (k + 1)-th steps is quite slight, the input power
can only be changed in the neighbor two ranges. The arbi-
trary two neighbor intervals can be denoted as: [Pi−1,Pi)

and [Pi,Pi+1) (here Pi−1 < Pi < Pi+1), so there are three
cases with respect to PA,k and PA,k+1.

(1) PA,k ∈ [Pi,Pi+1), PA,k+1 ∈ [Pi−1,Pi)

This means that, the solar distance increases as the
spacecraft flies away from the Sun. Meanwhile, the input
power is reduced with the distance (decreasing as 1/r2).
Thus, the iteration should be accomplished through two
substeps: xm = RK4(@f (Tmax,i+1), tk, xk, hi) and then
xk+1 = RK4(@f (Tmax,i ), tk + hi, xm,h − hi). Tmax,i and
Tmax,i+1 are the maximum achievable thrust corresponding
to the two power ranges. hi denotes the first substep size,
which is obtained by solving the equation PA,k + ṖA,kh +

1/2P̈A,kh
2 = Pi . The result is presented as follows

hi = 2(PA,k − Pi)

−ṖA,k +
√

Ṗ 2
A,k − 2P̈A,k(PA,k − Pi)

(42)

(2) PA,k ∈ [Pi−1,Pi), PA,k+1 ∈ [Pi,Pi+1)

The process in this case is changed in contrast to the pre-
vious case. The input power tends to increase with time
because the spacecraft trajectory tends to approach the
Sun. So the two-substep iterations are accomplished by
the first xm = RK4(@f (Tmax,i ), tk, xk, hi) and then xk+1 =
RK4(@f (Tmax,i+1), tk + hi, xm,h − hi). The substep size
hi is also obtained through

hi = 2(PA,k − Pi)

−ṖA,k −
√

Ṗ 2
A,k − 2P̈A,k(PA,k − Pi)

(43)

(3) PA,k,PA,k+1 ∈ [Pi−1,Pi) or PA,k,PA,k+1 ∈ [Pi,Pi+1)

In this case, the input power is always moderate and the
process is continuous. Thus, the iteration is given by xk+1 =
RK4(@f, tk, xk, h).

As the number of the operation points increases, so do the
power operation ranges needed to be detected. In order to en-
sure the accuracy of solution, arbitrary two neighbor power
ranges are needed to be taken into account. If the number
of the operation points is N , there exist 3N types of cor-
responding detected cases. The fixed step integrator RK4 is
suitable for this multi-power detection problem as it is easy
to embed this detection in it.

3 Numerical examples and results

Three examples of time-optimal and fuel-optimal problems
with one or more practical engines are given to substantiate
the techniques and theories presented in Sects. 2 and 3, re-
spectively. With the purpose of reducing the numerical sen-
sitivity, a set of canonical units (AU, 149597870.691 km; yr,
365.25 × 86400 s) is used for solving the shooting equation.
The tolerance of MinPack-1 is set to 1 × 10−7.

3.1 Mars mission with one NSTAR thruster

The actual NSTAR ion engine is applied for the Earth-Mars
mission design. The end-of-life performance of the NSTAR
engine over its full throttle range is given in Table 1 (Bro-
phy and Noca 1998). There are six operation points, each
one corresponds to the characteristic values of maximum
achievable thrust and specific impulse. The total mass of one
NSTAR engine is 66.3 kg. The departure time is chosen the
same as the mission in Chi et al. (2017). The spacecraft main
characteristics have been defined in terms of launch mass
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Table 1 Operation level for
NSTAR ion engine PA [kW] Tmax [mN] Isp [s]

2.32 92.3 3313

2.08 83.3 3293

1.67 66.1 3291

1.37 52.8 3300

0.93 34.8 2974

0.57 21.8 2188

Fig. 1 The time-optimal trajectory for Mars mission with 1 NSTAR
engine

m0 = 1000 kg, area of the solar array S = 26 m2, efficiency
of the solar array γ = 15%, and power allocated to operate
the spacecraft systems PL = 500 W.

In this mission design, the time-optimal and fuel-optimal
trajectories have been calculated respectively. The calcu-
lated optimal time can be used as the reference of time-
constraint for the fuel-optimal trajectory. The initial adjoint
variables and the initial value of flight time are estimated
by random guessing. The calculated minimum flight time to
Mars is about 1017 days. The transfer trajectory is shown
in Fig. 1, where the dash lines denote the Earth orbit and
Mars orbit. The departure and rendezvous times are labeled
on the trajectory. The propellant mass is about 213.5 kg, cor-
responding to the 21.35% of the initial spacecraft mass. The
time histories of the thrust magnitude and the specific im-
pulse are illustrated in Fig. 2 and Fig. 3, respectively. These
figures indicate that the transfer trajectory requires the use
of 4 different operation points as the Sun-spacecraft distance
increases. However, the final two operation levels in Table 1
are not necessary to be used due to the sufficient available
power of the first four operation levels in this mission. The
spacecraft uses the maximum propelling thrust (92.3 mN)
for about 50% of the total flight time in the initial mission
phase.

The logarithmic homotopy method is applied for solv-
ing the fuel-optimal trajectory optimization problem. The
decreasing route of ε consists of 26 steps from 1 to 0,
which is [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.13,
0.11, 0.07, 0.05, 0.03, 0.02, 0.01, 9.0 × 10−3, 8.5 × 10−3,
7.0×10−3, 5.0×10−3, 4.0×10−3, 3.0×10−3, 1.0×10−3,

Fig. 2 The history of time-optimal control thrust for Mars mission with
1 NSTAR engine

Fig. 3 The history of time-optimal specific impulse for Mars mission
with 1 NSTAR engine

5.0 × 10−4, 0.0]. The departure time is also assigned the
same as the time in time-optimal problem. The constrained
flight time is added 3 days on the basis of the calculated min-
imum time. “3 days” is not the specified time. The main pur-
pose is to validate the effectiveness of our proposed method
in solving fuel-optimal control problems no matter how
many days are added. The reason for adding several days
is that the fuel consumption of the energy-optimal prob-
lem that corresponds to ε = 1 is more than that of the fuel-
optimal one, so that when assigned the minimum time to
the transfer time, the energy-optimal problem, which plays
a seed in our solving strategy, has no solution. There are also
4 operation points, which are in accordance to the points in
the above time-optimal problem (as demonstrated in Figs. 4,
5 and 6). These figures show the coasting phase in the fuel-
optimal bang-bang control problem, which corresponds to
that the engine is turned off. The propellant mass is 210.3 kg,
about 3 kg less than the propellant mass in time-optimal
problem.
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Fig. 4 The fuel-optimal trajectory for Mars mission with 1 NSTAR
engine

Fig. 5 The history of fuel-optimal control thrust for Mars mission with
1 NSTAR engine

Fig. 6 The history of fuel-optimal specific impulse for Mars mission
with 1 NSTAR engine

3.2 Mars mission with two NSTAR thrusters

In order to further investigate the practical application of
power-limited propulsion system, two NSTAR ion engines
are applied for the Mars mission. In this case, the available
input power can be used as much as possible by switching

Table 2 Operation level for two
NSTAR ion engines PA [kW] Tmax [mN] Isp [s]

4.64 184.6 3313

4.16 166.6 3293

3.34 132.2 3291

2.74 105.6 3300

2.32 92.3 3313

2.08 83.3 3293

1.86 69.6 2974

1.67 66.1 3291

1.37 52.8 3300

1.14 43.6 2188

0.93 34.8 2974

0.57 21.8 2188

Fig. 7 The time-optimal trajectory for Mars mission with 2 NSTAR
engines

from one engine to two ones. The operation levels for the
propulsion system with two NSTAR engines are summa-
rized in Table 2. Each operation point is also characterized
by the values of thrust and specific impulse. The thrust mag-
nitude for one operation point is doubled compared with us-
ing only one NSTAR ion engine. While the specific impulse
keeps unchanged for the same operation point for either one
or two engines.

The same Mars mission and departure time are used
to validate the application of two practical engines. The
minimum-time trajectory is shown in Fig. 7. The calcu-
lated minimum time for this mission with 2 engines is about
635 days. Figure 8 shows the first 8 operation points oper-
ated on the spacecraft. Different colors correspond to differ-
ent values of thrust level, as demonstrated in Figs. 7 and 8.
The thrust magnitude is increased in the final mission phase
as the final rendezvous occurs close to the perihelion of as-
teroid’s orbit. The specific impulse corresponding to 5 dif-
ferent values is sketched in Fig. 9.

After getting the simulation results of the time-optimal
trajectories with 1 and 2 NSTAR ion engines, the compari-
son is needed to be made to measure engineering application
of actual power-limited propulsion system. The comparison
of the calculated basic parameters for Mars mission with 1
and 2 engines is shown in Table 3. The initial mass is identi-
cal for the two missions. As shown in Table 3, the flight time
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Fig. 8 The history of time-optimal control thrust for Mars mission with
2 NSTAR engines

Fig. 9 The history of time-optimal specific impulse for Mars mission
with 2 NSTAR engines

Table 3 Comparison of the basic performance for Mars mission with
1 and 2 NSTAR engines

Number of engines 1*NSTAR 2*NSTAR

Number of operation points 6 12

Initial mass of spacecraft, kg 1000.0 1000.0

Minimum transfer time, day 1016.9 635.1

Propellant mass, kg 213.5 196.5

Payload mass (except the mass of
propellant and engines), kg

720.2 670.9

for Mars mission with 2 engines is about 62.5% of the flight
time with 1 engine. Meanwhile, the propellant mass with 2
engines is 17 kg less than the fuel consumption with 1 en-
gine. However, the additional mass of loading two NSTAR
engines needs to be considered. Therefore, the usable pay-
load mass with 1 engine is about 49 kg more than the pay-
load mass with 2 engines. As a result, in terms of flight time

Fig. 10 The fuel-optimal trajectory for Mars mission with 2 NSTAR
engines

Fig. 11 The history of fuel-optimal control thrust for Mars mission
with 2 NSTAR engines

saving, two NSTAR engines are preferred compared to one
engine. While considering the usable payload mass, one en-
gine is better.

As illustrated above, when solving the fuel-optimal prob-
lem, the flight time needs to be added several days upon the
calculated minimum transfer time of the time-optimal prob-
lem. Therefore, the total transfer time is bounded as 640
days, about 5 days longer than the minimum time. The ho-
motopy method with decreasing route of ε from 1 to 0 with
26 steps is also applied for solving the fuel-optimal trajec-
tory with 2 NSTAR ion engines. Figure 10 shows the calcu-
lated fuel-optimal trajectory, where the different colors on
the solid lines indicate different operation points in different
phases of the whole trajectory. The thrust level correspond-
ing to 8 operation points is illustrated in Fig. 11, while the
specific impulse varies among 5 different values, is shown
in Fig. 12. The variation trends of thrust magnitude and spe-
cific impulse in Fig. 11 and Fig. 12 are almost the same as
those in time-optimal simulation results.

3.3 Multi-target mission design: Earth–2016
HO3–Earth Gravity Assist (EGA)–Comet 311P

The practical mission is planned as follows: the spacecraft
starts from the Earth, then samples on the near Earth aster-
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Table 4 Orbital elements of
Earth and target celestial bodies Celestial body a [AU] e i [deg] Ω [deg] ω [deg] M [deg]

Earth 0.999988 0.0167168 0.000885 175.406477 287.615775 257.606837

2016 HO3 1.001053 0.104042 7.772350 66.465524 307.109868 134.460288

311P 2.188800 0.115287 4.968470 279.289240 144.207730 251.730000

Table 5 Operation level for one Chinese in-development engine

Tmax [mN] PA [W] Tmax [mN] PA [W]

125 3800–above 65 1900–2217

115 3483–3800 55 1583–1900

105 3167–3483 45 1267–1583

95 2850–3167 35 950–1267

85 2533–2850 25 633–950

75 2217–2533 15 317–633

Fig. 12 The history of fuel-optimal specific impulse for Mars mission
with 2 NSTAR engines

oid (NEA) 2016 HO3, and finally arrives at main-belt comet
311P via EGA. At present multi-target small objects explo-
ration is very promising for space exploration. 2016 HO3

is currently the smallest, closest, and most quasi-satellite
of Earth, attracting particularly interesting from a scientific
point of view (Marcos and Marcos 2016). The main-belt
comet 311P has a low orbital inclination and always stays
outside the orbit of Mars (Jewitt et al. 2015). The instan-
taneous orbital elements of the Earth, 2016 HO3 and 311P
at 22/09/2006, 16/02/2017 and 25/04/2013, respectively, are
obtained from JPL’s database.1 And their corresponding val-
ues are summarized in Table 4.

Using one Chinese in-development engine as a reference
thruster for our mission study, 12 operation points are sum-
marized in Table 5. The time constraints of the mission are

1Data available online at https://ssd.jpl.nasa.gov/dat/ELEMENTS.
NUMBR [retrieved 22 February 2017].

Table 6 Simulation results of the fuel-optimal trajectory

Event Value

Departure from the Earth 12 Jun. 2022

Arrival at 2016 HO3 14 Jul. 2023

Velocity increment: Earth-2016 HO3 (km/s) 1.38

Departure from 2016 HO3 16 Sep. 2023

Velocity increment: 2016 HO3-Earth (km/s) 0.41

EGA 27 May. 2024

Arrival at 311P 14 Jun. 2030

Velocity increment: Earth-311P (km/s) 9.9

Total velocity increment (km/s) 11.69

Propellant fuel consumption (kg) 289.10

as follows: the launch date is planned within 2020, the ar-
rival date to 311P is constrained before 2032. The flight al-
titude of EGA is required not to be less than 200 km. The
searching results using impulsive propulsion are employed
as the boundary conditions for low-thrust trajectory calcu-
lation. In this mission, the value of initial mass is set to
m0 = 1000 kg. The specific impulse Isp = 3500 s is assumed
to be constant during the whole mission. In addition, the area
and the efficiency of the solar array are 20 m2 and 18.3%,
respectively. The power allocated to operate the spacecraft
systems PL is set to 200 W.

Table 6 gives the calculated results of the low-thrust fuel-
optimal trajectory for this mission. The arrival date to 311P
satisfies the above-mentioned constraint. In the minimum-
fuel trajectory the total propellant mass is 289.1 kg, which
corresponds to 28.91% of the initial spacecraft mass. The
propellant mass for the transfer trajectory from Earth (EGA)
to 311P which is the largest part of the whole trajectory, is
238.16 kg. The thrust profiles for the transfers from Earth
to 2016 HO3, 2016 HO3 to Earth, and Earth to comet 311P
are sketched in Fig. 13–Fig. 15, respectively. In the first two
stages (see Figs. 13 and 14), the spacecraft uses the maxi-
mum propelling thrust (125 mN) due to the relatively close
distance between Earth and NEA 2016 HO3.

Figure 16 shows that the transfer trajectory in the last
phase from Earth to 311P requires the use of 10 differ-
ent operation points. It’s caused by the thrust variation
due to the reduction of the solar power, whose value be-
comes insufficient for the propulsion system to operate at
maximum thrust. Consequently, the optimization algorithm
selects other operation points with smaller power values.

https://ssd.jpl.nasa.gov/dat/ELEMENTS.NUMBR
https://ssd.jpl.nasa.gov/dat/ELEMENTS.NUMBR
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Fig. 13 The history of the optimal thrust for the transfer from Earth to
2016 HO3

Fig. 14 The history of the optimal thrust for the transfer from 2016
HO3 to Earth

T = 0 corresponds to coasting arc and it is shown in Fig. 15.
As for the transfer from the Earth to 311P, our proposed
techniques are efficiently applied to this discrete multiple-
leg power-limited problem, which helps to converge to the
optimal solution. The corresponding optimal trajectory is
illustrated in Fig. 16. Different colors in this figure corre-
sponding to the different values of the thrust magnitude are
labeled in Fig. 15. As shown in Fig. 16, the spacecraft tends
to return back to approach the Sun on the way of transfer.
This behavior can be explained in this way: the spacecraft
needs to be accelerated to reach the target orbit. Therefore,
a greater available power is required by the propulsion sys-
tem to operate at its maximum value.

4 Conclusion

In this paper, a suite of practical techniques are developed to
solve the low-thrust power-limited trajectory optimization
problem with actual solar electric model. The time-optimal

Fig. 15 The history of the optimal thrust for the transfer from Earth to
311P

Fig. 16 The fuel-optimal trajectory from Earth to 311P

and fuel-optimal control problems are established to vali-
date the application of the practical propulsion system in
the mission design. The homotopy method based on loga-
rithmic homotopy function is applied in fuel-optimal prob-
lem to overcome the difficulties in convergence caused by
the bang-bang control. In order to guarantee the accuracy of
solving the discrete power-limited problem, the power op-
eration detection technique has been proposed to overcome
the discontinuity of the integral items caused by the discrete
variable thrust.

Numerical simulations of the Earth-Mars transfer mis-
sion and multi-target small objects exploration with actual
propulsion system have been conducted to validate the ap-
plication of the proposed techniques.

One NSTAR ion engine and two NSTAR engines have
been used in the Mars mission respectively. The results show
that the proposed method can be efficiently applied in solv-
ing the time-optimal and fuel-optimal problems. The propel-
lant mass in fuel-optimal problem with constrained transfer
time, which has added several days upon the minimum time,
is less than the fuel consumption in time-optimal problem.
These results demonstrate the feasibility and correctness of
our proposed method. By comparing the basic performance
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of using one and two NSTAR thrusters with the same ini-
tial mass in time-optimal problem, from a practical point of
view it can be concluded that two engines are preferred to
use in terms of the flight time, while in our case using one
engine has an advantage in usable payload mass.

The more complicated multi-target small objects explo-
ration mission has been designed to validate the applica-
tion of a Chinese in-development thruster with 12 operation
points. In order to better use the mechanism that the avail-
able power is proportional to the inverse square of the he-
liocentric distance, the spacecraft has to return back to ap-
proach the Sun to fully accelerate the orbit on the way of
transfer. This behavior indicates the characteristics and use-
fulness of applying the discrete power-limited propulsion
system. The results also show that our method can be ap-
plied to solve the more complex and more distant interplan-
etary transfer mission.
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