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Abstract The pulsational mode of gravitational collapse in
a partially ionized self-gravitating inhomogeneous viscous
nonthermal nonextensive astrofluid in the presence of tur-
bulence pressure is illustratively analyzed. The constitutive
thermal species, lighter electrons and ions, are thermosta-
tistically treated with the nonthermal κ-distribution laws.
The inertial species, such as identical heavier neutral and
charged dust microspheres, are modelled in the turbulent
fluid framework. All the possible linear processes respon-
sible for dust-dust collisions are accounted. The Larson
logatropic equations of state relating the dust thermal (lin-
ear) and turbulence (nonlinear) pressures with dust densi-
ties are included. A regular linear normal perturbation anal-
ysis (local) over the complex astrocloud ensues in a gen-
eralized quartic dispersion relation with unique nature of
plasma-dependent multi-parametric coefficients. A numer-
ical standpoint is provided to showcase the basic mode fea-
tures in a judicious astronomical paradigm. It is shown that
both the kinematic viscosity of the dust fluids and nonther-
mality parameter (kappa, the power-law tail index) of the
thermal species act as stabilizing (damping) agent against
the gravity; and so forth. The underlying evolutionary mi-
crophysics is explored. The significance of redistributing as-
trofluid material via waveinduced accretion in dynamic non-
homologic structureless cloud collapse leading to hierarchi-
cal astrostructure formation is actualized.
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1 Introduction

It has long been known that dense molecular clouds (DMCs)
in interstellar medium (ISM) are the birth sites of stars
and like bounded structures formed via the process of self-
gravitational instabilities and fluctuations. Being highly
dense, the DMCs become gravitationally unstable, with a
propensity to gradual collapse leading to formation of stars.
The fragmentation, clumping and filamentation processes
of the global cloud into cloudlets occur due to the fact that
the gravitational energy (organizing) supersedes the thermal
energy (randomizing) of the cloud. In this direction, many
authors have studied the gravitational collapse mechanism
of isothermal DMCs in the framework of a hydrostatic ho-
mogeneous equilibrium macrostate (Shu et al. 1987; Binney
and Tremaine 1987; Pandey et al. 1994; Bliokh et al. 1995;
Nakano 1998; Spitzer 2004; Shukla and Stenflo 2006). It has
been shown that the DMCs exhibit a new type of dynamic
mode, called the pulsational mode (Dwivedi et al. 1999;
Pandey et al. 2002), the excitation of which requires the
presence of both massive neutral dust grains (sourcing to
inward self-gravity) and massive charged grains (sourcing
to both inward gravity and outward electric field) relative
to the center of cloud fluid matter distribution. In other
words, the onset threshold for such overlapped hybrid insta-
bilities requires an exact gravito-electrostatic force-balanced
condition for the biggish dusty species (Gisler et al. 1992;
Pandey et al. 1994). It has also been reported later that the
conjugational mode gets damped due to dust-charge vari-
ation (Pandey et al. 2002). Besides, the pulsational mode
in idealized cloud configurations has also been shown to
saturate in the form of solitary spectral patterns in the non-
linear regime of perturbation (Karmakar and Borah 2013;
Borah and Karmakar 2015). It is seen that the eigen-
spectrum coevolves as electrostatic rarefactive damped
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oscillatory shock-like structures and self-gravitational com-
pressive damped oscillatory shock-like patterns. In the pres-
ence of massive bi-polar multi-dust grains with partial
ionization, the weakly nonlinear eigen-spectrum has been
found to coevolve as electrostatic rarefactive damped oscil-
latory shock-like structures and self-gravitational compres-
sive damped oscillatory shock-like patterns (Haloi and Kar-
makar 2017). In the fully nonlinear regime, the excitation of
compressive dispersive transitional shock-like eigen-mode
structures in similar astro-situations has also been reported
(Karmakar and Haloi 2017a). It can thus be seen, to the best
of our knowledge, that the existing reports on the pulsational
mode dynamics are indeed analytically quite simplified in
nature due to various important excluded factors yet to be
inclusively studied, such as kinematic viscosity, nonthermal
distribution laws, turbulence, and so forth (Frenkel 1946;
Vasyliunas 1968; Vazquez-Semadeni and Gazol 1995; My-
ers and Gammie 1999; Pierrad and Lazar 2010). As a conse-
quence, a full description of the conjunctional mode behav-
iors with micro-illustrations has been lying as a long-sought
goal for years yet to achieve.

The focal aim of this so-motivated paper is to study
the pulsational mode dynamics excitable in an unbounded
nonthermal complex partially ionized DMC in the turbu-
lent multi-fluidic framework. The main motivation behind
the proposed work is that the interstellar media are highly
nonthermal because of diversified nonlocal effects (Vasyliu-
nas 1968; Leubner 2004; Pierrad and Lazar 2010; Livadiotis
and McComas 2013) and turbulent because of multiple ir-
regular flow scales (Adams et al. 1994; Vazquez-Semadeni
and Gazol 1995; Gehman et al. 1996; Vazquez-Semadeni
and Passot 1999) in nature, which as a consequence, af-
fects the non-homological cloud collapse drastically. The
lighter electrons and ions are governed by the κ-distribution
laws originated from the anti-equilibrium thermostatistics
sourced in diversified nonlocal effects (Vasyliunas 1968;
Leubner 2004; Pierrad and Lazar 2010; Livadiotis and Mc-
Comas 2013). In contrast, the constituent heavier neutral and
charged grains are dealt with the turbulent viscous multi-
fluidic formalism based on an asymptotically small value
of the characteristic mean-free paths. Application of nor-
mal mode analysis around the defined homogeneous static
equilibrium is carried out to arrive at a generalized dis-
persion relation with diversified multi-parametric coeffi-
cients. A numerical illustrative scheme is provided to see
the basic characteristic features of the pulsational (gravito-
electrostatic) mode dynamics pictorially in a judicious as-
trophysical multi-parametric space. The theoretical analysis
reveals mainly that both the kinematic viscosities of the dust
fluids and nonthermality parameters (power-law tail spec-
tral exponents) of the usual thermal species play stabilizing
(damping) roles to the fluctuations; and so forth. The paper

expansively ends up with the main implications and applica-
tions essentially significant for hierarchical bounded struc-
ture formation mechanics in diversified space, astrophysical
and cosmic naturalistic environments.

2 Model and formalism

We consider a self-gravitating four-component unmagne-
tized unbounded dusty plasma system of infinite spatial
extension in homogeneous hydrostatic equilibrium under
spatially-flat (sheet-like) geometric approximation. It is
comprised of the kappa-distributed electrons and ions; and
inertial neutral and charged dust grains in a globally quasi-
neutral condition in planar framework. It is hereby pre-
sumed that the radius of the geometric cloud curvature is
much larger than all the characteristic scale lengths asso-
ciated with the complex multi-fluidic dynamics. The lin-
ear frictional couplings of electronic and ionic species with
the dust components are ignored for simplicity. The neu-
tral and charged massive dust grains are treated as turbu-
lent viscous fluids of distinct sporadic characteristics. The
dust grains are arrogated to be micron-sized microspheres of
identical geometric shape so that they acquire homo-polar
indistinguishable electric charges due to dynamic interac-
tions of the sporadic electron-ion thermal currents over the
grain surfaces (Draine and Salpeter 1979; Bliokh et al. 1995;
Krugel 2003; Spitzer 2004). Their kinematic viscosities are
assumed to be constant on the observation scales of space
and time. The net pressures associated with the dust fluids
are modelled with the help of the Larson logatropic equa-
tion of state comprising of an isothermal component for the
fluid thermal pressure (linear) and a logatropic component
for the fluid turbulence pressure (nonlinear) contributions
(Adams et al. 1994; Vazquez-Semadeni and Gazol 1995;
Gehman et al. 1996). The key sources responsible for gen-
eration of turbulence, particularly in the form of aperi-
odic irregular motions here, may be fluid convection, col-
lision, or even shearing effects. The linear processes be-
hind collisional effects of neutral and charged dust grains
are considered. The model is idealized to avoid analytic
complications, such as ion-drag force, dust-size distribu-
tion, Coriolis effects, etc. The mechanisms responsible for
dust self-fragmentation, nucleation and growth processes
(Bliokh et al. 1995) are also ignored. Such adoption of
electro-dynamical response of the plasma constituents is
quite justifiable for the Jeansian low-frequency pulsational
fluctuations with the differential mass- and temperature-
scaling laws, with all the usual notations given as, me/md <

mi/md ∼ 10−20 → 0 and Te, Ti � Td (Gisler et al. 1992;
Pandey et al. 1994). Here, me , mi and md are the iner-
tial masses of the electrons, ions and identical dust grains
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(in kg); respectively. Further, Te, Ti and Td are the tempera-
tures of electrons, ions and identical dust grains (in eV); re-
spectively. The macroscopic state of the electronic and ionic
thermostatistical dynamics in such a nonthermal complex
plasma medium is described by the nonlocality-induced κ-
distribution (non-Maxwellian) laws in the customary sym-
bolic scheme (Shukla and Stenflo 2006; Baluku and Hell-
berg 2008; Pierrad and Lazar 2010; Livadiotis and McCo-
mas 2013; Dutta et al. 2016) given respectively in an astro-
physically relevant dimensional form as

ne = ne0

[
1 − eφ

Te(κe − 3
2 )

]−(κe− 1
2 )

, (1)

ni = ni0

[
1 + eφ

Ti(κi − 3
2 )

]−(κi− 1
2 )

, (2)

where, ne0(ni0) is the equilibrium number density of elec-
trons (ions). Te(Ti) is the electron (ion) temperatures (in eV).
Further, φ denotes the electrostatic potential created by
the charged density fields of the astrophysical constituent
fluids conjointly. Lastly, κe(κi) is the nonextensivity pa-
rameter (power-law tail index) for electron (ion) arising
because of the Tsallis thermostatistics (Vasyliunas 1968;
Leubner 2004; Pierrad and Lazar 2010; Livadiotis and Mc-
Comas 2013). The inertial electrodynamic response of the
neutral dust fluid under the usual scheme of physical nota-
tions is represented with the help of continuity equation (for
flux conservation) and momentum equation (for force con-
servation) in spatially-flat coordination space (x, t) relative
to the center of the entire cloud mass distribution respec-
tively cast as

∂ndn

∂t
+ ∂

∂x
(ndnvdn) = 0, (3)

mdnndn

[
∂vdn

∂t
+ vdn

∂vdn

∂x

]
+ ∂Pdn

∂x
+ mdnndn

∂ψ

∂x

+ mdnvdnυnc(vdn − vdc) = ηdn

∂2vdn

∂x2
. (4)

The evolutionary hydrodynamics of the charged dust fluid is
analogously described as

∂ndc

∂t
+ ∂

∂x
(ndcvdc) = 0, (5)

mdcndc

[
∂vdc

∂t
+ vdc

∂vdc

∂x

]
+ ∂Pdc

∂x
+ qdndc

∂φ

∂x

+ mdcndc

∂ψ

∂x
+ mdcvdcυcn(vdc − vdn) = ηdc

∂2vdc

∂x2
, (6)

where, x is the spatial coordinate specifying the instan-
taneous extension of the considered unbounded sheet-like
cloud relative to the center of the entire cloud plasma mass
distribution at any instant of time t . The physical variables
mdn(mdc), ndn(ndc), vdn(vdc) are the mass, number den-
sity, velocity of neutral (charged) dust; respectively. More-
over, qd is the electric charge of the identical dust grains

having identical geometrical shapes. Then, ψ is the self-
gravitational potential developed by the material density
fields associated with the astrophysical constituent fluids
conjointly. The term ηdn(ηdc) denotes the uniform coef-
ficient of kinematic viscosity (Frenkel 1946; Landau and
Lifshitz 1987; Brevik 2016) associated with the neutral
(charged) dust fluid. In this model, the turbulence effects
associated with the component dust fluids in the molecular
cloud are also taken into account. So, the equations of states
for neutral and charged dust grains in the Larson logatropic-
framework (Adams et al. 1994; Vazquez-Semadeni and
Gazol 1995; Gehman et al. 1996) are given respectively
as, Pdn = c2

ssρdn + P0 log(ρdn/ρdn0) and Pdc = c2
ssρdc +

P0 log(ρdc/ρdc0). The spectro-strategic derivation of the
semi-empirical baroscopic laws, stemming from the non-
thermal spectral line-widths in turbulent DMCs, is avail-
able in Karmakar and Haloi (2017b). Here, css = √

Ti/md

is the usual phase speed of the normal longitudinal plasma
acoustic mode (dust acoustic). Further, ρdn0 = mdnndn0 and
ρdc0 = mdcndc0 are the equilibrium (fixed) material densi-
ties of neutral dust and charged dust, respectively. Similarly,
ρdn = mdnndn and ρdc = mdcndc are the non-equilibrium
(variable) material densities of neutral dust and charged
dust, respectively. The mean equilibrium thermal pressure of
the cloud at temperature T eV is presumptively designated
by an isothermal law as P0 = nd0T .

Finally, the closing electrostatic and self-gravitational
Poisson equations for the electrostatic and self-gravitational
potentials (produced by charge density and material den-
sity fields) with all the earlier conventional notations read
respectively as

∂2φ

∂x2
= −4π

[
e(ni − ne) + qdndc

]
, (7)

∂2ψ

∂x2
= 4πG[mdnndn + mdcndc]. (8)

Before executing the pulsational stability analysis, we ob-
tain the standard scale-free invariant (normalized) form of
Eqs. (1)–(8) by applying a conventional astrophysical nor-
malization scheme in the light of the Jeansian equilibrium
multi-parametric values (Dutta et al. 2016; Dutta and Kar-
makar 2017; Haloi and Karmakar 2017; Karmakar and
Haloi 2017a, 2017b). We, accordingly, introduce ξ = x/λJ

as the normalized position; τ = t/ωJ as the normalized
time; Ω = ω/ωJ as the normalized fluctuation frequency;
Fnc(cn) = υnc(cn)/ωJ as the normalized collision frequency
for neutral-charged (charged-neutral) dust; K = k/kJ as the
normalized angular wavenumber; Nj = nj/nj0 as the nor-
malized number density (j = e for electrons, i for ions,
dn for neutral dust, dc for charged dust); Qd = qd/qd0 as
the normalized dust-charge; Mj = vj /css as the normalized
velocity, also termed as the Mach number (j = e for elec-
trons, i for ions, dn for neutral dust, dc for charged dust);
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Φ = φ/(Ti/e) as the normalized electrostatic potential, and
Ψ = ψ/c2

ss as the normalized self-gravitational potential.
Thus, the normalized standard form of Eqs. (1)–(8) can re-
spectively be presented as

Ne = 1 + Ti

Te

(
κe − 1

2

κe − 3
2

)
Φ, (9)

Ni = 1 −
(

κi − 1
2

κi − 3
2

)
Φ, (10)

∂Ndn

∂τ
+ ∂

∂ξ
(NdnMdn) = 0, (11)

Ndn

[
∂Mdn

∂τ
+ Mdn

∂Mdn

∂ξ

]
+ ∂

∂ξ

[
Ndn + P0

c2
ssρdn

log(Ndn)

]

+ Ndn

∂Ψ

∂ξ
+ NdnFnc(Mdn − Mdc)

= η∗
dn

∂2Mdn

∂ξ2
, (12)

∂Ndc

∂τ
+ ∂

∂ξ
(NdcMdc) = 0, (13)

Ndc

[
∂Mdc

∂τ
+ Mdc

∂Mdc

∂ξ

]
+ ∂

∂ξ

[
Ndc + P0

c2
ssρdc

log(Ndc)

]

+ zd0QdNdc

∂Φ

∂ξ
+ Ndc

∂Ψ

∂ξ
+ NdcFcn(Mdc − Mdn)

= η∗
dc

∂2Mdn

∂ξ2
, (14)

∂2Φ

∂ξ2
= 4πe2

mdω2
J

[
(ne0Ne − ni0Ni) − ndc0QdNdc

qd0

e

]
, (15)

∂2Ψ

∂ξ2
=

(
ω2

Jn

ω2
J

)
Ndn +

(
ω2

Jc

ω2
J

)
Ndc, (16)

where, η∗
dn = ηdn/(mdnndn0ω

−1
J c2

ss) and η∗
dc = ηdc/

(mdcndc0ω
−1
J c2

ss) are the effective rescaled viscosities of the
neutral and charged dust fluids, respectively. As the cloud
consists of identical dust micro-spheres, it is assumed that

mdn ≈ mdc = md . The symbol, ωJ =
√

ω2
Jn + ω2

Jc, stands
for effective Jeans frequency (Jeans 1902; Mo et al. 2010),
sourced by both the neutral (via ωJn = √

4πGmdndn0)
and charged dust fluids (via ωJc = √

4πGmdndc0). Here,
G = 6.67 × 10−11 N m2 kg−2 is the Newtonian gravita-
tional coupling constant via which the philosophy of the
long-range gravitational interaction is realized (Draine and
Salpeter 1979; Bliokh et al. 1995; Krugel 2003; Spitzer
2004). It may be noted here that, the pulsational mode in
a partially ionized astrocloud, which is an overlapped hy-
brid instability stemming in coupled gravito-electrostatic
interplay in a bimodal pattern leading to bounded equilib-
rium structure formation in astro-cosmic environs, would
be operative on common astrophysical scales of space and
time, provided the dust mass-to-charge ratio fulfills the lim-
iting value as, md/qd ∼ √

0.5G ≈ 10−5 (Gisler et al. 1992).

It is repeated that all other symbolic notations used above
are quite generic and customary in nature (Karmakar and
Borah 2013; Borah and Karmakar 2015; Dutta et al. 2016;
Dutta and Karmakar 2017; Karmakar and Haloi 2017b).

The pivotal objective of the paper lies in investigating
the pulsational mode dynamics in the complex astrocloud
around its defined homogeneous static equilibrium in the
framework of a standard Fourier analysis. Thus, all the
relevant physical parameters characterizing the cloud are
slightly perturbed around the respective defined static equi-
librium values as

Ne = 1 + Ne1, Ni = 1 + Ni1,

Ndn = 1 + Ndn1, Ndc = 1 + Ndc1,

Mdn = 0 + Mdn1, Mdc = 0 + Mdc1,

Φ = 0 + Φ1, Ψ = 0 + Ψ1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(17)

We now apply the above perturbation technique (Eq. (17))
on Eqs. (9)–(16) to find their respective linearized forms. It
is pertinent to add that the complex unbounded cloud under
the action of continuous periodic gravito-electrostatic in-
terplay having no influence from the geometrical boundary
effects. The linear fluctuations in such circumstances can be
assumed to dynamically evolve as plane waves in the form
∼ exp[−i(Ωτ − Kξ)], where Ω is the Jeans-normalized
angular frequency and K is the Jeans-normalized angular
wavenumber of the perturbations. As a result of this tricky
exercise, the algebraic linearized (Fourier-transformed) form
of Eqs. (9)–(16) in the defined wave space (K,Ω) can re-
spectively be written as

Ne1 =
(

Ti

Te

)(
κe − 1

2

κe − 3
2

)
Φ1, (18)

Ni1 = −
(

κi − 1
2

κi − 3
2

)
Φ1, (19)

Ndn1 =
(iΩFnc − ω2

Jc

ω2
J

)Ndc1

Ω2 + iΩ(Fnc + K2η∗
dn) − K2(1 + P0

c2
ssρdn

) + ω2
Jn

ω2
J

,

(20)

Ndc1

= K2zd0QdΦ1

[Ω2 + iΩ(Fcn + K2η∗
dc) − K2(1 + P0

c2
ssρdc

) + ω2
Jn

ω2
J

]

−
(iΩFcn − ω2

Jn

ω2
J

)(iΩFnc − ω2
Jc

ω2
J

)

[Ω2 + iΩ(Fnc + K2η∗
dn) − K2(1 + P0

c2
ssρdn

) + ω2
Jc

ω2
J

]
,

(21)

K2Φ1 = −
(

ω2
ed

ω2
J

)
Ne1 −

(
ω2

id

ω2
J

)
Ni1+

(
ω2

pd

ω2
J

)
Qd

zd0
K2Ndc1,

(22)
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where, ωed = √
4πe2ne0/md , ωid = √

4πe2ni0/md , ωpd =√
4πq2

d0ndc0/md , ω2
ed/ω2

J = Ω2
ed , ω2

id/ω2
J = Ω2

id ,

ω2
pd/ω2

J = Ω2
pd and Ti/Te = σe. Substituting the expres-

sions for Ne1, Ni1, Ndc1 from Eqs. (19)–(21) in Eq. (22)

followed by a systematic decomposition and simplification,
we obtain the general linearized dispersion relation under
the appropriate condition of non-vanishing fluctuating po-
tentials of gravito-electrostatic origin as

1 + σe

Ω2
ed

K2

(
κe − 1

2

κe − 3
2

)
+ Ω2

id

K2

(
κi − 1

2

κi − 3
2

)
= Ω2

pdQ2
d

⎡
⎢⎢⎢⎢⎣

{Ω2 + iΩ(Fcn + K2η∗
dc) − K2(1 + P0

c2
ssρdc

) + ω2
Jn

ω2
J

}

−
(iΩFcn− ω2

Jn

ω2
J

)(iΩFnc− ω2
Jc

ω2
J

)

{Ω2+iΩ(Fnc+K2η∗
dn)−K2(1+ P0

c2
ss ρdn

)+ ω2
Jc

ω2
J

}

⎤
⎥⎥⎥⎥⎦

−1

. (23)

It is evident from Eq. (23) that the dispersive effects arising from the deviation from global quasi-neutrality (via ‘1’), nonther-
mal effects sourced by deviation from the local thermodynamical equilibrium (via the second term on LHS) and turbulence
effects arising due to the dominancy of the inertial forces over the viscous ones (via RHS) are mutualistically balanced in
the considered initially static quasi-neutral astrocloud. An algebraic exercise for analytic simplification of Eq. (23) results in
a regular quartic form of the generalized linear dispersion relation depicting the mode characteristics as

Ω4 + a3Ω
3 + a2Ω

2 + a1Ω + a0 = 0, (24)

which contains all the relevant evolutionary information about the nonthermal pulsational cloud dynamics in a multi-
parametric space. The various involved coefficients here are presented as

a3 = i
(
Fnc + Fcn + K2η∗

dn + K2η∗
dc

)
,

a2 = 1 − K2(x + y) − FncK
2η∗

dc − FcnK
2η∗

dn − η∗
dnη

∗
dcK

4 −
(

Ω2
pdQ2

dK2

K2 + σelΩ
2
ed + mΩ2

id

)
,

a1 = i

{
Fnc

(
1 − K2y

) − Fcn

(
1 − K2x

) − K4(η∗
dny + η∗

dcx
) + K2η∗

dn

ω2
Jc

ω2
J

+ K2η∗
dc

ω2
Jn

ω2
J

}

−
{

i(Fnc + K2η∗
dn)Ω

2
pdQ2

dK2

K2 + σelΩ
2
ed + mΩ2

id

}
,

a0 = K4xy − K2y
ω2

Jn

ω2
J

− K2x
ω2

Jc

ω2
J

−
[Ω2

pdQ2
d(

ω2
Jn

ω2
J

− K2y)K2

K2 + σelΩ
2
ed + mΩ2

id

]
.

where, x = 1 + P0
c2
ssρdn

, y = 1 + P0
c2
ssρdc

, l = κe−1/2
κe−3/2 , m = κi−1/2

κi−3/2 .

As Eq. (23) describes the nonthermal cloud fluctuation dynamics having the gravito-electrostatic origin, it may be of interest
to readers to know its reverse fate upon consideration of the usual Boltzmann distribution law for the thermal species. In
principle, Eq. (23) recovers the Boltzmann picture if κe, κi → ∞. Applying this condition in Eq. (23), one gets

1 + σe

Ω2
ed

K2
+ Ω2

id

K2
= Ω2

pdQ2
d

⎡
⎢⎢⎢⎢⎣

{Ω2 + iΩ(Fcn + K2η∗
dc) − K2(1 + P0

c2
ssρdc

) + ω2
Jn

ω2
J

}

−
(iΩFcn− ω2

Jn

ω2
J

)(iΩFnc− ω2
Jc

ω2
J

)

{Ω2+iΩ(Fnc+K2η∗
dn)−K2(1+ P0

c2
ss ρdn

)+ ω2
Jc

ω2
J

}

⎤
⎥⎥⎥⎥⎦

−1

. (25)

In the extremely low-frequency fluctuation regime, the above equation gets transformed into an equation with vanishing
propagatory part (Ωr ∼ 0, wave condensation) and with non-vanishing decay/growth part (Ωi 	= 0, wave collapse) given as

Ωi =
xK2 ω2

Jn

ω2
J

+ yK2 ω2
Jc

ω2
J

− xyK4 − Ω2
pdQ2

dK2(K2x − ω2
Jn

ω2
J

)(K2 + σeΩ
2
ed + Ω2

id )−1

⎡
⎣ (Fnc + Fcn)(

ω2
Jn

ω2
J

+ ω2
Jc

ω2
J

) + K2η∗
dn

ω2
Jc

ω2
J

+ K2η∗
dc

ω2
Jn

ω2
J

− x(Fcn + K2η∗
dc)K

2

− y(Fnc + K2η∗
dn)K

2 − Ω2
pdQ2

d(Fnc + K2η∗
dn)(K

2 + σeΩ
2
ed + Ω2

id )−1

⎤
⎦

(26)
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Fig. 1 Profiles of the normalized (a) real frequency part (Ωr)

and (b) growth rate (Ωi) for different values of the effective
rescaled viscosity coefficients (η∗

dn, η
∗
dc) of the neutral dust fluid and

charged dust fluid with variation in the normalized angular wavenum-
ber (K) as shown in the legends, respectively. The input and initial
values are presented in the text

Fig. 2 Profiles of the normalized (a) real frequency part (Ωr) and
(b) growth rate (Ωi) for different values of the nonextensive indices
(κe, κi ) associated with the cloud electrons and ions with variation in

the normalized angular wavenumber (K) as shown in the legends, re-
spectively. The fine details of various inputs are described in the text

It is clear from Eq. (26) that the pulsational mode dynam-
ics in the thermalized cloud plasma would undergo decay or
growth depending on the thresholds dictated by the diversi-
fied equilibrium poly-parametric values of the cloud plasma
system. This clearly confirms the previously reported pre-
dictions on the same instability (Dwivedi et al. 1999; Pandey
et al. 2002).

3 Results and discussions

A linear perturbation (slight relative to the static equilib-
rium) analysis of a complex viscous nonthermal astrocloud
of an infinite spatial extension is methodologically carried
out in the astrophysical multi-fluidic model framework to
see the excitation scenarios of the pulsational mode dynam-
ics. It is demonstrated that the mode dynamics in such astro-
physical clouds is governed by a unique form of generalized
linear quartic dispersion relation (Eq. (24)) having various
involved coefficients dependent on the diversified equilib-
rium cloud parameters. We numerically analyze the slightly
perturbed cloud (via solving Eq. (24)) to understand the mi-
crophysical detailed insights associated with the mode dy-

namics in the graphical form of Figs. 1–2. The numerical
illustrative results, thus obtained by the root-finder method
of decomposition (Lindfield and Penny 2012), are displayed
and interpreted in the following.

In Fig. 1, we depict the profiles of the normalized
(a) real frequency part and (b) growth rate of the pulsational
mode with variation in the normalized angular wavenum-
ber (K) for different values of the effective rescaled vis-
cosity coefficients for the neutral and charged dust grains
(η∗

dn, η
∗
dc). The various inputs employed in the analysis are

borrowed from different reliable sources of realistic astro-
physical significance available in Gehman et al. (1996),
Spitzer (2004), Shukla and Stenflo (2006), Dutta et al.
(2016). We take ne0 = 10–50 cm−3, ni0 = 5–30 cm−3,
nd0 = 10−2–10 cm−3, Te = 1–10 eV, Ti = 0.08–0.5 eV,
Td = 10−3–10−2 eV, rd = 1.28 µm, qd = 1.6 × 10−16 C,
P0 ≈ 10−12 N m−2, κe = 6 and κi = 6. We see that the
real frequency part decreases gradually with increase in
the charged dust fluid viscosity (η∗

dc); whereas, it decreases
sharply with increase in the neutral dust fluid viscosity
(Fig. 1(a)). It implicates that the neutral dust fluid viscosity
(η∗

dn) plays a decelerating role to the propagatory dynamics
of the pulsational mode. It is further seen that the charged
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dust fluid viscosity offers a gradual damping effect. In con-
trast, the neutral dust viscosity introduces a sharp damp-
ing agency to the pulsational mode evolutionary dynamics
(Fig. 1(b)). Thus, we can infer that the neutral dust viscos-
ity (η∗

dn) acts as a sharp stabilizing agency and the charged
dust viscosity (η∗

dc) as a gradual stabilizing agency to the
pulsating cloud. This happens because of weak turbulence
due to the viscous forces winning over the inertial forces
(Adams et al. 1994; Vazquez-Semadeni and Gazol 1995;
Gehman et al. 1996).

In Fig. 2, we portray the normalized (a) real frequency
part and (Ωr) (b) growth rate (Ωi) with variation in the
normalized angular wavenumber (K) for different values of
non-extensive nonthermality spectral indices for electrons
and ions (κe, κi). The fine quantitative details are the same
as Fig. 1. We find that the real frequency part of the fluc-
tuations decreases gradually with increasing κe . However, it
decreases sharply with enhancement in κi . It indicates that
κi acts a sharper decelerating agency to the fluctuations in
comparison with that by κe (Fig. 2(a)). Moreover, we see
that the mode growth decreases more sharply with augmen-
tation in κi than in κe . It implicates that κi acts as a stronger
stabilizer to the fluctuations than κe . It may, therefore, be
summarized from the presented numerical graphics that, the
pulsational mode dynamics in the considered cloud is signif-
icantly affected by both the component fluid viscosities as-
sociated with the inertial species and nonthermality indices
associated with the inertialess species on the astrophysical
non-homologous cloud scales of space and time.

4 Conclusions

The pulsational mode stability dynamics of gravito-electro-
static source in a thermostatistically anti-equilibrium self-
gravitating complex dusty plasma cloud with partial ion-
ization in the presence of multi-fluidic kinematic viscosi-
ties and logatropic turbulence pressures is theoretically
investigated. It is done by exploring how an equilibrium-
neighboring solution of the slightly perturbed astrocloud
evolves in a flat space-time configuration. We use the Larson
logatropic equation of state, nonlinearly relating the net fluid
pressure with other thermodynamical variables of relevance
to incorporate the realistic neutral and charged dust turbu-
lence pressure effects in a coupled form. In the considered
homogeneous, quasineutral and hydrostatic equilibrium
configuration, the complex plasma system contains a spa-
tially uniform distribution of the nonthermal (κ-distributed,
thermostatistically anti-equilibrium, lighter) electrons and
ions; and inertial gravitating neutral and charged dust (fluid,
hydrostatic equilibrium, heavier). Such situations are quite
significant in multifarious gaseous fluids encountered in

astro-cosmic environments because of the prevailing differ-
ential scaling of inertial masses and kinetic temperatures of
the constituent plasma species.

Application of linear normal mode analysis (Fourier-
formulaic) transforms the slightly perturbed complex astro-
cloud model into a generalized quartic linear dispersion re-
lation with variable complex multi-parametric coefficients.
A numerical illustrative standpoint is constructed to unveil
the microphysical insights of the pulsational mode fluctu-
ation dynamics in the framework of realistic astrophysical
parametric windows on a common graphical platform. It is
seen from the numerical and graphical analyses that both the
viscosity coefficients (η∗

dn, η
∗
dc) as well as the nonextensive

nonthermality indices (κe, κi ) induce damping effects to the
perturbed plasma system. But, the neutral dust fluid viscos-
ity (η∗

dn) and the ion nonthermality index (κi ) initiate more
stabilizing influences (in comparison with η∗

dc and κe) to the
perturbed cloud.

It is admitted that the complex fluid turbulence pres-
sure, which is a nonlinear function of fluid density, is found
to have no significant distinct influence in a linear order
of normal mode analysis. This is because of the fact that
various astronomical spectroscopic observations (Vazquez-
Semadeni and Gazol 1995; Gehman et al. 1996) have al-
ready predicted that the turbulence pressure acting against
dynamic collapse is indeed very small (P0 ∼ 10−12 N m−2).
As a consequence, in order to see the effects of turbulence,
one needs to execute the next higher-order (weakly non-
linear) perturbation analysis. Thus, we recognize that the
analysis presented here relies on a bit simplistic approach
to understand the astrocloud collective pulsational fluctu-
ation dynamics under the counter-action of inward self-
gravity and outward non-gravitational factors, such as the
thermal, electrostatic and turbulence forces. Besides, the
equipartition of energy between the solid phase of dust
grains and the fluid phase of background plasma causes
the grains to execute both the translatory Brownian mo-
tion (speed ∼ 0.30 m s−1) and rotational Brownian motion
(speed ∼ 105 rad s−1) rooted in chaotic gaseous bombard-
ment phenomena (Draine and Salpeter 1979; Krugel 2003).
Such effects need to be considered in the basic model setup.
Despite the idealizations to pure picturization, the semi-
analytic Jeansian exploration may be useful as applicable
elements to understand self-gravitational non-homologous
cloud collapse mechanisms leading to the galactic heretical
building-block structure formation extensible from the Jean-
sian scales up to the cosmological scales of space and time.
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