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Abstract Space missions allow us to expand our knowledge
about the origin of the solar system. It is believed that aster-
oids and comets preserve the physical characteristics from
the time that the solar system was created. For this reason,
there was an increase of missions to asteroids in the past
few years. To send spacecraft to asteroids or comets is chal-
lenging, since these objects have their own characteristics in
several aspects, such as size, shape, physical properties, etc.,
which are often only discovered after the approach and even
after the landing of the spacecraft. These missions must be
developed with sufficient flexibility to adjust to these param-
eters, which are better determined only when the spacecraft
reaches the system. Therefore, conducting a dynamic inves-
tigation of a spacecraft around a multiple asteroid system
offers an extremely rich environment. Extracting accurate
information through analytical approaches is quite challeng-
ing and requires a significant number of restrictive assump-
tions. For this reason, a numerical approach to the dynamics
of a spacecraft in the vicinity of a binary asteroid system is
offered in this paper. In the present work, the equations of
the Restricted Synchronous Four-Body Problem (RSFBP)
are used to model a binary asteroid system. The main objec-
tive of this work is to construct grids of initial conditions,
which relates semi-major axis and eccentricity, in order to
quantify the lifetime of a spacecraft when released close to
the less massive body of the binary system (modeled as a
rotating mass dipole). We performed an analysis of the life-
time of the spacecraft considering several mass ratios of a
binary system of asteroids and investigating the behavior of
a spacecraft in the vicinity of this system. We analyze di-
rect and retrograde orbits. This study investigated orbits that
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survive for at least 500 orbital periods of the system (which
is approximately one year), then not colliding or escaping
from the system during this time. In this work, we take into
account the gravitational forces of the binary asteroid system
and the solar radiation pressure (SRP). We found several re-
gions where the direct and retrograde orbits of a spacecraft
survive throughout the integration time (one year) when the
solar radiation pressure is taken into account. Numerical ev-
idence shows that retrograde orbits have a larger region ini-
tial conditions that generate orbits that survive for one year,
compared to direct orbits.

Keywords Celestial mechanics · Minor planets, asteroid ·
Restricted synchronous four-body problem

1 Introduction

In the last decades, there was great interest in the exploration
of asteroids that travel in the solar system (Pamela and Misra
2011). Within the solar system, there are thousands of these
asteroids, which are classified taking into account the char-
acteristics of their orbits, physical and chemical properties,
mineralogical composition, etc. Until the mid-1990s, it was
believed that asteroids were solitary bodies. With the evo-
lution of the technology in the area of space exploration,
it was possible to observe, in the 1990s, for the first time,
a moon orbiting an asteroid. Although there were many dis-
coveries, only in the following century spacecraft were sent
to study these new celestial bodies at a shorter distances. In
the year 2000, the asteroid Eros received in its surface the
American spacecraft NEAR. In 2003, the Japanese space-
craft Hayabusa collected and analyzed data from the asteroid
Itokawa. In the year 2012, the Dawn spacecraft was sent by
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the United States to the asteroid Vesta, with the goal of col-
lecting data that would help in understanding the origin and
formation of the Solar System (Pamela et al. 2013). NASA
launched the Osiris-Rex spacecraft in 2016 in the direction
of the asteroid Bennu (formerly 1999rq36), expected to ar-
rive in the celestial body in 2018. The mission aims to col-
lect asteroid data and return with samples collected in mid
2023 (Masago et al. 2017). It is estimated that 15 ± 4% of
the asteroids discovered until then, whose trajectory passes
near the Earth, are binary, and the study of these bodies and
their peculiarities provide important scientific and techno-
logical information because their exploration can provide
answers to fundamental questions in space sciences (Margot
et al. 2002; Merline et al. 2002). One of the fields of appli-
cation for the study of asteroids is Gravitational Dynamics,
where the bodies that make up the solar system are stud-
ied, considering their formation and evolution. In addition,
the exploration of asteroids and their systems is ideal to test
important technologies, such as the In-Orbit Demonstration
experiments (IOD) (Ferrari et al. 2016). One of the most rel-
evant topics in the asteroid area is the study of the motion
of a spacecraft in the vicinity of these particular systems,
which helps to design future space missions. The mission
“Asteroid Impact and Deflexion Assessment” (AIDA) is one
of the examples of the study of asteroids and it is a partner-
ship between ESA and NASA (Cheng 2013; Cheng et al.
2012). This mission was created with the objective of con-
sidering two different projects: The Double Asteroid Redi-
rection Test (DART), from NASA, which will have the func-
tion of being the kinetic impactor; and the Asteroid Impact
Mission (AIM), from ESA, which will function as a binary
system monitor before and after the impact, collecting aster-
oid data, and deploying a lander on the surface of the smaller
asteroid (Ferrari and Lavagna 2015; Ferrari et al. 2016). The
scientific exploration of comets and asteroids open a new
horizon for the industrial activity in the area of asteroid min-
ing (Scheeres et al. 2000).

The development of missions directed to asteroids and
comets allowed the emergence of a new area of research in
astrodynamics: The study and quantification of the stabil-
ity and navigability of orbits of spacecraft close to irregu-
larly rotating bodies (Scheeres et al. 2000). Studies in this
area are challenging, since each of the objects we study (as-
teroids and comets) have their own characteristics in most
diverse aspects, such as size, shape, density and rotation,
which are often only discovered after the approximation and
even after the landing and data collection of the spacecraft
(Scheeres et al. 2000). Observational analyzes using radar
astronomy have shown that several asteroids have bimodal
formats, such as the Castalia and Kleopatra asteroids. This
may be an indication that these objects were distinct bod-
ies, and possibly with different densities, that later collided
with each other (Scheeres 2002). Therefore, the previously

planned missions must be developed with enough flexibil-
ity to cover several parameters of the body (Scheeres et al.
2000). Therefore, studies in the area of asteroid exploration
are of great importance and involve multiple disciplines,
among them science and technology, control, celestial me-
chanics and astronomy. The first phase of the study in or-
bital dynamics of irregular bodies is to derive a mathemat-
ical model to represent its gravitational field, because they
have non-spherical shapes and peculiar rotations. It means
that orbits of a spacecraft sent around these bodies do not
resemble with the traditional Keplerian orbits (Masago et al.
2016, 2017; Gonçalves et al. 2013). There are several mod-
els already created to represent mathematically the gravi-
tational potential of bodies with non-spherical shapes. One
of these models is the spherical harmonic method, which
was adopted to describe the gravitational potential of the as-
teroid Vesta (Tricarico and Sykes 2010). This model may
diverge in some points (Zeng et al. 2016e). The potential
of an extremely non-spherical body cannot, for example, be
represented by the spherical harmonics model, because this
model converges very slowly when applied to very irregu-
lar bodies, and it may even diverge, when the spacecraft is
placed close to the surface of the bodies studied (Zeng et al.
2015). Another mathematical model is the ellipsoidal har-
monic model, proposed by Hobson (1955), and improved
by Pick et al. (1973) (Cui and Qiao 2014). There is also
the model known as Restricted Full (Two or) Three-Body
Problem (Scheeres 2004; Bellerose and Scheeres 2008). The
word “Full” means that the mass distribution of one or
both of the primaries bodies is being taken into account.
Bellerose and Scheeres (2008) applied this model to the bi-
nary asteroid system 1999 KW4 and analyzed the move-
ment of a spacecraft using zero-velocity curves, equilibrium
points and the Jacobi constant. There is also the polyhedron
method, developed by Werner (1994), constructed based on
the image data that are obtained from radar observations
and, therefore, cannot be derived analytically. Therefore, it
is preferable to use simplified models to approximate the po-
tential distribution of natural minor bodies. In this study, it
is used a model based on the rotating dipole mass, initially
introduced by Chermnykh (1987), and also studied by Koko-
riev and Kirpichnikov, in 1988 (Kokoriev and Kirpichnikov
1988; Kirpichnikov and Kokoriev 1988). It is assumed in
this model that the gravitational field of two masses located
on the axis of symmetry of the body is very close to the grav-
itational field of an axially symmetrical body. In this paper,
it is assumed that one of the asteroids of the binary system is
a rotating dipole mass, thus representing an elongated body.
This model was developed by Zeng et al. (2015). In the study
of Ferrari et al. (2016), it was analyzed a strategy to locate
trajectories in the vicinity of a binary asteroid system, where
one of the asteroids is modeled as a rotating mass dipole
(Zeng et al. 2016e). It also analyzed these trajectories and
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Fig. 1 Representative image of the system of asteroids studied

studied the effects of the flyby in an analytical form, finding
an interesting relationship between the flyby and the Jacobi
integral. The research developed in the present study uses a
rotating dipole mass to represent a synchronous system of
asteroids. To understand the behavior of the orbital dynam-
ics of a spacecraft in the vicinity of a double asteroid sys-
tem is fundamental to the execution of a space mission. This
smallest fact motivated the present work, whose objective is
to check the survival time of a spacecraft around an irregu-
larly shaped asteroid (or around an asteroid binary system),
taking into account the rotational motion of an elongated
body. In the present work, we are studying a binary system
of the asteroids + spacecraft. We call this problem as a Re-
stricted Synchronous Four-Body Problem due to the fact that
of one of the primaries (in this case M2) is modeled like a
mass dipole (two bodies of point masses), configuring the
total system as governed by the dynamics of the four bod-
ies. It is restricted because the mass of one of the bodies
(in this case the spacecraft) is negligible. It is also assumed
also that the period of rotation of the asteroid with irregu-
lar shape around its own axis and the period of movement
of these asteroids around the center of mass of the system
are the same, supporting the name Restricted Synchronous
Four-Body Problem.

2 Methodology

For this study, numerical tests were performed assuming that
the size of the asteroid considered to be a rotating mass
dipole (M2) is d = 500 meters. The distance between the
more massive primary asteroid, assumed to have a spherical
shape (with radius R1), and the center of mass of the dipole
is D and measures 3804 meters, as shown in Fig. 1.

Figure 1 shows the two asteroids M1 and M2 where M2

is considered as a body with irregular shape. The two mass
points, represented in Fig. 1 by the two white circles inside
the body M2, represent the mass dipole. These white points
of masses are connected by a massless rod. The length of
this rod is measured by calculating the distance between the
two points of mass, and it is considered constant.

The total mass of the system is constant and measures
9.273×1012 kg. This value was inspired by the pair of aster-
oids Alpha–Gamma of the triple system 2001SN263 (Tracy

Fig. 2 Graphic representation of the system studied

et al. 2015). Gamma has the shape of an elongated body and
has synchronous motion. The choice of this pair of aster-
oids is justified due to the Brazilian mission ASTER, which
considers the possibility of sending a spacecraft to this as-
teroid system (Sukhanov et al. 2010; Prado 2014). Although
the details of this system of asteroids are not the main goal
of the present work, we take this system as the base to de-
velop a general study of the problem. The present study is
performed by varying the values of each of the masses of the
bodies of the double system (M1 and M2), without chang-
ing the total mass of the system. In the first case, the mass of
M1 is 99% of the total mass of the system (M1 + M2) and,
consequently, M2 has a mass of 1% of the total mass of the
system. In the second case M1 has 90% of the total mass of
the system and M2 10%. For the next cases, a mass change
of 10 percent is made, where we decrease the mass of M1

and increase the mass of M2 until, for the last case studied,
M1 has 60% of mass total of system and M2 40%.

The spacecraft is initially considered to be nearby M2.
The initial osculating semi-major axis and eccentricity of
this orbit are converted to the Cartesian system, to be used
in the equations of motion. The conversion is made consid-
ering M2 as a point of mass. Once the initial conditions are
established, a numerical integration is made including the
mass of M1, the shape of the body M2 and the solar radia-
tion pressure. Initially (t = 0) the three bodies (M1, M2 and
the Sun) are aligned, as shown in Fig. 2.

We can note in Fig. 2 that the body M2 have always
the same face pointed to the body M1. It occurs because
the translation period of M2 is equal to the rotation period
around its own axis.

In the dynamics, a collision with M1 is considered to oc-
cur when the position of the spacecraft is smaller or equal
the radius this body. If the position of the spacecraft at any
instant of time is smaller than the size of M2 (we consider a
diameter of 500 meters in the x axis and 250 meters in the
y axis), we have a collision. We consider a discarded orbit



202 Page 4 of 12 L.B.T. dos Santos et al.

Fig. 3 Coordinate system for the Restricted Synchronous Four-Body
Problem

(ejection) when the position of the spacecraft goes beyond
30 times than the distance between the primary bodies.

3 Equation of motion

In this paper, the canonical system of units is used, and it
means that: (i) The unit of distance is the distance between
M1 and the center of mass of M2 (distance D). (ii) It is
also assumed that the mass of the body M1 is greater than
the mass of the body M2. In mathematical terms, we have
m1 > m2 and m2 = m21 + m22, where m21 = m22. Con-
sequently, the mass ratio is given by μ∗ = m21

(m1+m21+m22)
,

where μ∗ = μ
2 , with μ being the usual mass ratio used in

the restricted three-body problem (Szebehely 1967; Molton
1960; Santos et al. 2017). Note that the unit of mass is cho-
sen such that the sum of the masses is one. (iii) The unit
of time is defined such that the period of the motion of the
primaries is equal to 2π . (iv) The gravitational constant is
G = 1 (Szebehely 1967; McCuskey 1963).

In this problem, it has been assumed that the motion of
the negligible mass body P(x, y, z) is governed by the grav-
itational forces of the primary bodies M1 and M2, but the
body with infinitesimal mass does not affect the dynamics
of the primaries. The solar radiation pressure is also taken
into account. The body M2 is modeled as a rotating mass
dipole formed by two hypothetical bodies with masses m21

and m22, as shown in Fig. 3. The distance between the body
m21 and m22 is d = 0.131440 canonical units.

Viewed from the inertial reference, the spatial position of
the body of infinitesimal mass is P(x, y, z). The spatial po-
sitions of the bodies of mass m1, m21 and m22, respectively,
are

x1 = −2μ∗ cos(nT ),

y1 = −2μ∗ sin(nT ),

z1 = 0,

(1)

x21 = (
1 − d/2 − 2μ∗) cos(nT ),

y21 = (
1 − d/2 − 2μ∗) sin(nT ),

z21 = 0,

(2)

x22 = (
1 + d/2 − 2μ∗) cos(nT ),

y22 = (
1 + d/2 − 2μ∗) sin(nT ),

z22 = 0,

(3)

where n is the angular velocity of the primary bodies around
the center of mass and T is the time. Thus, we see that the
equations of motion of a body of infinitesimal mass in the
plane xy, when viewed from an inertial reference system, is
given by

ẍ = − (1 − 2μ∗)(x − x1)

r3
1

− μ∗(x − x21)

r3
21

− μ∗(x − x22)

r3
22

− Pradx = 0, (4)

ÿ = − (1 − 2μ∗)(y − y1)

r3
1

− μ∗(y − y21)

r3
21

− μ∗(y − y22)

r3
22

− Prady = 0, (5)

z̈ = − (1 − 2μ∗)(z − z1)

r3
1

− μ∗(z − z21)

r3
21

− μ∗(z − z22)

r3
22

− Pradz = 0, (6)

where

r1 =
√

(x − x1)2 + (y − y1)2 + (z − z1)2, (7)

r21 =
√

(x − x21)2 + (y − y21)2 + (z − z21)2, (8)

r22 =
√

(x − x22)2 + (y − y22)2 + (z − z22)2, (9)

and Pradx,Prady and Pradz represent the components x, y,
and z of the acceleration due to the solar radiation pressure,
which is given by Masago et al. (2016), Montenbruck and
Gill (2000), Beutler (2005). We have

Prad = −Cr

A

m
PS

r2
0

R2
r̂ (10)

where Cr is a factor that depends on the reflectivity of the
spacecraft, called the coefficient of radiation pressure, and
the value of Cr = 1.5 was used in the simulations; PS is the
solar radiation pressure in the orbit of the Earth that mea-
sures approximately 4.55 × 10−6 N/m2; r0 is the Sun–Earth
distance; R is the Sun–Spacecraft distance, r̂ is the radial
direction of the Sun relative to the spacecraft; A is the area
of the spacecraft illuminated by the sun and m is the mass
of the spacecraft (Masago et al. 2016; Beutler 2005; Mon-
tenbruck and Gill 2000). The value used for A in the simula-
tions is 1 m2 and the mass is 100 kg, so A/m = 0.01 m2/kg.
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Fig. 4 Lifetime in the region close to M2 (direct orbits). The diagram
shows the evolution of the lifetime of the orbit as a function of a and e.
Mass of M1 = 99% and mass of M2 = 1% of the total mass of the
system. Solar radiation pressure is included

4 Numerical investigation

Binary systems of asteroids are quite interesting, since they
are systems composed of bodies that have similar masses
and radii. A particle placed in the vicinity of a binary system,
for example, undergoes complex perturbations, and the un-
derstanding of these perturbations is fundamental for deter-
mining the regions where there are families of orbits around
the system. The determination of these families of orbits
can indicate the location of possible dust around the system,
which may not yet be observed. In contrast, an unstable re-
gion will have few or no dust, without the presence of any
body or dust. This information is important when planning a
mission for an asteroid system, because the characteristics of
the system influence the positions where the spacecraft will
be placed. There are regions where the spacecraft is more
protected or vulnerable to the risks of collisions with parti-
cle dust (Araujo et al. 2012, 2015). A study was developed
to find families of orbits in the vicinity of a binary system of
asteroids, in terms of the initial Keplerian elements, within
a given time period and taking into account the gravitational
disturbances and the solar radiation pressure present in the
system. The initial conditions adopted and the results are de-
scribed next.

We will analyze the grids of initial conditions with re-
spect to the center of mass of the rotating mass dipole. We
take into account the gravitational forces of the two primary
bodies, the irregular form of one of the bodies and the solar
radiation pressure. The spacecraft begins in a circular or-
bit and vary to orbits with eccentricity up to e = 0.99. The
semi-major axis of the spacecraft ranges from 500 meters
relative to the center of mass of the elongated body up to the
Hill region Araujo et al. (2008) of the rotating mass dipole,

Fig. 5 Lifetime in the region close to M2 (retrograde orbits). The dia-
gram shows the evolution of the lifetime of the orbit as a function of a

and e. Mass of M1 = 99% and mass of M2 = 1% of the total mass of
the system. Solar radiation pressure is included

which depend on its mass, with the addition of an extra mar-
gin of 50 meters beyond the region of influence. Then, for
each initial condition with a given mass for the dipole, the
sphere of influence will also be different and the variations
of the initial conditions of the semi-major axis will change.
In this study, we analysis planar direct orbits (inclination
zero) and retrograde orbits (inclinations of 180 degrees).
The total integration time is one year, which is equivalent to
approximately 500 orbital periods of the system analyzed.
To perform the numerical integrations, the Runge–Kutta 7/8
method is used with a time step of 0.01 canonical unit. Dur-
ing the integrations, we keep track of particles that have col-
lided with any of the bodies, the particles that were ejected
from the system, and the particles that survived during the
integration time. Figure 4 (direct orbits) and Fig. 5 (retro-
grade orbits) show the results and consider a grid of initial
conditions (with respect to the less massive primary) as a
function of the semi-major axis and the eccentricity of the
spacecraft. The color codes indicates the time the particle
survives for each initial condition. The solar radiation pres-
sure is taken into account. We can see at the top of the left
side that there is a region of white color. This region is where
the initial conditions are inside the body M2, so they do not
have any physical meaning. We can note that the lifetime of
the spacecraft is very low (only one orbital period of sys-
tem). This occurs because the mass of the body M2 is small
(only 1% of total mass of system), so the sphere of influ-
ence of this body is small also (less than twice the size of
the body M2). As a consequence, the spacecraft is released
very close to the body M2, causing it to be rapidly captured.
The orbits that have a high semi-major axis and a low ec-
centricity are orbits that last longer, because they begin their
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trajectories farther from the body M2. But they are not far
enough to avoid a collision.

After using a mass ratio similar to the Alpha–Gamma
bodies of the asteroid 2001SN263, we modify the masses of
the primaries, to see the effects of this parameter. As already
mentioned, we will keep the total mass of the system in the
value 9.273×1012 kg. However, we will now make an anal-
ysis considering that 90% of the total mass of the system be-
longs to M1 and 10% of the total mass of the system belongs
to M2 (rotating mass dipole). The mass ratio is μ∗ = 0.05.
Again, in this analysis, the coordinate system is centered in
the center of mass of the less massive body. The order of
magnitude of the mass of the body M2 is 1011 kg.

The solar radiation pressure causes the spacecraft to be
pushed towards M2 (due to the initial position of the Sun
and spacecraft). Since the spacecraft begins with the initial
conditions very close to M2 (as mentioned), this “push” of
the solar radiation pressure causes the spacecraft to collide
faster with the body M2. It means that the solar radiation
pressure reduces the lifetime of the orbits, in this case. Fig-
ures 6a and 6b show the lifetime of the spacecraft as a func-
tion of the initials semi-major axis and eccentricity, to exem-
plify this effect. In Fig. 6a the solar radiation pressure is not
taken into account and in Fig. 6b the solar radiation pressure
is included in the simulation.

In Figs. 6a and 6b, the semi-major axis is different from
the ones shown in Figs. 4 and 5, because in the situation
shown in Figs. 6a and 6b, M2 has a larger mass, which
makes its region of influence larger. When the mass of M2

is larger, the orbits close to this body has a more intense
gravitational force from M2, making the spacecraft to col-
lide with the body. The orbits with the semi-major axis near
the extremity of the region of influence of M2 are orbits that
last longer. The direct orbits that survive throughout numeri-
cal integration in Fig. 6a, for μ∗ = 0.05, are trajectories that
orbit the center of mass of the system. No direct orbit was
found orbiting around M2.

It can be seen in Fig. 6b that, when the solar radiation
pressure is taken into account in the model, the orbits last a
time of 80 canonical units, approximately 3.5 months. The
solar radiation pressure increases the eccentricity of the or-
bit, and the radius of the periapsis becomes smaller, making
the spacecraft to go near the dipole and to collide with it.
Note also that, due to the increased eccentricity, the apoap-
sis of the orbit also increases, making the spacecraft to col-
lide with the body M1 more frequently, or to eject from the
system.

Figures 7a and 7b are a color grid, referring to Figs. 6a
and 6b, respectively, indicating the initial conditions where
the spacecraft collides with M1, with M2, survive during the
total integration time or eject from the system. The red color
regions in Figs. 7a and 7b indicate that the spacecraft col-
lided with the less massive primary (M2). The blue color

Fig. 6 Lifetime in the region close to M2 (direct orbits). The diagram
shows the evolution of the lifetime of the orbit as a function of a and e.
Mass of M1 = 90% and mass of M2 = 10% of the total mass of the
system

region in indicates that the spacecraft collided with M1. The
yellow regions indicate that the spacecraft has ejected from
the system and the black region show the initial conditions
where the spacecraft survives for the entire integration time.

We can see, from Fig. 7a, for the semi-major axis from
1200 meters and eccentricity below 0.1 the orbits survive
(black color), orbit the system or escape (yellow colors)
from the system. All direct orbits are trajectories of an artifi-
cial satellite around the system, and a small variation in the
initial condition may cause the satellite to approach more or
less one of the primaries. We can see, in Fig. 8, the most
massive body shown in pink, the body M2, with a mass
dipole shape and two orbits. The red orbit has an initial semi-
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Fig. 7 Direct orbits. Collision region with M1 (blue), collision region
with M2 (red) and regions of ejection of the system (yellow). Solar ra-
diation pressure is included. The white region is the region within M2.
Mass of M1 = 90% and mass of M2 = 10%

major axis of 1255 meters and an eccentricity of 0.01. The
blue orbit has an initial semi-major axis of 1255 meters and
an eccentricity of 0.02.

We can see, from Fig. 8, that the two orbits are initially
superimposed, but with the passage of time (due to the sen-
sitivity of the system) they gradually move away. At a given
instant the blue orbit is closer to the primary bodies (region
highlighted in the figure by a black circle), causing the orbit
to gain energy and be ejected from the system. On the other
hand, the red orbit is not very close to the primaries, that is,
there is no gain of energy and therefore the satellite remains
orbiting the system during the whole numerical integration.

Fig. 8 Orbit ejecting from the system (blue color) and surviving orbit
(red color). The solar radiation pressure is not taken into account

It is worth remembering that the two orbits are direct and
that the disturbance due to the solar radiation pressure is not
being considered.

Figures 9a and 9b are analyzed similarly to Figs. 6a
and 6b and also has the same initial conditions. The differ-
ence is that in Figs. 9a and 9b the orbits are retrograde.

The numerical results show that there is a wider region
of retrograde orbits that survive longer when compared to
direct orbits.

We observed that no trajectory was found (both in the
simulations where the solar radiation pressure was not con-
sidered, and where it was considered) which orbited the less
massive body in direct orbits. On the other hand, all retro-
grade orbits that survived for 500 orbital periods in Fig. 9a
surround the less massive body (M2). All orbits that do not
survive by all numerical integration are regions where the
spacecraft collides with M2.

It is possible to see, in Figs. 9b, that when the solar radi-
ation pressure is taken into account the orbits do not last for
one year (500 canonical units). But they survive longer in
relation to the direct orbits shown in Fig. 6b (solar radiation
pressure included).

The influence of the solar radiation pressure increases the
intensity of disturbances affecting the orbits, resulting in a
higher frequency of collisions with the primary bodies. Or-
bits that initially have semi-major axis above 1050 and ec-
centricity below 0.02 are orbits that collide with M1. The
remaining conditions referenced to Fig. 9b cause the space-
craft to collide with M2.

It is notable that, when the solar radiation pressure is take
into account (in Figs. 6b and 9b), both in direct and in retro-
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Fig. 9 Lifetime in the region close to M2 (retrograde orbits). The dia-
gram shows the evolution of the lifetime of the orbit as a function of a

and e. Mass of M1 = 90% and mass of M2 = 10% of the total mass of
the system

grade orbits, the particles leave of survive during all numer-
ical integration time, for a mass ratio of μ∗ = 0.05.

We noticed that the inclusion of the solar radiation pres-
sure in the simulations causes a considerable difference in
the results obtained. Thus, it is necessary to use solar radi-
ation pressure in studies involving systems with relatively
weak masses, as in the case of asteroids and comets. From
this point, we will only show the results taking into account
the solar radiation pressure, since this is an important force
that is always present in the dynamics.

Varying the masses of the bodies, but keeping the total
mass of the system constant (9.273×1012 kg), we can study
the influence of this parameter. We now make an analysis
considering that 80% of the total mass of the system be-

Fig. 10 Lifetime in the region close to M2 (direct orbits). The diagram
shows the evolution of the lifetime of the orbit as a function of a and e.
Mass of M1 = 80% and mass of M2 = 20% of the total mass of the
system. Solar radiation pressure is included

Fig. 11 Lifetime in the region close to M2 (retrograde orbits). The
diagram shows the evolution of the lifetime of the orbit as a function
of a and e. Mass of M1 = 80% and mass of M2 = 20% of the total
mass of the system. Solar radiation pressure is included

longs to M1 and 20% of the total mass of the system be-
longs to M2. Again, in this analysis, the coordinate system
is centered in the center of mass of the less massive body.
The order of magnitude of the mass of the M2 is 1012 kg
and the mass ratio is μ∗ = 0.1

Figures 10 (direct orbits) and 11 (retrograde orbits) show
a grid of initial conditions that relates the eccentricity, the
semi-major axis, and the lifetimes of the orbits.

We can see, from Fig. 10, that no direct orbit survives for
a year when we take into account the solar radiation pres-
sure. Although these orbits do not survive the whole inte-
gration time, they are lasting longer compared to the previ-
ous simulations. This is because the gravitational force of



Lifetime of a spacecraft around a synchronous system Page 9 of 12 202

Fig. 12 Direct orbits. Collision region with M1 (blue), collision region
with M2 (red), orbits that survived for 500 canonical units (black) and
regions of ejection of the system (yellow). Solar radiation pressure is
included. The white region is the region within M2. Mass of M1 = 80%
and mass of M2 = 20%

M2 gets larger and thus become comparable with the solar
radiation pressure, causing the spacecraft to survive longer
in orbit around M2. From this we can deduce that, as we in-
crease the mass of the less massive body, more orbits will
last longer and, possibly, we may find directs orbits around
the less massive body when taken into account the pressure
of solar radiation.

On the other hand, some regions of retrograde orbits that
last one year begin to appear, near the semi-major axis of
1000 meters for low eccentricities, as shown in Fig. 11.

As we increase the mass of M2, the survival times of
the orbits, when we consider the solar radiation pressure,
increase as well.

We can note that there are regions where retrograde or-
bits survived for at least 1 year, while no direct orbit surviv-
ing the numerical integration was found. These regions are
very important in the application of astrodynamics when it
comes to space missions. The direct orbits are more popular
regarding the existence of space dust, whereas, on the other
hand, retrograde orbits hardly occur naturally. Thus, regions
where direct orbits do not survive and retrograde orbits sur-
vive are great options for a spacecraft to be placed, because
in such regions the probability of existence of space dust that
is likely to collide with the spacecraft is less frequent. In ad-
dition, it is possible that a satellite is placed in a retrograde
orbit to observe the body that we study.

The collision grids referring to Figs. 10 and 11 are shown
in Figs. 12 and 13, respectively. We can see, from Figs. 12
and 13, that the influence of solar radiation pressure causes
the spacecraft to collide more frequently with the primary
bodies or cause the spacecraft to escape faster from the sys-
tem. As the survival times of the orbits increase, the solar ra-
diation pressure remains longer, causing disturbance in the

Fig. 13 Retrograde orbits. Collision region with M1 (blue), collision
region with M2 (red), orbits that survived for 500 canonical units
(black) and regions of ejection of the system (yellow). Solar radiation
pressure is included. The white region is the region within M2. Mass
of M1 = 80% and mass of M2 = 20%

Fig. 14 Direct orbits. Collision region with M1 (blue), collision region
with M2 (red), orbits that survived for 500 canonical units (black) and
regions of ejection of the system (yellow). Solar radiation pressure is
included. The white region is the region within M2. Mass of M1 = 70%
and mass of M2 = 30%

spacecraft, making the orbit chaotic, and causing the space-
craft to escape (yellow regions in the figures) or collide with
one of the primary bodies (blue and red regions).

We make an analysis considering that 70% of the total
mass of the system belongs to M1 and 30% of the total mass
of the system belongs to M2. The mass ratio in this case is
μ∗ = 0.15. Again, the grades of initial conditions have the
reference in the center of mass of the less massive body.
Figures 14 (direct orbits) and 15 (retrograde orbits) show
a grid of initial conditions that relates the eccentricity, the
semi-major axis, and the lifetimes of the orbits.
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Fig. 15 Retrograde orbits. Collision region with M1 (blue), collision
region with M2 (red), the orbits that survived for 500 canonical units
(black) and regions of ejection of the system (yellow). Solar radiation
pressure is included. The white region is the region within M2. Mass
of M1 = 70% and mass of M2 = 30%

Due to the larger mass of the body M2, compared to pre-
vious cases, it is possible to find regions where direct and
retrograde orbits survive all the time of the numerical in-
tegration. Note that, for the first time, regions were found
where the direct orbits survive for 1 year around the less
massive primary. This was predicted, as already mentioned,
due to the fact that the gravitational force of the less massive
body is comparable to the existing perturbations. A larger
region of retrograde orbits, when compared with the previ-
ous cases, survives the whole integration time.

For space missions, it is very interesting to know these
regions, where the direct orbits survive for a considerable
time, because they are regions where there may exist space
dust, making these regions dangerous to place a spacecraft.
In this case, it would be interesting to put a spacecraft where
the retrograde orbits survive, and the direct ones do not. The
spacecraft would be in a safer region and could point its in-
struments to regions where direct orbits would survive in
order to locate possible space dust.

Figures 16 and 17 show the collision grids of direct and
retrograde orbits referring to Figs. 14 and 15, respectively.

Through the initial conditions for collisions of Figs. 16
and 17 we can find the final destiny of the spacecraft in the
retrograde orbit. The regions black indicate the orbits that
survived one year. These regions are areas where the space-
craft orbits the less massive body. The regions in red are lo-
cations where the spacecraft collides with M2. The regions
in blue are regions where the spacecraft collides with M1.
The regions in yellow are regions where the spacecraft ejects
from the system and, finally, the regions in black are regions
where the spacecraft orbits M2. We realize that, as the ec-
centricity and the semi-major axis increase, the greater the

Fig. 16 Direct orbits. Collision region with M1 (blue), collision re-
gion with M2 (red), the orbits that survived for 500 canonical units
(black) and regions of ejection of the system (yellow). Solar radiation
pressure is included. The white region is the region within M2. Mass
of M1 = 70% and mass of M2 = 30%

Fig. 17 Retrograde orbits. Collision region with M1 (blue), collision
region with M2 (red), the orbits that survived for 500 canonical unit
(black) and regions of ejection of the system (yellow). Solar radiation
pressure is included. The white region is the region within M2. Mass
of M1 = 70% and mass of M2 = 30%

chance of the spacecraft to orbit M2. This occurs because the
spacecraft is farthest from M2, in regions where the gravi-
tational pull of M2 is smaller. Because of this, the effect of
the solar radiation pressure and M1 on the spacecraft be-
come more significant. Because of the sensitivity of the sys-
tem, these perturbative forces pull the spacecraft around M2,
causing it to collide with the second primary or ejecting from
the system.

Finally, analyzing a system where 60% of the total mass
is concentrated in the body M1 and 40% of the total mass
of the system is concentrated in the body M2, we have the
grids of initial lifetime conditions shown in Figs. 18 (direct
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Fig. 18 Lifetime in the region close to M2 (direct orbits). The diagram
shows the evolution of the lifetime of the orbit as a function of a and e.
Mass of M1 = 60% and mass of M2 = 40% of the total mass of the
system. Solar radiation pressure is included

Fig. 19 Lifetime in the region close to M2 (retrograde orbits). The
diagram shows the evolution of the lifetime of the orbit as a function
of a and e. Mass of M1 = 60% and mass of M2 = 40% of the total
mass of the system. Solar radiation pressure is included

orbits) and 19 (retrograde orbits). The mass ratio in this case
is μ∗ = 0.2. The order of magnitude of the mass of the M2

is 1012.
The initial condition grids that show the survival time of

the spacecraft, when we consider the mass ratio of μ∗ = 0.2
(i.e., 40% of the total mass of the system is located in M2),
closely resemble the grids of condition initials shown for the
previous case (μ∗ = 0.15). The difference is that in the latter
case regions of orbits that survive for all time of numerical
integration become larger (regions of red in Figs. 18 and 19).
This is due to the fact that the gravitational field of M2 is
larger in this last situation, which increases the chance of
finding orbits that survive.

The collision grids of the latter case closely resemble the
collision grids shown in Figs. 16 and 17. Only the (yellow)
escape and collision regions with M1 (blue) become slightly
larger for the mass ratio μ∗ = 0.2.

5 Conclusions

We investigated orbits for a spacecraft around a binary sys-
tem of asteroids. The most massive asteroid was considered
to have a spherical shape and, for the second (less massive)
asteroid, we used the rotating mass dipole model. A series
of numerical integrations were made for all models adopted,
taking into account the gravitational force of the two bodies
and the solar radiation pressure. A grid of initial conditions
was established as a function of the semi-major axis and ec-
centricity to verify the lifetime and, consequently, the insta-
bility of the orbits for a spacecraft positioned in the vicinity
of a binary system of asteroids.

When 99% of the mass of the system was assigned to
the spherical body (M1), no orbit survived for 1 year around
the less massive primary. This occurs due to the fact that the
spacecraft is released very close to M2, causing the space-
craft to be quickly captured by the gravitational attraction of
this body.

After this analysis, we verified the behavior of the system
assuming 90% of the mass of the system in M1 (more mas-
sive) and 10% of the total mass of the system in M2. In this
analysis, it was possible to find orbits that survived for one
year (when solar radiation pressure is not taken into account)
around the body of smaller mass (rotating mass dipole) only
in retrograde orbits. On the other hand, direct orbits with
a higher semi-major axis and low eccentricity also survive
the whole integration time used, in this case orbiting the
center of mass of the system. We realize that the system is
very sensitive to the initial conditions, where a small change
can cause the spacecraft to get closer to the primary bod-
ies, receive energy and eject from the system. The orbits did
not survive all numerical integrations when the solar radi-
ation pressure is taken into account, causing the orbits to
quickly collide with M2, or M1 or to escape from the sys-
tem. Thus, it was possible to show the importance of taking
into account the solar radiation pressure when investigating
orbits around an asteroid binary system with a total mass of
9.273 × 1012 kg.

We encountered unstable orbits that collide with M1.
That is, when the solar radiation pressure is taken into ac-
count, it causes the apogee radius of the orbit to become
larger, causing the spacecraft to leave the orbit around M2

and to collide with M1. This type of orbit is also interest-
ing. An application of some of these orbits could be to use
them to observe M2 for a short period of time and then natu-
rally transfer the spacecraft to observe M1. When approach-
ing M1, it would be necessary to use a propellant to make
the spacecraft to orbit this body, instead of colliding with it.
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We realize that, as we increase the proportion of mass
of the body where we wish to orbit, the greater the gravita-
tional force capable of maintaining a spacecraft around this
asteroid, that is, its gravitational force happens to overcome
the disturbances from the solar radiation pressure and the
gravitational attraction of M1.

We find some orbits that do not survive for one year of in-
tegration into direct orbits but remain in orbit when consid-
ering retrograde orbits. We found direct orbits that survive
for up to one month and a half, generating empty regions
(without dust). These regions where the retrograde orbits
survive and the direct ones did not survive are indications of
places where the spacecraft could be positioned in a space
mission, because it is an empty region, in terms of space
dust, so reducing the chance that the spacecraft will collide
with a space body.

As we increase the mass of M2, the greater is its gravita-
tional force, so capable of maintaining a spacecraft around
it. Therefore, there are more orbits that survive the numeri-
cal integration. That is to say, its gravitational force happens
to overcome the disturbances of the solar radiation pressure
and the gravitational attraction of the most massive primary.

It is possible to note in the figures that a high semi-major
axis increases the chance of the action of the solar radiation
pressure to pull the spacecraft out of the orbit around M2,
causing it to collide with M1 or escape from the system.
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