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Abstract This paper investigates the existence of Noether
symmetries of isotropic universe model in f (R,T ) gravity
admitting minimal coupling of matter and scalar fields. The
scalar field incorporates two dark energy models such as
quintessence and phantom models. We determine symme-
try generators and corresponding conserved quantities for
two particular f (R,T ) models. We also evaluate exact so-
lutions and investigate their physical behavior via different
cosmological parameters. For the first model, the graphical
behavior of these parameters indicate consistency with re-
cent observations representing accelerated expansion of the
universe. For the second model, these parameters identify a
transition form accelerated to decelerated expansion of the
universe. The potential function is found to be constant for
the first model while it becomes V (φ) ≈ φ2 for the second
model. We conclude that the Noether symmetry generators
and corresponding conserved quantities appear in all cases.

Keywords Noether symmetry · Conserved quantity ·
f (R,T ) gravity

1 Introduction

Recent astrophysical observations put forward the crucial
discovery on the landscape of cosmology by introducing a
new vision of the expanding universe. According to these
observations, our universe is expanding with an acceler-
ated rate due to the presence of dominant mysterious force
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dubbed as “dark energy” (DE). The conclusive manifesta-
tion of accelerated epoch and puzzling nature of DE mo-
tivated many researchers to propose the idea of modified
gravitational theories. The simplest modified theory is ob-
tained by replacing Ricci scalar R with an arbitrary func-
tion f (R) in the Einstein–Hilbert action. This generic func-
tion does not appreciate any non-minimal coupling be-
tween curvature and matter parts but the effect of mini-
mal curvature and matter coupling yields interesting results
(Sotiriou and Faraoni 2010). There is a lot body of liter-
ature available about fundamental aspects of this gravity
(de Felice and Tsujikawa 2010; Nojiri and Odintsov 2011;
Bamba et al. 2012).

Nojiri and Odintsov (2004a) introduced the revolution-
ary idea of non-minimal coupling between non-linear cur-
vature and matter sectors to identify DE phases of the
universe. Harko et al. (2011) studied the effect of non-
minimal coupling by a new gravitational theory whose
generic function depends on both curvature and matter
named as f (R,T ) gravity, where T represents trace of
the energy-momentum tensor. This function evolves gravi-
tational interactions which play a crucial role to study cur-
rent cosmic acceleration (Harko and Lobo 2014). Sharif and
Zubair (2012, 2013a, 2013b, 2013c, 2014a, 2014b) explored
different cosmological issues like thermodynamical picture
with energy conditions, reconstructed different DE models
and established stability criteria as well as exact solutions of
anisotropic universe model.

Different researchers investigated exact solutions of non-
linear fourth order partial differential equations of f (R,T )

gravity. Sharif and Zubair (2014c) discussed exact solu-
tions to investigate power-law and exponential expansions of
Bianchi type I universe model. Harko and Lake (2015) for-
mulated exact solutions for cylindrical spacetime in the pres-
ence of non-minimal coupling of curvature and Lagrangian
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density of matter. Shamir and Raza (2015) found two ex-
act solutions corresponding to cosmic string and non-null
electromagnetic field for the same spacetime. Shamir (2015)
explored exact solutions and different cosmological param-
eters to analyze their physical behavior in Bianchi type I
universe.

Continuous symmetry plays a significant role to evalu-
ate exact solutions in mathematical physics as it reduces
dynamical variables of a non-linear system. On cosmolog-
ical grounds, Noether symmetry approach is one of the most
elegant technique that connects a differentiable symmetry
of a physical system to a conserved quantity. For example,
the translational and rotational symmetries yield conserva-
tion of linear and angular momenta, respectively (Hanc et al.
2004). Capozziello et al. (2007) determined exact solutions
of spherically symmetric spacetime via Noether symmetry
approach in f (R) gravity. Hussain et al. (2012) explored
Noether symmetry of f (R) power-law model and found
that boundary term of Noether symmetry vanishes for flat
FRW universe but Shamir et al. (2012) determined non-zero
boundary term for the same model. In modified theories, the
presence of Noether symmetry also yields a brief classifi-
cation of finite time singularities which identifies the points
where symmetry is broken (Capozziello et al. 2012).

We have found exact solution of Bianchi I universe model
for f (R) power-law model using Noether symmetry ap-
proach (2014). Momeni et al. (2015) discussed the pres-
ence of Noether point symmetry for flat FRW universe
model in f (R,T ) and mimetic f (R) gravity. Sharif and
Fatima (2016) formulated Noether symmetries and corre-
sponding conserved quantities for both vacuum as well as
non-vacuum regions of flat FRW universe model in f (G)

gravity. We have studied exact solution of anisotropic uni-
verse model via Noether symmetry approach and estab-
lished conserved quantities corresponding to Noether point
symmetry in f (R,T ) gravity (2017a). The scalar field mod-
els play a leading role to explore the evolution as well as
current state of the cosmos due to its dynamical nature and
tremendous features of spin-0 particles. In this regard, a va-
riety of canonical (quintessence, phantom, k-essence etc)
as well as non-canonical scalar field DE models have been
proposed (Carroll et al. 2003; de Benedictis et al. 2004;
Copeland et al. 2006). The class of non-canonical scalar
field models is obtained by modifying the kinetic part of the
scalar field which describe both early as well as late-time
cosmic expansion. Mamon and Das (2015, 2016) studied
cosmic evolution through non-canonical scalar field model
and different forms of equation of state (EoS) parameter.

Capozziello and de Ritis (1994) used Noether symme-
try approach to formulate different cosmological models as
well as to investigate the effect of various scalar field models
in scalar-tensor theory. Vakili (2008) found Noether point
symmetry as well as conserved quantity of flat FRW uni-
verse and studied the behavior of effective EoS parameter

relative to quintessence phase in f (R) gravity. Zhang et al.
(2010) discussed multiple scalar field scenario and estab-
lished a relation of potential function between quintessence
and phantom phases through Noether symmetry approach.
Jamil et al. (2011) explored the existence of Noether sym-
metry in the presence of f (R) tachyon model. Jamil et al.
(2012) determined Noether symmetry when matter as well
as scalar field minimally incorporates with geometric part
and also constructed explicit form of potential function for
quintessence as well as phantom phases in f (T ) gravity.
Sharif and Shafique (2014) found exact solutions of ho-
mogeneous isotropic as well as anisotropic universe mod-
els via Noether symmetry approach in scalar-tensor the-
ory non-minimally coupled with torsion scalar. We have
studied cosmic evolution with/without canonical scalar field
model through anisotropic universe model in f (R,T ) grav-
ity (2017b, 2017c).

In this paper, we study the existence of Noether symme-
try of flat FRW universe model in f (R,T ) gravity compris-
ing a minimal coupling with matter and generalized scalar
fields. We determine possible symmetries as well as cor-
responding conserved quantities and evaluate exact solu-
tions for two f (R,T ) models to analyze cosmic evolution
through cosmological parameters. The format of this pa-
per is as follows. In Sect. 2, we provide basic construction
of f (R,T ) gravity. Section 3 develops Noether symmetry
as well as symmetry generators with associated conserved
quantities. In the last section, we present final remarks.

2 Basic formalism of f (R,T ) gravity

The action of f (R,T ) gravity is given by (Harko et al. 2011)

I =
∫

d4x
√−g

[
f (R,T )

2κ2
+Lm

]
, (1)

where g represents determinant of the metric tensor gμν and
generic function f independently introduces a coupling be-
tween geometric and matter parts whereas Lm denotes the
matter Lagrangian. The metric variation of action (1) gives
non-linear fourth order partial differential equation as

fR(R,T )Rμν − 1

2
f (R,T )gμν

+ (gμν� − ∇μ∇ν)fR(R,T ) + fT (R,T )Tμν

+ fT (R,T )Θμν = κ2Tμν, (2)

where ∇μ describes covariant derivative and

� = ∇μ∇μ, fR(R,T ) = ∂f (R,T )

∂R
,

fT (R,T ) = ∂f (R,T )

∂T
,
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Θμν = gαβδTαβ

δgμν
= gμνLm − 2Tμν − 2gαβ ∂2Lm

∂gαβ∂gμν
.

A significant relationship between geometric and matter
parts is established from the trace of Eq. (2) as follows

RfR(R,T ) + 3�fR(R,T ) − 2f (R,T ) + TfT (R,T )

+ ΘfT (R,T ) = κ2T .

The action of f (R,T ) gravity incorporating minimal cou-
pling of matter and scalar fields is

I =
∫

d4x
√−g

[
f (R,T )

2κ2
+Lm +Lφ

]
, (3)

where Lφ represents scalar Lagrangian. For perfect
fluid configuration, we consider Lm = pm and Lφ =
ε
2gμν∂μφ∂νφ − V (φ) (V (φ) represents potential energy)
which reduce the action (3) to

I =
∫

d4x
√−g

[
f (R,T )

2κ2
+pm + ε

2
gμν∂μφ∂νφ −V (φ)

]
.

(4)

Here ε = 1 and −1 correspond to quintessence and phantom
models, respectively.

For complete analysis of scalar field model, we explore
the effect of positive as well as negative kinetic energy. The
negative energy appearing from phantom model emerges
some troubles like violation of energy bounds, negative en-
tropy of phantom-dominated universe due to which black
holes disappear. At the end, such universe meets a finite
time future singularity called big-rip singularity (Nojiri and
Odintsov 2004b). Different ideas are introduced to sort out
such troubles like considering phantom acceleration as tran-
sient phenomenon with different scalar potentials or to mod-
ify the gravity, couple DE with dark matter or to use par-
ticular forms of EoS interpreting DE era or taking into ac-
count some quantum effects (giving rise to the second quan-
tum gravity era) which may delay/stop the singularity oc-
currence (Elizalde et al. 2004; Nojiri and Odintsov 2004c,
2010, 2011; Bamba et al. 2008).

We consider flat homogeneous and isotropic universe
model as

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2), (5)

where a(t) is the scale factor describing expansion of the
universe in x, y and z-directions. Using Lagrange multiplier
approach, the action (4) takes the following form

I =
∫ √−g

[
f (R,T ) − λ(R − R̄) − χ(T − T̄ ) + pm(a)

+ ε

2
gμν∂μφ∂νφ − V (φ)

]
dt, (6)

where
√−g = a3, λ = fR(R,T ) and χ = fT (R,T ) are

Lagrange multipliers while R̄, T̄ represent dynamical con-
straints given by

R̄ = 6

(
ä

a
+ ȧ2

a2

)
, T̄ = 3pm(a) − ρm(a).

The corresponding Lagrangian becomes

L(a,R,T ,φ, ȧ, Ṙ, Ṫ , φ̇)

= a3
[
f (R,T ) − RfR(R,T ) − TfT (R,T )

+ fT (R,T )
(
3pm(a) − ρm(a)

) + pm(a)

− εφ̇2

2
− V (φ)

]
− 6aȧ2fR(R,T )

− 6a2ȧṘfRR(R,T ) − 6a2ȧṪ fRT(R,T ). (7)

The equation of motion of a dynamical system is defined as

∂L
∂qi

− d

dt

(
∂L
∂q̇i

)
= 0, pi = ∂L

∂qi
,

where qi and pi represent n generalized coordinates and
conjugate momenta of configuration space, respectively. Us-
ing Eq. (7), the conjugate momenta and equations of motion
of configuration space Q = {a,R,T ,φ} become

pa = −12aȧfR(R,T )

− 6a2(ṘfRR(R,T ) + Ṫ fRT(R,T )
)
,

pR = −6a2ȧfRR(R,T ), pT = −6a2ȧfRT(R,T ),

pφ = −εa3φ̇,

ȧ2

a2
+ 2ä

a
= − 1

2fR(R,T )

[
f (R,T ) − RfR(R,T )

− TfT (R,T ) + fT (R,T )
(
3pm(a) − ρm(a)

)

+ pm(a) − εφ̇2

2
− V (φ)

+ a

3

{
fT (3pm,a −ρm,a ) + pm,a

}

+ 2R̈fRR(R,T ) + 2Ṙ2fRRR(R,T )

+ 4ṘṪ fRRT(R,T ) + 2T̈ fRT(R,T )

+ 2Ṫ 2fRTT(R,T ) + 4ȧṘfRR(R,T )

a

+ 4ȧṪ fRT(R,T )

a

]
, (8)

fRT
(
3pm(a) − ρm(a)

) + 6
(
ȧ2a−2 + 2äa−1)fRR

− RfRR − TfRT = 0, (9)
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RfRT − 6
(
ȧ2a−2 + 2äa−1)fRT

+ fTT
(
3pm(a) − ρm(a)

) = 0, (10)

aφ̈ + 3εȧφ̇ − aV ′(φ) = 0. (11)

The associated energy function for Lagrangian (7) takes the
form

H = Σiq̇
ipi −L

= 6ȧ2fR(R,T )

a2
+ f (R,T ) − RfR(R,T ) − TfT (R,T )

+ fT (R,T )
(
3pm(a) − ρm(a)

) + pm(a) + εφ̇2

2

− V (φ) + 6ȧṘfRR(R,T )

a
+ 6ȧṪ fRT(R,T )

a
. (12)

3 Noether symmetry approach

In cosmology and theoretical physics, the formalism of
Noether symmetry is the most significant strategy to deal
with the complexity of non-linear partial differential equa-
tions that leads to formulate the corresponding exact solu-
tions. According to remarkable Noether’s theorem, if vari-
ational integral remains invariant under a continuous group
then group generator provides relative conservation law of
equation of motion. If the modified theory of gravity does
not possess any conserved quantity then the theory is re-
ferred as non-physical. The infinitesimal generator of con-
tinuous group is defined as

K = ξ
(
t, qi

) ∂

∂t
+ ηj

(
t, qi

) ∂

∂qj
, (13)

where t is an affine parameter. For the existence of Noether
symmetry, this generator satisfies the invariance condition
given by

K [1]L+ (Dξ)L = DB
(
t, qi

)
, (14)

where B represents boundary term while the total derivative
D and first order prolongation K [1] are

D = ∂

∂t
+ q̇i ∂

∂qi
,

K [1] = K + (
ηj ,t +ηj ,i q̇

i − ξ,t q̇
j − ξ,i q̇

i q̇j
) ∂

∂q̇j
.

(15)

The conserved quantity corresponding to symmetry genera-
tor K takes the form

I = B − ξL− (
ηj − q̇j ξ

) ∂L
∂q̇j

. (16)

This quantity also known as Noether integral or first inte-
gral. If first order prolongation as well as boundary term of
the extended symmetry vanishes, then symmetry generator,
invariance condition and corresponding conserved quantity
become

K = βi
(
qi

) ∂

∂qi
+

[
d

dt

(
βi

(
qi

))] ∂

∂q̇i
,

LKL = KL = 0, I = −ηj ∂L
∂q̇j

,

(17)

where L represents Lie derivative.
In order to evaluate symmetry generator and associated

conserved quantity of Lagrangian (7) under invariance con-
dition (14), we consider the vector field with tangent space
T = {t, a, ȧ,R, Ṙ, T , Ṫ , φ, φ̇} for the configuration space
Q = {t, a,R,T ,φ} as

K = τ(t, a,R,T ,φ)
∂

∂t
+ α(t, a,R,T ,φ)

∂

∂a

+ β(t, a,R,T ,φ)
∂

∂R
+ γ (t, a,R,T ,φ)

∂

∂T

+ δ(t, a,R,T ,φ)
∂

∂φ
, (18)

where τ , α, β , γ and δ are unknown coefficients of vector
field. The prolongation of the vector field up to first order is
given by

K [1] = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂R
+ γ

∂

∂T
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ

+ γ̇
∂

∂Ṫ
+ δ̇

∂

∂φ̇
,

where the time derivative of these unknown coefficients are

α̇ = ∂α

∂t
+ ȧ

∂α

∂a
+ Ṙ

∂α

∂R
+ Ṫ

∂α

∂T

− ȧ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
,

β̇ = ∂β

∂t
+ ȧ

∂β

∂a
+ Ṙ

∂β

∂R
+ Ṫ

∂β

∂T

− Ṙ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
,

γ̇ = ∂γ

∂t
+ ȧ

∂γ

∂a
+ Ṙ

∂γ

∂R
+ Ṫ

∂γ

∂T

− Ṫ

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
,

δ̇ = ∂δ

∂t
+ ȧ

∂δ

∂a
+ Ṙ

∂δ

∂R
+ Ṫ

∂δ

∂T

− φ̇

{
∂τ

∂t
+ ȧ

∂τ

∂a
+ Ṙ

∂τ

∂R
+ Ṫ

∂τ

∂T

}
.
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Inserting Eq. (18) with its first order prolongation and time
derivative of unknown coefficients in invariance condition
(14), we obtain the system of equations as follows

aτ,a fR = 0, aτ,R fR = 0,
(19)

aτ,T fR = 0, aτ,φ fR = 0,

6a2α,R fRR = 0, (20)

6a2α,T fRT = 0, (21)

εa3δ,T = −B,φ , (22)

6a2α,t fRT = −B,T , (23)

6a2α,t fRR = −B,R , (24)

6a2α,φ fRR + εa3δ,R = 0, (25)

6a2α,φ fRT + εa3δ,T = 0, (26)

6a2α,T fRR + 6a2α,R fRT = 0, (27)

12aα,T fR + 6a2β,t fRR + 6a2γ,t fRT = −B,a , (28)

(α − τ,t ) − 2a3(δ,φ −τ,t ) = 0, (29)

a3εδ,a +6a2γ,φ fRT + 6a2β,φ fRR + 12aα,φ fR = 0, (30)

αfR + aβfRR + aγfRT − aτ,t +2aα,a fR + a2β,a fRR

+ a2γ,a fRT = 0, (31)

2αfRR + aβfRRR + aγfRRT + 2aα,R fR + aα,a fRR

+ aβ,R fRR + aγ,R fRT − aτ,t fRR = 0, (32)

2αfRT + aβfRRT + aγfRTT + aα,a fRT + 2α,T fR

+ aβ,T fRR + aγ,T fRT − aτ,t fRT = 0, (33)

α
[
3a2(f − RfR − TfT + fT (3pm − ρm) + pm

− V (φ)
) + a3{fT (3pm,a −ρm,a ) + pm,a

}]

+ a3β
[−RfRR − TfRT + fRT(3pm − ρm)

]

+ a3γ
[−RfRT − TfTT + fTT(3pm − ρm)

]

− a3V ′(φ)δ + a3τ,t
(
f − RfR − TfT

+ fT (3pm − ρm) + pm − V (φ)
) = B,t . (34)

Equation (19) implies that either fR = 0 with τ,a , τ,R , τ,T ,
τ,φ �= 0 or vice versa.

To evaluate solution of the above system for fR = 0, we
choose power-law form of unknown coefficients given by

α = α0t
α1aα2Rα3T α4φα5 , β = β0t

β1aβ2Rβ3T β4φβ5 ,

(35)

γ = γ0t
γ1aγ2Rγ3T γ4φγ5 , δ = δ0t

δ1aδ2Rδ3T δ4φδ5, (36)

τ = τ0t
τ1aτ2Rτ3T τ4φτ5, (37)

where αm, βm, γm, δm and τm (m = 0,1,2,3,4,5) are un-
known constants to be determined. Solving Eqs. (19)–(34)

for the above power-law form of symmetry generator coef-
ficients, we obtain trivial solution, i.e., α = β = γ = δ = 0
with B = c1. Thus, we must have to choose some appro-
priate model of f (R,T ) gravity to evaluate possible solu-
tions of the above non-linear system. For different choices
of matter contribution, Harko et al. (2011) introduced some
theoretical models in this gravity given as

• f (R,T ) = R + 2g(T ),
• f (R,T ) = f (R) + g(T ),
• f (R,T ) = f1(R) + f2(R)g(T ).

We solve the system of partial differential equations for two
models of f (R,T ) gravity to formulate symmetry generator
coefficients as well as associated conserved quantities and
also evaluate corresponding exact solutions.

3.1 f (R,T ) = R + 2g(T )

Here we consider a simple f (R,T ) model that preserves
Einstein gravity with some additional matter components,
i.e., f (R,T ) = R + 2g(T ), where the curvature term dom-
inates over the matter part. This model elegantly reduces
to standard constant cosmological constant cold dark mat-
ter (ΛCDM) model if matter part contains a trace dependent
cosmological constant Λ(T ) defined as

f (R,T ) = R + 2Λ(T ) + h(T ). (38)

Inserting this model in Eqs. (19)–(34), we obtain

B = c1φ + c2t + c3, α = 2c4a
−1
2 + 2c5a,

β = γ = 0, V (φ) = c7, τ = 6c5t + c6,

δ = c2a − c1t

a3ε
+ φ

{
a− 7

2 c4 + (
6a3 + a − 3

)
a−3c5

}
,

where cn (n = 1,2, . . . ,7) are arbitrary constants while
Eq. (30) yields

φ = − 2(εa4 + 3c1t)

ε{2c8(9 − 2a) − 7c9a
− 1

2 }
. (39)

For this value of φ, the boundary term and coefficient of
symmetry generator corresponding to scalar field reduce to

B = − 2c1(εa
4 + 3c1t)

ε{2c8(9 − 2a) − 7c9a
− 1

2 }
+ c2t + c3,

δ = c2a − c1t

a3ε

− 2(εa4 + 3c1t){a− 7
2 c4 + (6a3 + a − 3)a−3c5}

ε{2c8(9 − 2a) − 7c9a
− 1

2 }
.

In this case, the symmetry generator turns out to be

K = (6c5t + c6)
∂

∂t
+ (

2c4a
−1
2 + 2c5a

) ∂

∂a
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+
{
− 6t (6a3 + a − 3)c10

εa3{2c8(9 − 2a) − 7c9a
− 1

2 }
− 6tc11

εa
7
2 {2c8(9 − 2a) − 7c9a

− 1
2 }

− 2a
1
2 {(6a3 + a − 3)a

1
2 c10 + c11}

2c8(9 − 2a) − 7c9a
− 1

2

+ c2a − c1t

a3ε

}
∂

∂φ
,

where c10 = c1c5 and c11 = c1c4.
The formulated symmetry generator can be split into fol-

lowing Noether point symmetry which leads to the associ-
ated Noether integral as follows

K1 = ∂

∂t
,

I1 = −6aȧ2 − a3
(

2c12 − c7 − pm − 3εφ̇2

2

)
,

K2 = 2a− 1
2

∂

∂a
, I2 = 24a

1
2 ȧ,

K3 = a
∂

∂φ
, I3 = t + εa4φ̇2,

K4 = − t

a3ε

∂

∂φ
,

I4 = −t φ̇ − 2(εa4 + 3c1t)

ε{2c8(9 − 2a) − 7c9a
− 1

2 }
,

K5 = 6t
∂

∂t
+ 2a

∂

∂a
,

I5 = 24a2ȧ − 36aȧ2 + 9εta3φ̇2 − 6ta3(2c12 − c7 − pm),

K6 = − 6t (6a3 + a − 3)

εa3{2c8(9 − 2a) − 7c9a
− 1

2 }
∂

∂φ
,

I6 = − 6t φ̇(6a3 + a − 3)

2c8(9 − 2a) − 7c9a
− 1

2

,

K7 = − 6t

εa
7
2 {2c7(9 − 2a) − 7c8a

− 1
2 }

∂

∂φ
,

I7 = − 6t φ̇a− 1
2

2c8(9 − 2a) − 7c9a
− 1

2

.

The Noether symmetry K1 provides energy conservation
with its first integral I1 while K2 yields scaling symmetry.
To determine the exact solution, we insert Eq. (39) into (11)
and obtain

a(t) = η1t
2
15 , ε = 1,

a(t) = η2t
2
3 , ε = −1,

where η1 = 52l
2
15
1 /410 and η2 = (3l2)

2
3 /4

1
3 . The Hubble pa-

rameter (H ) determines the rate of expansion whereas de-
celeration parameter (q) measures that either the universe
experiences acceleration (q < 0), or deceleration (q > 0), or
constant expansion (q = 0). For isotropic universe model,
the Hubble and deceleration parameters are defined as

H = ȧ

a
, q = − Ḣ

H 2
− 1.

In this case, the corresponding Hubble and deceleration pa-
rameters turn out to be H = 2t

15 , q = 13
2 and H = 2t

3 , q = 1
2

for ε = 1 and ε = −1, respectively. For late-time cosmic ac-
celerated expansion, the power-law scale factor a(t) is pro-
portional to tp (p > 1) but for p = 1

2 and p = 2
3 , it corre-

sponds to radiation and matter dominated universe, respec-
tively. In our case, the solution obtained for ε = 1 is not
compatible to late-time acceleration of the universe whereas
for ε = −1, our solution corresponds to matter dominated
era of the universe. The positivity of deceleration parame-
ter ensures decelerating universe for both quintessence and
phantom models.

The potential and kinetic energies of the scalar field play
a dynamical role to study cosmic expansion. For acceler-
ated expansion, the field φ evolves negatively and poten-

tial dominates over the kinetic energy ( φ̇2

2 < V (φ)) whereas
negative potential follows the kinetic energy for deceler-

ated expansion of the universe ( φ̇2

2 > −V (φ)). Figure 1 an-
alyzes the behavior of scalar field and cosmic expansion via
quintessence and phantom models. The left plot shows that
the scalar field is negative initially indicating accelerated ex-
pansion but gradually, it tends to increase positively which
describes decelerated expansion. In case of phantom model,
the scalar field grows positively leading to decelerated ex-
pansion of the universe.

Next, we determine Noether point symmetry as well as
corresponding first integral in the absence of boundary term
of extended symmetry and also formulate exact solution of
the field equations. In this case, the first order prolongation
vanishes and the vector field of configuration space Q =
{a,R,T ,φ} with tangent space T = {a, ȧ,R, Ṙ, T , Ṫ , φ, φ̇}
is given by

K = α
∂

∂a
+ β

∂

∂R
+ γ

∂

∂T
+ δ

∂

∂φ
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
+ γ̇

∂

∂Ṫ

+ δ̇
∂

∂φ̇
, (40)

where time derivative of unknown coefficients of the vector
field are

α̇ = ȧ
∂α

∂a
+ Ṙ

∂α

∂R
+ Ṫ

∂α

∂T
+ φ̇

∂α

∂φ
,
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Fig. 1 Plots of scalar field φ(t) versus cosmic time t for ε = 1 (left) and ε = −1 (right) with c1 = 0.3, c8 = 0.002, c9 = 1, l1 = 5.5 and l2 = 0.5

β̇ = ȧ
∂β

∂a
+ Ṙ

∂β

∂R
+ Ṫ

∂β

∂T
+ φ̇

∂β

∂φ
,

γ̇ = ȧ
∂γ

∂a
+ Ṙ

∂γ

∂R
+ Ṫ

∂γ

∂T
+ φ̇

∂β

∂φ
,

δ̇ = ȧ
∂δ

∂a
+ Ṙ

∂δ

∂R
+ Ṫ

∂δ

∂T
+ φ̇

∂β

∂φ
.

Taking the Lie derivative of Lagrangian (7) relative to the
vector field (40), we obtain an over determined system of
non-linear equations given as

a2α,R fRR = 0, (41)

a2α,T fRT = 0, (42)

3εα + εaδ,φ = 0, (43)

a2α,T fRR + a2α,R fRT = 0, (44)

6a2α,φ fRR + εδ,R = 0, (45)

6a2α,φ fRT + εδ,T = 0, (46)

12aα,φ fR + 6a2β,φ fRR + 6a2δ,φ fRT + εa3δ,a = 0, (47)

aβfRR + aγfRT + 2aα,a fR + a2β,a fRR

+ a2γ,a fRT + αfR = 0, (48)

aβfRRR + aγfRRT + 2aα,R fR + aα,a fRR

+ aβ,R fRR + aγ,R fRT + 2αfRR = 0, (49)

aβfRRT + aγfRTT + aα,a fRT + 2α,T fR + aβ,T fRR

+ aγ,T fRT + 2αfRT = 0, (50)

α
[
3a2(f − RfR − TfT + fT (3pm − ρm) + pm − V (φ)

)

+ a3{fT (3pm,a −ρm,a ) + pm,a
}] + a3β

[−RfRR

− TfRT + fRT(3pm − ρm)
] + a3γ

[−RfRT − TfTT

+ fTT(3pm − ρm)
] − a3V ′(φ)δ = 0. (51)

Solving the system for f (R,T ) model (38), we obtain un-
known coefficients and potential function as

α = d1 sin

(√
3εφ

4

)
+ d2 cos

(√
3εφ

4

)
, β = 0,

γ = 0,

δ = − 2
√

3
√

εa
3
2

[
−d1 cos

(√
3εφ

4

)
+ d2 sin

(√
3εφ

4

)]
,

V (φ) = d4

[
−(

d2
1 − d2

2

)
cos

(√
3εφ

2

)

+ 2d1d2 sin

(√
3εφ

2

)]
.

Without any loss of generality, we assume d3 = 0. In this
case, the trace dependent cosmological constant, density and
pressure of matter part become

Λ(T ) = d9(−T + 3d5 − d7) + d4(d
2
1 + d2

2 ) + d5 − h(T )

2
,

pm(a) = d5 + d6

a3
, ρm(a) = d7 + d8

a3
,

where dk (k = 1,2, . . . ,8) are arbitrary constants.
These solutions satisfy the over determined system (41)–

(51) for d1 = 0 with d2, d4 �= 0. Thus, the symmetry gen-
erator of Noether symmetry and corresponding Noether first
integral become

K = d2 cos

(√
3εφ

4

)
∂

∂a
− 2d2

√
3ε−1a−3 sin

(√
3εφ

4

)
∂

∂φ
,

I = 12aȧd2 cos

(√
3εφ

4

)
− 2d2

√
3εa3φ̇ sin

(√
3εφ

4

)
.

Without any loss of generality, we assume d7 = d5 and d8 =
d6 which leads to the explicit form of f (R,T ) model given
by

f (R,T ) = R − 2T d9 + d4d
2
2 + d5(4d9 + 1). (52)
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In order to establish cosmological analysis of the con-
structed model experiencing minimal coupling with matter
and scalar fields, we evaluate exact solution of equation of
motion by using Eq. (52) in (8) and (12) which leads to

a(t) = (d2d4 − 1)−1√
2.3

1
3 d2

[
d2

2 (d2d4 − 1)2

×
{

12

(
−d10 sin

(√
3d2(d2d4 − 1)

2
t

)

+ d11 cos

(√
3d2(d2d4 − 1)

2
t

))√
d2(d2d4 − 1)

+ d6
√

6(4d9 + 1)

}] 1
3

. (53)

This form of scale factor defines an oscillatory solution of
the universe.

To investigate this oscillatory solution, we discuss the be-
havior of the some significant cosmological parameters, i.e.,
Hubble, deceleration, EoS and r − s parameters which play
a crucial role to study current accelerated expansion of the
universe. For the explicit form of f (R,T ) model (52) and
scale factor (53), these parameters become

H = 2
√

6

[
d10 cos

(√
3d2(d2d4 − 1)

2
t

)

+ d11 sin

(√
3d2(d2d4 − 1)

2
t

)]
d2(d2d4 − 1)

×
{

12
√

d2(d2d4 − 1)

[
d10 sin

(√
3d2(d2d4 − 1)

2
t

)

− d11 cos

(√
3d2(d2d4 − 1)

2
t

)]
+ d6

√
6(4d9 + 1)

}−1

,

q = −1 +
(

12d2(d2d4 − 1)
(
d2

10 + d2
11

)

− √
6d2(d2d4 − 1)d6(4d9 + 1)

×
[
d10 sin

(√
3d2(d2d4 − 1)

2
t

)

− d11 cos

(√
3d2(d2d4 − 1)

2
t

)])

×
[
d10 cos

(√
3d2(d2d4 − 1)

2
t

)

+ d11 sin

(√
3d2(d2d4 − 1)

2
t

)]−2

× {
4d2(d2d4 − 1)

}−1
.

The diagnostic pair of r − s parameters are used to in-
vestigate the features of DE candidates as these parameters
establish a correspondence between constructed and stan-
dard models of the universe. For (r, s) = (1,0), the con-
structed model corresponds to standard ΛCDM model while
(1,0) and (−∞,∞) indicate standard cold dark matter and
Einstein universe, respectively whereas the trajectories with
s > 0 and r < 1 correspond to quintessence and phantom
phases of DE. In this case, these parameters turn out to be

r =
[
d2(d2d4 − 1) cos3

(√
3d2(d2d4 − 1)

2
t

)

× sin

(√
3d2(d2d4 − 1)

2
t

)
d10d11

(
d2

10 + d112

)

+
(

d2(d2d4 − 1)
(
18d2

10 + 22d112

) − 3

4
d2

6d10d11

× (
1 + 8d9(2d9 + 1)

))
cos

(√
3d2(d2d4 − 1)

2
t

)

× sin

(√
3d2(d2d4 − 1)

2
t

)
+ d2(d2d4 − 1)

× (
d4

10 − 6d2d
2
10d

2
11 + d4

11

)
cos4

(√
3d2(d2d4 − 1)

2
t

)

+
{
d2(d2d4 − 1)

(
9d4

10 + 6d2
10d

2
11 − 11d4

11

)

+ 3

8

(
1 + 8d9(2d9 + 1)

)
d2

6

(
d2

11 − d2
10

)}

× cos2
(√

3d2(d2d4 − 1)

2
t

)
+ d2

(
9d2

10d
2
11 + 10d4

11

)

× (d2d4 − 1) − 3d2
11d

2
6d9(2d9 + 1)

]

×
[
d10 cos

(√
3d2(d2d4 − 1)

2
t

)

+ d11 sin

(√
3d2(d2d4 − 1)

2
t

)]−4{
d2(d2d4 − 1)

}−1
,

s = − 1

32

[
24

(
d2

10 + d2
11

) − d2
6 (1 + 8d9(2d9 + 1))

d2(d2d4 − 1)

]

×
[

6
(
d2

10 + d112

)
cos2

(√
3d2(d2d4 − 1)

2
t

)

+
√

6
(
d2(d2d4 − 1)

)−1
d6(d10 − d11)

×
[

cos

(√
3d2(d2d4 − 1)

2
t

)

+ sin

(√
3d2(d2d4 − 1)

2
t

)]
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Fig. 2 Plots of scale factor a(t) (left) for and Hubble parameter H(t) (right) versus cosmic time t for d2 = 0.2, d4 = 5.5, d6 = −0.95, d9 = −0.1,
d10 = −5 and d11 = 0.1

Fig. 3 Plots of deceleration parameter q(t) (left) and r − s parameters (right) versus cosmic time t

+ 12d10d11 cos

(√
3d2(d2d4 − 1)

2
t

)

× sin

(√
3d2(d2d4 − 1)

2
t

)
− 6

(
2d2

10 + d2
11

)]

×
[
d10 cos

(√
3d2(d2d4 − 1)

2
t

)

+ d11 sin

(√
3d2(d2d4 − 1)

2
t

)]−4

.

The EoS parameter (ω = p
ρ
) characterizes the universe into

different eras and also distinguishes DE era into distinct
phases like ω = −1 describes cosmological constant while
−1 < ω ≤ −1/3 and ω < −1 correspond to quintessence
and phantom phases, respectively. Inserting Eqs. (52) and
(53) in (8) and (9), we obtain the effective EoS parameter as
follows

ωeff = d2(d2d4 − 1) − ε
φ̇2

2

d2(d2d4 − 1) − d6(4d9 + 1)a−3 + ε
φ̇2

2

,

where

φ̇2

2
= εd2(d2d4 − 1)

{
24d2(d2d4 − 1)

(
d2

10 + d2
11

)

− d2
6

(
1 + 8d9(2d9 + 1)

)}

×
[{

d10 sin

(√
3d2(d2d4 − 1)

2
t

)

− d11 cos

(√
3d2(d2d4 − 1)

2
t

)}
24

√
d2(d2d4 − 1)

×
{
−√

d2(d2d4 − 1)

{
d10 sin

(√
3d2(d2d4 − 1)

2
t

)

− d11 cos

(√
3d2(d2d4 − 1)

2
t

)}
+ d6(4d9 + 1)

− d2
6

(
1 + 8d9(2d9 + 1)

)}]−1

.

For the oscillatory solution of the scale factor, both plots
of Fig. 2 show that the universe experiences accelerated ex-
pansion as scale factor and Hubble parameter grow contin-
uously. In the left plot of Fig. 3, the negative behavior of
deceleration parameter also represents accelerated cosmic
expansion while the right plot identifies r − s parameters
trajectories in quintessence and phantom phases as s > 0
when r < 1. The graphical analysis of Fig. 4 gives different
phases of DE era of the universe like the first plot indicates
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Fig. 4 Plots of EoS parameter ωeff for ε = 1 (left) and EoS parameter ωeff for ε = −1 (right) versus cosmic time t

Fig. 5 Plots of scalar field φ(t)

(left) versus cosmic time t and
potential energy V (φ) versus

kinetic energy φ̇2

2 (right) for
ε = 1

that the universe enters into phantom phase leading to future
singularities. The second plot of Fig. 4 shows that the uni-
verse possesses an elegant exit from matter dominated era
to quintessence phase which leads to phantom phase with
the passage of time. Figure 5 analyzes cosmic expansion via
scalar field and also compares its kinetic and potential en-
ergies. The left plot shows that the scalar field is negatively

increasing whereas the right plot ensures φ̇2

2 < V (φ) imply-
ing that quintessence model yields accelerated expansion.

3.2 f (R,T ) = f (R) + g(T )

Now we study the behavior of an indirect non-minimal cur-
vature and matter coupling interacting with scalar field. For
this purpose, we consider a model of f (R,T ) gravity which
can be split into curvature and matter parts such as the model
can also referred as correction to f (R) gravity given by

f (R,T ) = f (R) + g(T ). (54)

To formulate Noether point symmetry of this model under
the invariance condition (18), we insert (54) into (19)–(34)
which leads to trivial solution with constant boundary term
and potential function. To avoid this situation, we consider
power-law form, i.e., f (R) = f0R

n, n �= 0,1 which yields

f (R,T ) = f0R
n + g(T ). (55)

Using Eq. (55) in (19)–(34), we obtain the following gener-
ator coefficients

τ = ξ4, α = 0, γ = 0, δ = ξ1 + ξ2

a
,

β = 1

aRn−2

(
− t

3nf0(n − 1)
+ ξ2εφ

nf0(n − 1)
+ ξ3

)
,

where ξl (l = 1,2, . . . ,5) are arbitrary constants while the
boundary term and potential function turn out to be

B = (
ξ4 + ξ5a

2)t,
V (φ) = {−12φ

(
1 + a2) + 12ξ6a

2(ξ1a + ξ2) + 4Rta2φ

− ξ2εa
2Rφ2 + 12ξ3f0n(n − 1)a2Rφ

}

× {
12a2(ξ1a + ξ2)

}−1
.

This boundary term and symmetry generator coefficients
yield Noether point symmetry and Noether first integral of
equation of motion which leads to the following conserved
quantities

K1 = ∂

∂φ
, I1 = εa3φ̇,

K2 = 1

a

∂

∂φ
+ εφ

nf0(n − 1)

∂

∂R
, I2 = 6εaȧφ + εa2φ̇,
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Fig. 6 Plots of scale factor a(t) (left) and Hubble parameter H(t) (right) versus cosmic time t for ζ5 = 0.05, ζ7 = 1, ζ8 = 10

K3 = ∂

∂R
, I3 = 6n(n − 1)f0aȧ,

K4 = ∂

∂t
,

I4 = t − a3(f0R
n(1 − n) + g(T ) + g(T ),T

× (3pm − ρm − T ) − pm − V (φ)
)

+ 6nf0aȧ2Rn−1 − εa3φ̇2

2
,

K5 = − t

3nf0(n − 1)aRn−2

∂

∂R
, I5 = a2t − 2aȧt.

In this case, the Noether symmetry K4 along with first inte-
gral I4 yields energy conservation.

Now we discuss the existence of Noether symmetry and
corresponding conserved quantities in the absence of bound-
ary term and first order prolongation. For this purpose,
we consider the invariance condition (17) and insert the
f (R,T ) model (54) along its derivatives relative to R and
T in Eqs. (41)–(51). On solving the system, we obtain

α = −2aζ1

3
, β = Rζ1

a
, γ = 0,

δ = ζ1φ + ζ2, V (φ) = ζ4 + ζ5(ζ1φ + ζ2)
2

ζ 2
1

,

where ζn are arbitrary constants and without any loss of gen-
erality, we assume that ζ3 = 0. For these symmetry genera-
tor coefficients, the Noether symmetry and corresponding
conserved quantities turn out to be

K1 = ∂

∂φ
, I1 = −εa3φ̇,

K2 = −2a

3

∂

∂a
+ R

a

∂

∂R
+ φ

∂

∂φ
, I2 = −εa3φφ̇.

These symmetries appear for f (R) = ζ3 and g(T ) = ζ6T

implying the dominant effect of matter distribution. Using
the field equations (8) and (9), we formulate exact solution

of the scale factor and scalar field given as

a(t) =
[

ζ7

2ζ5

(
−1 + 2 tan(λ)2

1 + tan(λ)2

)−2] 1
3

,

φ = ζ2

ζ1
+

√
ζ2
2ζ5

tan(λ)

1 + tan(λ)2
,

where λ = √
2ζ5/ε(−t + ζ8). For this oscillatory solution,

Hubble, deceleration and r − s parameters become

H = −8
√

2ζ5

3
√

ε

sin(λ) cos(λ)

2 cos(λ)2 − 1
,

q = −cos(λ)4 − cos(λ)2 − 3
8

cos(λ)2(cos(λ)2 − 1)
,

r = −8 cos(λ)2{17 cos(λ)2 − 16 cos(λ)4 + 8 cos(λ)6 − 9} + 9

64 cos(λ)4{1 − 2 cos(λ)2 + cos(λ)4} ,

s = 8 cos(λ)2{25 cos(λ)2 − 32 cos(λ)4 + 16 cos(λ)6 − 9} + 9

72 cos(λ)2{cos(λ)2(3 − 8 cos(λ)2 + cos(λ)4) + 1} .

In this case, the effective EoS parameter takes the form

ωeff = 9
[−ζ6ζ

2
1 + 4ζ5ζ2ζ1

√
2ζ5ζ6 sin(λ) cos(λ)

+ 2ζ5
(
ζ 2

1 + 4ζ 2
2

) + (8 − ζ5ζ6)ζ5ζ
2
1 cos(λ)4 − ζ5ζ

2
1

× (8 − ζ5ζ6) cos(λ)2]/{−ζ6ζ
2
1 + 4ζ5ζ2ζ1

√
2ζ5ζ6

× sin(λ) cos(λ) + 2ζ5
(
3ζ 2

1 + 4ζ 2
2

)

+ ζ5ζ
2
1 (24 − ζ5ζ6) cos(λ)4 − ζ5ζ

2
1

× (24 − ζ5ζ6) cos(λ)2}.
The graphical behavior of the oscillatory solution and

Hubble parameter is shown in Fig. 6. The left plot indi-
cates that the initially increasing behavior of scale factor
describes accelerated expansion but with the passage of
time, this scale factor leads to decelerated expansion due
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Fig. 7 Plots of deceleration parameter q(t) (left) and r − s parameters (right)

Fig. 8 Plot of EoS parameter ωeff for ζ6 = 0.2

to its decreasing behavior. The right plot of Fig. 6 identi-
fies decreasing rate of expansion. In Fig. 7, the decelera-
tion parameter experiences a transition from negative to pos-
itive region which shows that the universe admits an exit
from accelerated to decelerated expansion. The trajectories
of r − s parameters yield s > 0 for r < 1 initially imply-
ing quintessence and phantom phases but after some time,
s < 0. Figure 8 indicates that the effective EoS parameter is
approaching to zero as time goes on implying a transition
from quintessence to matter dominated universe. In Fig. 9,
the scalar field is found to be positively increasing in left

plot while potential and kinetic energies satisfy φ̇2

2 < V (φ)

initially. With the passage of time, kinetic energy starts dom-
inating over potential energy and consequently representing
an epoch of decelerated expansion. Thus, the analysis indi-
cates that the universe experiences a transition from acceler-
ated to decelerated phase.

In order to discuss the effect of curvature appreciating
non-minimal curvature matter coupling, we choose power-
law form of f (R) and evaluate the symmetry generator with
associated first integrals given by

K1 = a
∂

∂a
− 3R

n − 1

∂

∂R
− 3φ

2

∂

∂φ
,

I1 = −6nf0a
2ȧRn−1 + 6nf0(n − 1)a3ṘRn−2 − 3a3εφφ̇

2
,

K2 = εφ

6nf0aRn−2(n − 1)

∂

∂R
+ 1

a

∂

∂φ
,

I2 = aȧεφ + a2εφ̇,

where the Noether symmetry K1 with Noether integral I1

generates scaling symmetry.

4 Final remarks

In this paper, we have studied the existence of Noether sym-
metry of flat FRW universe model in f (R,T ) gravity ad-
mitting minimal coupling of geometric part with general-
ized scalar field. We have formulated all possible Noether
symmetry generators as well as associated conserved quan-
tities for two theoretical models of this gravity in the pres-
ence/absence of boundary term. We have studied exact so-
lutions and investigated physical behavior of some well-
known cosmological parameters for vanishing first order
prolongation.

For the first f (R,T ) model, the invariance condition for
the existence of Noether symmetry yields maximum sym-
metry generators and corresponding conserved quantities.
The first symmetry generator provides energy conservation
under translational invariance in time, the second genera-
tor produces scaling symmetry and the potential function
turns out to be constant. We have obtained exact solutions
of power-law form corresponding to quintessence and phan-
tom phases. For ε = 1, the scale factor is not compatible to
late-time acceleration while it corresponds to matter domi-
nated era for ε = −1. The positive behavior of deceleration
parameter and positively increasing scalar field also ensure
this decelerating phase for both scalar field models.

In the absence of boundary term and first order prolonga-
tion, the potential function remains no more constant but is
restricted to quintessence phase only as phantom phase leads
to non-physical region of the universe. In this case, we have
found oscillatory solution of the scale factor whose physical
interpretation is established through cosmological parame-
ters like Hubble, deceleration, r − s and EoS parameters.
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Fig. 9 Plots of scalar field φ(t) (left) versus cosmic time t and potential energy V (φ) versus kinetic energy φ̇2

2 (right) for ε = 1 when ζ1 = 0.5
and ζ2 = 0.4

The graphical analysis of scale factor and rate of expan-
sion is found to be increasing. The deceleration parameter
remains negative while r − s parameters yield quintessence
and phantom phases for s > 0 and r < 1. The EoS parame-
ter characterize phantom phase for ε = 1 whereas it appreci-
ates a transition from radiation dominated era to DE era by
crossing matter dominated phase. The negatively increasing
scalar field and dominating potential energy imply cosmic
accelerated expansion.

For the second model, we have found trivial solution un-
der the invariance condition of Noether symmetry. Thus,
we have considered f (R) = f0R

n, n �= 0,1 and formulated
five symmetry generators with associated first integrals. For
this choice of model, the symmetry generator K4 yields en-
ergy conservation while the potential function is no more
constant. When boundary term of the extended symmetry
vanishes, we have obtained again an oscillatory solution of
the scale factor for f (R) + g(T ) model. For this oscilla-
tory solution, the graphical interpretation of scale factor,
Hubble, deceleration and r − s parameters identify a tran-
sition of the universe from accelerated to decelerated ex-
pansion. The EoS parameter determines matter dominated
universe by crossing quintessence phase. The scalar field
remains positively increasing whereas kinetic and potential

energies follow φ̇2

2 < V (φ) initially yielding accelerated ex-
pansion. With the passage of time, this condition is disturbed
as kinetic energy initiates to dominate over potential en-
ergy leading to decelerated expansion of the universe. For
f0R

n + g(T ) model, we have obtained two symmetry gen-
erators in which the first generator yields scaling symmetry.

Finally, it is concluded that the symmetry generator
and corresponding conserved quantities have appeared for
both models. For R + 2Λ(T ) + h(T ) model, the maximum
Noether symmetry generators and conserved quantities in-
dicate that this model yields more physical results as com-
pared to the second model. For this model, the exact solu-
tion corresponds to accelerated expansion whereas for sec-
ond model, the exact solution describes a transition from ac-

celerated to decelerated cosmic expansion. It would be inter-
esting to consider a non-canonical scalar field as a candidate
for DE component and study cosmic evolution in the back-
ground of minimal as well as non-minimal curvature-matter
coupling.
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