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Abstract The homotopy method has been used as a use-
ful tool in solving fuel-optimal trajectories with constant-
specific-impulse low thrust. However, the specific impulse
is often variable for many practical solar electric power-
limited thrusters. This paper investigates the application of
the homotopy method for optimization of variable-specific-
impulse low-thrust trajectories. Difficulties arise when the
two commonly-used homotopy functions are employed for
trajectory optimization. The optimal power throttle level
and the optimal specific impulse are coupled with the
commonly-used quadratic and logarithmic homotopy func-
tions. To overcome these difficulties, a modified logarithmic
homotopy function is proposed to serve as a gateway for
trajectory optimization, leading to decoupled expressions of
both the optimal power throttle level and the optimal spe-
cific impulse. The homotopy method based on this homo-
topy function is proposed. Numerical simulations validate
the feasibility and high efficiency of the proposed method.
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1 Introduction

The success of the NASA Solar Electric Propulsion Tech-
nology Applications Readiness (NSTAR) program’s ion
propulsion system on the Deep-Space 1 spacecraft shows
that the application of solar electric propulsion (SEP) with
variable specific impulse is very promising for future space
missions (Polk et al. 2000). The reason that variable-
specific-impulse thrusters are more practical in missions is
as follows. The power provided by SEP thrusters is inversely
proportional to the distance from the Sun (Casalino and Co-
lasurdo 2004). In order to guarantee the required large thrust
level, the specific impulse Isp should be reduced when the
spacecraft is distant to the Sun (Casalino and Colasurdo
2004). In recent years, the low-thrust trajectory optimization
with variable Isp has got great attention of many scholars.
Kechichian (1995) firstly studied the problem of variable-
Isp low-thrust trajectory optimization based on a set of non-
singular orbit elements. Other contributions and extensions
can be found by Soulas et al. (2003), Casalino and Colasurdo
(2004), Mengali and Quarta (2005), Seywald et al. (2005),
Genta and Maffione (2016), and the references therein.

The methods for solving low-thrust trajectory optimiza-
tion can be classified as two categories: direct methods and
indirect methods. The primary advantages of indirect meth-
ods are their high accuracy in the solution and the assurance
that the solution satisfies the first-order optimality condi-
tions (Zhang et al. 2014). And the low dimensionality of the
search space of indirect method enables the random search
of initial guesses (Russell 2007; Oshima et al. 2017). In the
published papers for variable-Isp problems, indirect meth-
ods, which are based on the Pontryagin’s maximum princi-
ple, have been widely used (Casalino and Colasurdo 2004;
Kechichian 1995; Mengali and Quarta 2005; Seywald et al.
2005; Senent et al. 2005). In indirect methods, the optimal

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-017-3196-7&domain=pdf
http://orcid.org/0000-0002-6162-092X
mailto:hongwei.yang@nuaa.edu.cn


216 Page 2 of 13 Z. Chi et al.

control problem is transformed to a boundary value prob-
lem. After that, numerical methods, such as Newton’s or
Powel’s, are employed to solve the corresponding shoot-
ing equation. However, it is difficult to converge to the op-
timal solution because of the sensitivity of initial guesses
and discontinuous bang-bang control for the fuel-optimal
control (Bertrand and Epenoy 2002; Jiang et al. 2012). To
overcome the difficulties in convergence caused by bang-
bang control, the homotopy method with different homotopy
functions has been proposed to find the optimal solutions
(Bertrand and Epenoy 2002). Because of the effectiveness
of the homotopy method, extensive studies have been pub-
lished on this method for trajectory optimization, leading to
many new developments of this method. Bai et al. (2009)
proposed a novel homotopy method combined with a pseu-
dospectral method in solving the bang-bang control prob-
lem. Jiang et al. (2012, 2017) proposed techniques of the ini-
tial costates’ normalization, the switching detection, as well
as the linearization of motion equation around shape-based
path to develop a fast homotopy method. Zhang et al. (2014)
developed the homotopy method (Jiang et al. 2012) for the
variable-power problems. Yang and Baoyin (2015) investi-
gated the trajectory problems with irregular gravity and also
developed the method of Jiang et al. (2012). Taheri et al.
(2016) analyzed the extended logarithmic-smoothing tech-
nique with equations of motion in terms of the following
three different coordinates: Cartesian, spherical and modi-
fied equinoctial. Moreover, Pan et al. (2016) pointed out the
main reasons why traditional homotopy fails and proposed a
novel double-homotopy method for solving optimal trajec-
tories.

Among the numerous works of trajectory optimization
by the homotopy method (Bertrand and Epenoy 2002; Jiang
et al. 2012; Zhang et al. 2014; Yang and Baoyin 2015;
Tang and Jiang 2016; Yang et al. 2015; Tang et al. 2015;
Caillau et al. 2012), two homotopy functions, including the
quadratic homotopy function and the logarithmic homo-
topy function, have been commonly used. These two ho-
motopy functions are firstly proposed for regular problems
of trajectory optimization by Bertrand and Epenoy (2002).
The quadratic homotopy function connects the fuel-optimal
problem to the energy-optimal problem while the logarith-
mic homotopy function shows better performance in conver-
gence (Bertrand and Epenoy 2002). The homotopy method
with these two homotopy functions can be directly applied
to constant-Isp problem (Jiang et al. 2012; Zhang et al. 2014;
Yang and Baoyin 2015; Tang and Jiang 2016; Yang et al.
2015; Tang et al. 2015). However, little research has been
conducted about the application of the homotopy method to
the variable-Isp trajectory optimization problem. Moreover,
difficulties arise when the above-mentioned two homotopy
functions are used for variable-Isp trajectory optimization
(see details in Sect. 3): the expressions of the optimal power

throttle level and the optimal exhaust velocity are no longer
analytical. In order to resolve the two control variables, we
need to calculate the simultaneous nonlinear equations with
numerical methods.

In this paper, the homotopy method is developed to ap-
ply for the low-thrust variable-Isp trajectory optimization
problem. A modified logarithmic homotopy function is pro-
posed to overcome the difficulties caused by the application
of the commonly-used homotopy functions for the variable-
Isp problem. With this modified logarithmic homotopy func-
tion, the optimal power throttle level and the optimal spe-
cific impulse are no more coupled. Moreover, the technique
of normalization (Jiang et al. 2012) is employed for the ro-
bustness of guessing the initial costates. Finally, an efficient
homotopy method based on the modified logarithmic homo-
topy function is formulated.

2 Problem formulation for the fuel-optimal
trajectory

2.1 Mathematical model

We consider the interplanetary transfer problem of a low-
thrust propelled spacecraft in the gravity of the Sun. The
equations of motion for the spacecraft in a heliocentric iner-
tial frame are (Yang et al. 2015)

ṙ = v (1)

v̇ = − μ

r3
r + T

m
α (2)

ṁ = − T

Ispg0
(3)

where r and v are the position and velocity vectors, re-
spectively, m denotes the instantaneous mass of the space-
craft, μ is the solar gravitational constant, which equals to
1.32712440018×1011 km3/s2, T represents the thrust mag-
nitude and α is the unit vector of the thrust direction.

The specific impulse Isp is considered to be variable. Its
range is denoted as Isp min ≤ Isp ≤ Isp max. The exhaust ve-
locity c is in proportion to the specific impulse, i.e.

c = Ispg0 (4)

where g0 = 9.8 m/s2 is the standard value of gravitational
acceleration. Correspondingly, the exhaust velocity has a
bounded range which is cmin ≤ c ≤ cmax.

As for variable-Isp problems, T can be expressed as a
function of variable power and exhaust velocity:

T = 2ηPmaxu

c
(5)



Homotopy method for optimization of variable-specific-impulse low-thrust trajectories Page 3 of 13 216

where η is the variable thruster efficiency, Pmax is the max-
imum thruster input power, and u (0 ≤ u ≤ 1) denotes the
power throttle level.

Substituting Eqs. (4) and (5) into Eqs. (1)–(3), we obtain
the following equations of motion:

ṙ = v (6)

v̇ = − μ

r3
r + 2ηPmaxu

mc
α (7)

ṁ = −2ηPmaxu

c2
(8)

The power supplied to the thruster is calculated through
the following relationship (Mengali and Quarta 2005):

Pmax =
{

ηP P max
P , if PSA − PL ≥ P max

P

ηP (PSA − PL), if PSA − PL < P max
P

(9)

where ηP is the efficiency of the power processor, P max
P rep-

resents the maximum input power to the power processor,
PSA is the solar array power and PL is the power for the
spacecraft systems. PSA is in an inverse-square relation with
the distance from the Sun (Mengali and Quarta 2005):

PSA = P�
r2

(
d1 + d2r

−1 + d3r
−2

1 + d4r + d5r2

)
(10)

where the term in brackets, which consists of the empiri-
cal coefficients d1, . . . , d5, represents the relative array effi-
ciency, and P� denotes the solar array power at 1 astronom-
ical unit (AU).

2.2 Fuel-optimal control problem

Our purpose is to minimize the fuel consumption. Therefore,
the following performance index is used

J = λ0

∫ tf

t0

2ηPmaxu

c2
dt (11)

where λ0 is a positive parameter which is necessary for the
normalization of the costate variables (Yang et al. 2015).

Regarding rendezvous problems, the state variables of the
spacecraft satisfy the following boundary conditions:

r(t0) = r0, v(t0) = v0, m(t0) = 1 (12)

r(tf ) = rf , v(tf ) = vf (13)

To apply the Pontryagin’s Minimum Principle (PMP)
for the optimal control (Geering 2007; Yang et al. 2017a,
2017b), the Hamiltonian is formulated as

H = λr · v + λv ·
(

− μ

r3
r + 2ηPmaxu

mc
α

)

− λm

2ηPmaxu

c2
+ λ0

2ηPmaxu

c2
(14)

where λr , λv and λm are costate variables adjoint to the po-
sition, the velocity and the mass, respectively. According to
Pontryagin’s maximum principle, the optimal control min-
imizes the Hamiltonian (Yang et al. 2017a, 2017b). There-
fore, the direction of the optimal thrust is opposite to the
primer vector λv , i.e.

α∗ = − λv

‖λv‖ (15)

And the optimal power throttle level is a bang-bang control
(Jiang et al. 2012) as follows:
⎧⎨
⎩

u∗ = 0, if ρ > 0
u∗ = 1, if ρ < 0
u∗ ∈ [0,1], if ρ = 0

(16)

where the expression of the so-called switching function ρ

is

ρ = 1 − c‖λv‖
λ0m

− λm

λ0
(17)

The Euler-Lagrange equations (Jiang et al. 2012; Yang
et al. 2017a, 2017b) for the costate variables are necessary
for the optimality, which are

λ̇r = −∂H

∂r
= μ

r3
λv − 3μλv · r

r5
r

− 2ηu

(
λ0

c2
− ‖λv‖

mc
− λm

c2

)
∂Pmax

∂r
(18)

λ̇v = −∂H

∂v
= −λr (19)

λ̇m = −∂H

∂m
= −2ηPmax‖λv‖u

m2c
(20)

The right item of Eq. (18) contains the derivative of Pmax

with respect to r . Its expression is (Mengali and Quarta
2005)

∂Pmax

∂r
=

{
0, if PSA − PL ≥ P max

P−rP�ηP N(r)/D(r), if PSA − PL < P max
P

(21)

where

N(r) � 4d1d5r
2 + (5d2d5 + 3d1d4)r + 6d3d5 + 4d2d4

+ 2d1 + (5d3d4 + 3d2)/r + 4d3/r2

D(r) � r4(1 + d4r + d5r
2)2

(22)

Additionally, the transversality condition indicates that
the boundary costate variable is zero if the corresponding
boundary state variable is free (Jiang et al. 2012). Because
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of the free final mass, the mass costate at the final time is
zero, i.e.

λm(tf ) = 0 (23)

Thus far, we have derived the optimal control law and all
first-order necessary condition for the optimal control prob-
lem. Therefore, we can formulate the equivalent two-point
boundary value problem (TPBVP). The ordinary differential
equations of the TPBVP are Eqs. (6)–(8) and (18)–(20). Be-
sides, the boundary conditions of the TPBVP have Eqs. (12),
(13), (23) and the following normalization condition (Jiang
et al. 2012):

∥∥λ(t0)
∥∥ = 1 (24)

where λ = [λr ,λv, λm,λ0] is the expanded costate vec-
tor. According to the normalization condition, the 8 initial
costate variables are restricted on a unit 8-D hypersphere,
which greatly shrinks the ranges of the initial costate vari-
ables. Moreover, Eq. (20) indicates that the derivative of λm

with respect to the time is always non-positive. Combin-
ing Eqs. (20) and (23), we obtain that λm(t0) ≥ 0. There-
fore, the range of the initial mass costate is reduced from
−1 < λm(t0) < 1 to 0 ≤ λm(t0) < 1.

The shooting equation for the TPBVP is formulated as

Φ = [
r(tf ) − rf ,v(tf ) − vf , λm(tf ),

∥∥λ(t0)
∥∥ − 1

]T = 0

(25)

However, the discontinuous bang-bang control leads to the
difficulty in convergence of solving Eq. (25). To overcome
the difficulty caused by the bang-bang control, the homotopy
method will be developed for the current problem.

3 Difficulties of using homotopy method with
commonly-used homotopy functions

The aim of the homotopy method is to solve the bang-bang
control problem and reduce the sensitivity of the shooting
function (Tang and Jiang 2016). The corresponding homo-
topy function should consist of homotopy parameter, which
decreases gradually and tends to convert continuous controls
into bang-bang controls. To use the homotopy method, the
form of the homotopy function should be defined. In this
section, the two commonly-used homotopy functions pro-
posed by Bertrand and Epenoy (2002), including a quadratic
homotopy function and a homotopy logarithmic function,
are employed directly in the homotopy method. Thereafter,
difficulties to solve out the control variables caused by these
two homotopy functions are analyzed.

3.1 Difficulty with the quadratic homotopy function

With the quadratic homotopy function (Bertrand and Epenoy
2002), the performance index (11) is modified to

J =
∫ tf

t0

λ0
2ηPmax

c2

[
u + εu(u − 1)

]
dt (26)

where homotopy parameter ε varies from 1 to 0. The perfor-
mance index refers to energy-optimal control when ε = 1,
and refers to fuel-optimal control when ε = 0 (Jiang et al.
2012). With this modified performance index, the Hamilto-
nian is modified to

H = λr · v + λv ·
(

− μ

r3
r + 2ηPmaxu

mc
α̂

)
− λm

2ηPmaxu

c2

+ λ0
2ηPmaxu

c2
+ λ0

2ηPmax

c2
εu(u − 1) (27)

According to the modified Hamiltonian, the Euler-
Lagrange equations for the costate variables become

λ̇r = −∂H

∂r
= μ

r3
λv − 3μλv · r

r5
r

− 2ηu

[
λ0

c2
− ‖λv‖

mc
− λm

c2
− λ0ε(u − 1)

c2

]
∂Pmax

∂r

(28)

λ̇v = −∂H

∂v
= −λr (29)

λ̇m = −∂H

∂m
= −2ηPmax‖λv‖u

m2c
(30)

To minimize the Hamiltonian in Eq. (27), the optimal
thrust direction still takes the form in Eq. (15). Substitut-
ing Eq. (15) into Eq. (27), the part of the Hamiltonian which
contains the control is as follows:

H̄ = 2ηPmaxu[λ0 − λm + λ0ε(u − 1)]
c2

− 2ηPmax‖λv‖u
mc

(31)

Next, we analyze the optimal c and u for minimizing H̄ .
With the variable substitution that t = 1/c, Eq. (31) is

rewritten as

H̄ = 2ηPmaxu
[
λ0 − λm + λ0ε(u − 1)

]
t2

− 2ηPmax‖λv‖u
m

t (32)

where the range of t is 1/cmax ≤ t ≤ 1/cmin because the ex-
haust velocity is bounded as cmin ≤ c ≤ cmax.

A parameter σ is defined as σ = λ0 − λm + λ0ε(u − 1).
Then, we analyze the optimal c based on three cases of the
sign of σ .
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(1) σ > 0
For this case, H̄ is a concave quadratic function and

its axis of symmetry is

t̄ = ‖λv‖
2mσ

(33)

Obviously, t̄ is larger than zero for the current case. To
minimize the Hamiltonian, the expression for the opti-
mal t is

topt =
⎧⎨
⎩

1/cmax, if t̄ ≤ 1/cmax

1/cmin, if t̄ ≤ 1/cmin

t̄ , if 1/cmax < t̄ < 1/cmin

(34)

Replacing back copt = 1/topt, we obtain the expres-
sion of the optimal exhaust velocity copt:

copt =
⎧⎨
⎩

cmax, if c̄ ≥ cmax

cmin, if c̄ ≤ cmin

c̄, if cmin < c̄ < cmax

(35)

where c̄ is expressed by

c̄ = 1

t̄
= 2mσ

‖λv‖ (36)

(2) σ < 0
H̄ is a convex quadratic function for the current case.

Its symmetry axis can be calculated by Eq. (33). Be-
cause the symmetry axis t̄ is less than zero, the optimal
t takes the value of 1/cmin to minimize H̄ . As a result,
copt = cmin when c̄ ≤ cmin, which also satisfies Eq. (35).

(3) σ = 0
In this case, H̄ is reduced to a linear function which

is monotonically decreasing. Thus, topt should be 1/cmin

to minimize H̄ . Moreover, c̄ is zero, which means
c̄ ≤ cmin, according to Eq. (36). Therefore, Eq. (35)
holds true for this case.

Based on the analyses in the previous three cases, the op-
timal exhaust velocity can be calculated through Eqs. (35)
and (36).

According to PMP, the optimal power throttle level u

should be

uopt =
⎧⎨
⎩

0, if ρ > ε

1, if ρ < −ε

1/2 − ρ/2ε, if ‖ρ‖ ≤ ε

(37)

where ρ is the same as that in Eq. (17).
Because u and c are coupled in Eqs. (35) and (37), we

need to calculate the simultaneous equations (35) and (37)
to obtain uopt and copt. Moreover, the judgement conditions
in Eq. (35) include the optimal power throttle level uopt. The
optimal exhaust velocity copt is also involved in the judge-
ment conditions of Eq. (37). Due to the multiple conditions
analysis, it is extremely complicated to obtain uopt and copt.

3.2 Difficulty with the logarithmic homotopy function

By using logarithmic homotopy function the equation of u

is no longer piecewise function. So the logarithmic homo-
topy function is more suitable for solving the many control
variables problem. The commonly-used logarithmic perfor-
mance index is expressed as follows:

J = λ0
2ηPmax

c2

∫ tf

t0

[
u − ε ln

(
u − u2)]dt (38)

With this performance index, the Hamiltonian becomes

H = λr · v + λv ·
(

− μ

r3
r + 2ηPmaxu

mc
α̂

)
− λm

2ηPmaxu

c2

+ λ0
2ηPmaxu

c2
− λ0

2ηPmax

c2
ε ln

(
u − u2) (39)

The Euler-Lagrange equation for the adjoint variable
with respect to r takes a new form:

λ̇r = −∂H

∂r
= μ

r3
λv − 3μλv · r

r5
r

− 2η

[
λ0u

c2
− ‖λv‖u

mc
− λmu

c2
− λ0ε ln(u − u2)

c2

]

× ∂Pmax

∂r
(40)

The other Euler-Lagrange equations with respect to v and
m are unchanged, as the same as Eqs. (29) and (30). The
portion of the Hamiltonian, which contains u and c, is also a
quadratic function of c. Thus, the solution procedure for copt

is the same as that in Sect. 3.1, but only the judgement pa-
rameter is changed to σ = λ0u−λmu−λ0ε ln(u−u2). The
optimal exhaust velocity holds the same form as Eq. (35).
The parameter c̄ is rewritten as

c̄ = 2m[λ0u − λmu − λ0ε ln(u − u2)]
‖λv‖u (41)

And the result of the optimal power throttle level is changed
to

uopt = 2ρ1ε

ρ2 + 2ρ1ε +
√

ρ2
2 + (2ρ1ε)2

(42)

where ρ1 = 2ηPmaxλ0/c
2 and ρ2 = 2ηPmaxλ0ρ/c2.

From Eqs. (41) and (42), we observe that the optimal
power throttle level uopt and the optimal exhaust velocity
copt are coupled. In order to resolve uopt and copt , we have
to calculate the simultaneous nonlinear equations with nu-
merical methods. It will greatly increase the complexity of
solving the corresponding TPBVP. Therefore, a modified
homotopy function will be proposed in the next section to
get decoupled uopt and copt.
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For the special case—constant Isp , the exhaust velocity
c is constant. Both of the two commonly-used homotopy
functions can be applied to solve the fuel-optimal problem.
The equations of motion and the Euler-Lagrange equations
are as the same as those in the variable-Isp case. The optimal
power throttle level u is calculated by Eqs. (37) and (42),
respectively.

4 Homotopy method with a modified logarithmic
homotopy function

In this section, a modified logarithmic homotopy function
is proposed to overcome the difficulties to solve the TP-
BVP caused by the above-mentioned two commonly-used
homotopy functions. The expressions of the optimal power
throttle level and the optimal specific impulse become de-
coupled by using the modified form of the homotopy func-
tion. Finally, the solution procedure of the homotopy method
is summarized.

4.1 Trajectory optimization with a modified
logarithmic homotopy function

The modified logarithmic homotopy function stems from al-
tering the structure of Eq. (38). The fundamental idea is to
eliminate the scaling of the logarithm term with the inverse
square of the exhaust velocity. The resulting expression for
the modified logarithmic homotopy function is in Eq. (43).
Note that the two control variables become decoupled in the
following calculations. In addition, the homotopy parameter
ε is also added to the logarithmic term to make sure when
ε = 0, the performance index refers to fuel-optimal control.

With the modified logarithmic homotopy function, the
performance index is formulated as

J =
∫ tf

t0

[
λ02ηPmax

u

c2
− λ0ε ln

(
u − u2)]dt (43)

where ε also decreases from 1 to 0. The Hamiltonian
changes to

H = λr · v + λv ·
(

− μ

r3
r + 2ηPmaxu

mc
α

)
− λm

2ηPmaxu

c2

+ λ0
2ηPmaxu

c2
− λ0ε ln

(
u − u2) (44)

where the last term no longer contains the exhaust velocity c.
The Euler-Lagrange equations for the adjoint variables

are as the same as Eqs. (18)–(20). The optimal thrust direc-
tion takes the same form as Eq. (15).

The parameter c̄, which is used to solve the optimal ex-
haust velocity, is changed to a simplified form

c̄ = 2m(λ0 − λm)

‖λv‖ (45)

which does not contain the optimal power throttle level u.
The optimal exhaust velocity is still calculated by Eq. (35).
Moreover, the optimal power throttle level becomes

uopt = 2λ0ε

ρ2 + 2λ0ε +
√

ρ2
2 + (2λ0ε)2

(46)

Thus far, the decoupled copt and uopt (Eqs. (35), (45) and
(46)) have been obtained by the modified logarithmic homo-
topy method for the variable-Isp case.

4.2 Summary of the homotopy method

In summary, the solution procedure for fuel-optimal trajec-
tories by the homotopy method contains 4 steps:

Step 1: Set the homotopy parameter ε = 1 and randomly
guess the initial values of the normalized multipliers
[λr(t0);λv(t0);λm(t0);λ0].

Step 2: Use the nonlinear solver MinPack-1 (Powell 1970)
to solve the shooting Eq. (25) to get the optimal ini-
tial values of the normalized multipliers for ε = 1.
In MinPack-1, a modification of Powell’s hybrid al-
gorithm that is a combination of Newton’s method
and the method of the gradient is implemented to
solve nonlinear equations (Jiang et al. 2012). An-
other numerical method, where the analytic state
transition matrix (Zhang et al. 2015) is computed,
can also be employed to solve the shooting equa-
tion. If the shooting equation can be solved, then
continue next steps. Otherwise, go back to Step 1
and conduct randomly guess again.

Step 3: Decrease ε from 1 to 0 step by step. In each step, the
resolved initial values in the previous step are taken
as the guessed initial values for the current step and
then MinPack-1 (Powell 1970) is used to solve the
optimal initial values.

Step 4: Return the optimal initial values when ε is almost
zero and then output the fuel-optimal trajectory.

5 Numerical examples and results

In this section, Earth-Mars transfer missions are simulated
to substantiate the feasibility and benefit of the proposed ho-
motopy method. With the purpose of reducing the numerical
sensitivity, a set of canonical units (AU, 1.49597870.66 km;
yr, 365.25 × 86400 s) (Seidelmann 2005) is used for solv-
ing the shooting equation. The tolerance of MinPack-1 is set
to 1 × 10−7. The heliocentric position and velocity of Earth
and Mars are computed online by the Jet Propulsion Lab-
oratory Horizons system.1 The parameters of the boundary
conditions are listed in Table 1.

1Data available online at http://ssd.jpl.nasa.gov/horizons.cgi [retrieval
date: March 1st, 2017].

http://ssd.jpl.nasa.gov/horizons.cgi
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Table 1 Parameters of
boundary conditions for
Earth-Mars transfer missions

Parameter Value Units

Initial date 1 Apr. 2009 0:0:0.0 Coordinate time

Flight time 500 Day

Initial position [−1.466002 × 108,−2.922649 × 107,7.520891 × 102] km

Initial velocity [5.350449,−2.932773 × 101,1.385662 × 10−3] km/s

Final position [−1.871752 × 108,−1.445109 × 108,1.568013 × 106] km

Final velocity [−1.571459 × 101,−1.710843 × 101,−7.443737 × 10−1] km/s

Initial mass 1300 kg

Fig. 1 Homotopy process by
the commonly-used logarithmic
homotopy function

The experimental data of NASA’s Evolutionary Xenon
Thruster (NEXT) is employed in this paper. Mars missions
with NEXT thruster have been investigated (Soulas et al.
2003). The basic parameters of NEXT thruster are as fol-
lows. The thruster efficiency is η = 0.68. The maximum
input power to the power processor is P max

P = 6.9 kW. The
solar array output power at 1 AU is P� = 10 kW. The power
allocated to operate the spacecraft systems is PL = 400 W.
And the efficiency of the power processor is ηP = 0.94.
Empirical coefficients d1 . . . d5 in Eq. (10) are chosen
as (Williams and Coverstone-Carroll 1997): d1 = 1.1063,
d2 = 0.1495, d3 = −0.299, d4 = −0.0432 and d5 = 0.

5.1 Application to the constant-Isp trajectory
optimization

In order to validate the correctness of our modified loga-
rithmic homotopy function, we apply it to the constant-Isp

trajectory optimization problem since the commonly-used
logarithmic homotopy function can be used for compar-
ison. In this example, the value of the constant specific
impulse is set to Isp = 2500 s. The homotopy coefficient
ε decreases during the homotopy method and its history
is [1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.02,0.001,

0.0001,0.0]. The homotopy processes by the commonly-

used logarithmic homotopy function and the modified loga-
rithmic homotopy function are depicted in Figs. 1 and 2.

The two figures indicate that the homotopy method with
the modified logarithmic homotopy function can be applied
for the constant-Isp case. Moreover, the homotopy processes
by these two homotopy functions are almost the same. When
ε is reduced to ε = 0.0, the two figures show that they are
exactly bang-bang control.

In addition, the fuel consumption is 362.495 kg by the
commonly-used logarithmic homotopy function and it is
362.508 kg by the modified logarithmic homotopy function.
The difference in the fuel consumption is only 0.013 kg. The
computational time is 2.21 s and 2.05 s respectively by the
commonly-used and modified logarithmic homotopy func-
tions. The iteration numbers of both methods are the same.
Therefore, the performance of these two homotopy func-
tions is almost the same.

5.2 Application to the variable-Isp trajectory
optimization

Example 1 Mengali and Quarta (2005) have investigated
500-days Mars mission with a NEXT thruster. In their sim-
ulation example, the practical specific impulse of the NEXT
thruster varies between Isp min = 2210 s and Isp max =
4100 s (Mengali and Quarta 2005; Soulas et al. 2003).
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Fig. 2 Homotopy process by
the modified logarithmic
homotopy function

Fig. 3 The optimal trajectory
from Earth to Mars for 500 days

On the basis of their study, we apply the proposed ho-
motopy method to validate the feasibility and efficiency
for the variable-Isp case. The decreasing route of ε

is [1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.02,0.005,

0.001,1.0×10−4,1.0×10−5,5.0×10−6,1.0×10−6,0.0].

The optimal transfer trajectory from Earth to Mars is
shown in Fig. 3. The dash-dot lines denote Earth orbit and
Mars orbit, the solid line represents the trajectory of space-
craft. The departure and rendezvous points are marked on
the trajectory. Comparing with the optimal result of the spe-
cific impulse of Mengali and Quarta (2005), we get almost
the same Isp-profile as shown in Fig. 4. There are two burn
phases and one coast arc. The corresponding thrust profile
is sketched in Fig. 5. Figure 6 describes the remaining mass
profile during the flight. The final mass mf on the 500th
day is approximately equal to 975 kg, which is close to the
final mass of Mengali and Quarta (2005). The homotopy
process by the modified logarithmic homotopy function is
shown in Fig. 7. When ε is equal to 0.0, the result shows the
optimal control becomes bang-bang control. The latter 100-
times simulations prove the efficiency of our method with

homotopy function. These results validate the feasibility of
the proposed homotopy method.

To validate the efficiency and robustness of our method,
the example is simulated 100 times. In each simulation, the
initial values of the 8 costate variables, which are restricted
on a unit 8-D hypersphere under the normalization condi-
tion, are randomly guessed. The above-mentioned condi-
tions such as λ0 > 0 and λm(t0) ≥ 0 are also considered.
If the first initial guess does not lead to the convergent opti-
mal solution, repeat the randomly guess until we obtain the
convergent optimal one.

The result indicates that the initial values are converged
to the same optimal solution for all simulations. The statisti-
cal result of the number of initial guesses in each simulation
is shown in Fig. 8. From the statistical result, we find that
the number of initial guesses of each simulation is no more
than 6 times. About 70% of the simulations converge with
the first guessed initial values. Approximately 99% of the
simulations converge with the first five guessed initial val-
ues.

The results above demonstrate the proposed homotopy
method is efficient and robust.
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Fig. 4 The history of the
optimal specific impulse for 500
days

Fig. 5 The history of the
optimal thrust for 500 days

Fig. 6 The history of the
remaining mass for 500 days

Example 2 In order to further verify the correctness of our
method, many revolutions problem should be considered.
The flight time in example 1 is changed to 1000 days. Other
conditions are unaltered. Several steps are added into the de-
creasing route: [1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,

0.02,0.008,0.005,0.003,0.001,8.0 × 10−4,5.0 × 10−4,

2.0 × 10−4,5.0 × 10−5,1.0 × 10−5,5.0 × 10−6,1.0 ×
10−6,0.0].

Figure 9 presents the optimal transfer trajectory from
Earth to Mars, which shows the 2-revolution transfer prob-
lem. The optimal control law for the specific impulse and the
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Fig. 7 Homotopy process by
the modified logarithmic
homotopy function for 500 days

Fig. 8 The efficiency in
convergence by the modified
logarithmic homotopy function

Fig. 9 The optimal trajectory
from Earth to Mars for 1000
days

corresponding thrust profile are shown in Figs. 10 and 11,
respectively. The value of the specific impulse is all the
time constant and takes the maximum of the range be-
cause of the increment of the flight time. The number of
the burn phases and the coast arcs increases as the thruster

is turned on and off more frequently. The change of the re-
maining mass is described in Fig. 12. The total fuel con-
sumption for 1000 days is 171 kg, which is about a half of
the fuel consumption for the 500-day mission. The conver-
gence process of the optimal control is depicted in Fig. 13.
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Fig. 10 The history the optimal
specific impulse for 1000 days

Fig. 11 The history of the
optimal thrust for 1000 days

The optimal bang-bang control is shown when ε is equal
to 0.0.

6 Conclusion

In this paper, the homotopy method is adopted to solve
the fuel-optimal problem for practical solar electric power-
limited interplanetary transfers with variable-Isp thruster.
A modified logarithmic homotopy function has been pro-
posed to overcome the difficulties caused by the two
commonly-used homotopy functions. Decoupled expres-
sions of both the optimal power throttle level and the op-

timal specific impulse have been derived by this homotopy
function. The homotopy method based on this homotopy
function and the normalization technique of the costate vari-
ables is proposed.

Numerical simulations of the Earth-Mars transfer exam-
ples have been conducted to validate the proposed homotopy
method.

As for the special case where Isp is constant, the results
show that the modified logarithmic homotopy function has
close performance in fuel consumption compared with the
commonly-used logarithmic homotopy function. Moreover,
the fuel optimal control profile and the homotopic process
by both homotopy functions are similar. Therefore, the pro-
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Fig. 12 The history of the
remaining mass for 1000 days

Fig. 13 Homotopy process by
the modified logarithmic
homotopy function for 1000
days

posed logarithmic homotopy function can also be applied
for the constant-Isp case.

As for the variable-Isp case, the fuel-optimal bang-bang
control is successfully solved by the proposed homotopy
method with the modified logarithmic homotopy function.
The optimal specific impulse and the fuel consumption are
close to those of Mengali and Quarta (2005). The more com-
plicated example with 2 revolutions can also be solved with
our method. These results demonstrate the feasibility and
correctness of the proposed method. Moreover, 100 repeti-
tive simulations are conducted to validate the efficiency and
robustness. The results show that it converges to the same
optimal solution in all simulations. For all simulations, the
number of the randomly initial guess is no more than six.
For about 70% of the simulations, only one randomly initial
guess is required.
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