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Abstract The Newton-Raphson basins of attraction, asso-
ciated with the libration points (attractors), are revealed in
the pseudo-Newtonian planar circular restricted three-body
problem, where the primaries have equal masses. The para-
metric variation of the position as well as of the stability
of the equilibrium points is determined, when the value of
the transition parameter ε varies in the interval [0,1]. The
multivariate Newton-Raphson iterative scheme is used to
determine the attracting domains on several types of two-
dimensional planes. A systematic and thorough numerical
investigation is performed in order to demonstrate the in-
fluence of the transition parameter on the geometry of the
basins of convergence. The correlations between the basins
of attraction and the corresponding required number of iter-
ations are also illustrated and discussed. Our numerical anal-
ysis strongly indicates that the evolution of the attracting re-
gions in this dynamical system is an extremely complicated
yet very interesting issue.

Keywords Restricted three body-problem · Equilibrium
points · Basins of attraction · Fractal basins boundaries

1 Introduction

Undoubtedly, one of the most intriguing as well as important
fields in dynamical astronomy and celestial mechanics is the
few-body problem and especially the version of the circular
restricted three-body problem (Szebehely 1967). This is true
if we take into account that this problem has numerous appli-
cations in many research fields, such as molecular physics,
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chaos theory, planetary physics, or even stellar and galactic
dynamics. This is exactly why this topic remains active and
stimulating even today.

For describing, in a more realistic way, the motion of
massless particles in the Solar System several modifications
of the classical three-body problem have been proposed,
mainly by adding perturbing terms to the effective potential.
The classical Newtonian three-body problem is just a first
good approximation of a much more complex setting. On
this basis, additional general relativistic corrections must be
included in order to refine our current understanding of the
Solar System dynamics.

In this vein, the first-order post-Newtonian equations
of motion for the circular restricted three-body problem
have been derived (e.g., Brumberg 1972; Contopoulos 1976;
Maindl and Dvorak 1994; Krefetz 1967), by using the
Einstein-Infeld-Hoffmann theory (Einstein et al. 1938). Re-
cent studies indicate that the additional post-Newtonian
terms act as non-negligible perturbations to the classical sys-
tem (Dubeibe et al. 2017b). Especially, when the distance
between the two primary bodies is sufficiently small the
post-Newtonian dynamics substantially differ from the cor-
responding classical Newtonian dynamics (Huang and Wu
2014).

Knowing the basins of convergence, associated with the
libration points, is an issue of great importance, since the
attracting domains reflect some of the most intrinsic prop-
erties of the dynamical system. For obtaining the basins
of attraction one should use an iterative scheme (i.e., the
Newton-Raphson method) and scan a set of initial condi-
tions in order to reveal their final states (attractors). Over
the past years a large number of studies have been de-
voted on determining the Newton-Raphson basins of con-
vergence in many types of dynamical systems, such as the
Hill’s problem (e.g., Douskos 2010), the Sitnikov prob-
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lem (e.g., Douskos et al. 2012), the restricted three-body
problem with oblateness and radiation pressure (e.g., Zo-
tos 2016), the photogravitational Copenhagen problem (e.g.,
Kalvouridis 2008), the electromagnetic Copenhagen prob-
lem (e.g., Kalvouridis et al. 2012; Zotos 2017b), the four-
body problem (e.g., Baltagiannis and Papadakis 2011; Ku-
mari and Kushvah 2014; Zotos 2017a), the photogravita-
tional four-body problem (e.g., Asique et al. 2016), the
ring problem of N + 1 bodies (e.g., Croustalloudi and
Kalvouridis 2007; Gousidou-Koutita and Kalvouridis 2009),
or even the restricted 2+2 body problem (e.g., Croustalloudi
and Kalvouridis 2013).

In this work we shall use the numerical methodology
introduced in Zotos (2016) in order to investigate the dy-
namics of the pseudo-Newtonian planar circular restricted
three-body of (Dubeibe et al. 2017a). The present article has
the following structure: the most important properties of the
mathematical model are presented in Sect. 2. The paramet-
ric evolution of the position as well as of the stability of
the equilibrium points is investigated in Sect. 3. The follow-
ing Section contains the main numerical results, regarding
the evolution of the Newton-Raphson basins of convergence.
Our paper ends with Sect. 5, where we emphasize the main
conclusions of this work.

2 Properties of the mathematical model

Let us briefly recall the most important aspects of the circu-
lar restricted three-body problem. The two primary bodies,
P1 and P2 move on circular orbits around their common cen-
ter of mass, according to the theory of the classical restricted
three-body problem (Szebehely 1967). It is assumed that the
mass of the third body m is significantly smaller with re-
spect to the masses of the primaries (m � m1 and m � m2).
Therefore the third body acts as a test particle and does not
perturb, in any way, the circular motion of the primary bod-
ies.

We adopt a special system of units in which the gravita-
tional constant G, the sum of the masses of the primaries,
the speed of light c as well as the distance R between the
primaries are equal to unity. For the description of the pla-
nar motion of the test particle we choose a rotating reference
frame, where the center of mass of the primaries coincides
with its origin. The dimensionless masses of the primary
bodies P1 and P2 are m1 = 1 − μ and m2 = μ, respectively,
where μ = m2/(m1 + m2) � 1/2 is the mass ratio. More-
over, the centers of both primaries are located on the x-axis
and specifically at (−μ,0) and (1 −μ,0). In this article, we
shall consider the case where the two primary bodies have
equal masses (that is when m1 = m2, which is also known
as the Copenhagen problem) and therefore μ = 1/2.

According to Dubeibe et al. (2017a) the time-independent
effective potential function of the pseudo-Newtonian planar

circular restricted three-body problem, with only the first
correction terms, is
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where of course (x, y) are the coordinates of the test particle
on the configuration plane, while
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(x + μ − 1)2 + y2, (2)

are the distances of the test particle from the two primary
bodies.

It is seen that the effective potential function (1) can be
written as the sum of three terms

Ω(x,y) = ΩCN − ε

2c4
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2

(
x2 + y2), (3)

where ΩCN are the terms of the classical Newtonian dynam-
ics, while ΩPN contains the pseudo-Newtonian correction
terms.

The dynamical quantity ε is a transition parameter with
values in the interval ε ∈ [0,1]. When ε = 0 we have the
case of the classical Newtonian three-body problem, while
when ε = 1 we have the case of the full pseudo-Newtonian
three-body problem.

The equations of motion of the test particle in the co-
rotating reference frame read
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with x1 = x + μ and x2 = x1 − 1. Similarly, the partial
derivatives of the second order, which will be needed later
for the multivariate Newton-Raphson iterative scheme, read

Ωxx(x, y) = ∂2Ω
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Fig. 1 Locations of the
positions (red dots) and
numbering of the equilibrium
points (Li, i = 1,15) through
the intersections of Ωx = 0
(green) and Ωy = 0 (blue),
when (a-upper left): ε = 0.2,
(b-upper right): ε = 0.375,
(c-lower left): ε = 0.5, and
(d-lower right): ε = 0.65. The
black dots denote the centers
(Pi, i = 1,2) of the two
primaries
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For the system of the differential equations (4) there is
only one integral of motion (also known as the Jacobi inte-
gral) which is given by the following Hamiltonian

J (x, y, ẋ, ẏ) = 2Ω(x,y) − (
ẋ2 + ẏ2) = C, (11)

where ẋ and ẏ are the velocities, while C is the numerical
value of the Jacobi constant which is conserved.

3 Parametric evolution and stability
of the equilibrium points

For the existence of equilibrium points the necessary and
sufficient conditions which must be fulfilled are

ẋ = ẏ = ẍ = ÿ = 0. (12)

For determining the coordinates (x, y) of the coplanar equi-
librium points we have to numerically solve the following
system of partial differential equations

Ωx(x, y) = 0, Ωy(x, y) = 0. (13)

The total number of the equilibrium points in the pseudo-
Newtonian planar circular restricted three-body problem,
with two equal masses, is not constant but it strongly de-
pends on the value of the transition parameter ε. More pre-
cisely

– When ε = 0 we have the case of the classical three-body
problem, so there are the usual five equilibrium points,
three collinear, (L1, L2, and L3), and two triangular (L4

and L5).
– When ε ∈ (0,0.35416667] there exist thirteen equilib-

rium points (see panel (a) of Fig. 1). On the x axis four
additional collinear points (L6, L7, L8, and L9) emerge,
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Fig. 2 Evolution of the
locations of the positions (red
dots) of the equilibrium points
(Li, i = 1,15) when the
transition parameter varies in
the interval (0,1]. In particular
(a): ε = 0.05, (b): ε = 0.25,
(c): ε = 0.34, (d): ε = 0.395,
(e): ε = 0.41, (f): ε = 0.59,
(g): ε = 0.60, (h): ε = 0.80,
(i): ε = 0.90

while four more points (L10, L11, L12, and L13) appear
on the configuration (x, y) plane.

– When ε ∈ [0.35416668,0.40306154] there exist eleven
equilibrium points (see panel (b) of Fig. 1). In this case
the collinear points L7 and L8 are not present.

– When ε ∈ [0.40306155,0.58333333] there exist seven
equilibrium points (see panel (c) of Fig. 1). In this case
the collinear points L2, L3, L6, and L9 disappear.

– When ε ∈ [0.58333334,0.86861363] there exist nine
equilibrium points (see panel (d) of Fig. 1). Two new
equilibrium points, L14 and L15, emerge on the vertical y

axis.
– When ε ∈ [0.86861364,1] only the libration point L1, lo-

cated at the origin (0,0), survives.

The values ε1 = 0.35416667, ε2 = 0.40306154, ε3 =
0.58333333, and ε4 = 0.86861363 are critical values of the
transition parameter, since they delimit the ranges of several
intervals with different number of equilibrium points.

The position of all the equilibrium points is defined
through the intersections of the equations Ωx = 0, Ωy = 0.
In Fig. 1(a–d) we see how the intersections of the first or-
der partial derivatives determine, in each case, the position

of the libration points when (a): ε = 0.2, (b): ε = 0.373,
(c): ε = 0.5, (d): ε = 0.65. In the same figure we provide
the numbering of all the libration points Li, i = 1,15. Fur-
thermore, in Fig. 2 we present how the number and the exact
positions of the equilibrium points evolve as the value of the
transition parameter varies in the interval (0,1].

It would be very interesting to obtain the exact evolu-
tion of the positions of the libration points as a function of
the transition parameter ε, when ε ∈ (0,1]. Our numerical
analysis is illustrated in Fig. 3, where the parametric evolu-
tion of all the equilibrium points, on the configuration (x, y)

plane, is presented. One may observe that as soon as ε is
just above zero, eight equilibrium points (two sets of four)
emerge from the centers P1 and P2. As the value of ε grows
the collinear equilibrium points Li, i = 6, . . . ,9 move away
from the centers. In particular, L6 and L9 move towards
L3 and L2, respectively, while on the other hand L7 and
L8 move towards the center. When ε = ε1 the equilibrium
points L7 and L8 collide with the central libration point L1

and they disappear. In the same vein when ε = ε2 L6 col-
lides with L3 and at the same time L9 collides with L2 thus
annihilating each other. When ε = ε3 the phenomenon of the
creation of new equilibrium points occurs, since two new li-
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Fig. 3 The parametric evolution of (a-left): the position and (b-right):
the stability (green) or instability (red) of the equilibrium points in the
pseudo-Newtonian planar circular restricted three-body problem with
equal masses, when ε ∈ (0,1]. The arrows indicate the movement di-

rection of the equilibrium points as the value of the transition parameter
ε increases. The big black dots pinpoint the fixed centers of the two pri-
maries, while the small black dots (points A and B) correspond to the
critical values ε2 and ε4, respectively

bration points L14 and L15 emerge from the center. As soon
as ε > ε3 these new points move on the vertical y axis and
away from L1. It is seen that L4, L10, L12, and L14 (the
same applies for L5, L11, L13, and L15) move on a collision
course. The collision occurs when ε = ε4 and all these li-
bration points are being destroyed in two sets. Finally when
ε > ε4 only the central equilibrium point L1 survives and
remains present until ε = 1. At this point it should be em-
phasized that the centers of the two primaries P1 and P2 are
completely unaffected by the shift of the transition parame-
ter.

In order to determine the linear stability of an equilibrium
point the origin of the reference frame must be transferred at
the exact position (x0, y0) of the libration point through the
transformation

x = x0 + ξ, y = y0 + η. (14)

The next step is to expand the system of the equations of
motion (4) into first-order terms, with respect to ξ and η.

Ξ̇ = AΞ, Ξ = (ξ, η, ξ̇ , η̇)T, (15)

where Ξ is the state vector of the test particle with respect
to the equilibrium points, while A is the time-independent
coefficient matrix of variations

A =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

Ω0
xx Ω0

xy 0 2

Ω0
yx Ω0

yy −2 0

⎤
⎥⎥⎥⎦ , (16)

where the superscript 0, at the partial derivatives of sec-
ond order, denotes evaluation at the position of the equi-
librium point (x0, y0). The new linearized system describes
infinitesimal motions near an equilibrium point.

The characteristic equation of the linear system (15) is
quadratic with respect to Λ = λ2 and it is given by

αΛ2 + bΛ + c = 0, (17)

where

α = 1, b = 4 − Ω0
xx − Ω0

yy,

c = Ω0
xxΩ

0
yy − Ω0

xyΩ
0
yx.

(18)

The necessary and sufficient condition for an equilibrium
point to be stable is all roots of the characteristic equation
to be pure imaginary. This means that the following three
conditions must be simultaneously fulfilled

b > 0, c > 0, D = b2 − 4ac > 0. (19)

This fact ensures that the characteristic equation (17) has
two real negative roots Λ1,2, which consequently implies
that there are four pure imaginary roots for λ.

Since we already know the exact positions (x0, y0) of
the libration points, we can insert them into the character-
istic equation (17) and therefore determine the stability of
the equilibrium points, through the nature of the four roots.
Our numerical analysis suggests that most of the equilib-
rium points are either stable or unstable when the transition
parameter ε varies in the interval (0,1]. In particular, L2,
L3, L10, L11, L12, and L13 are always unstable, while L6,
L7, L8, L9, L14, and L15 are always stable. The equilibrium
points L1, L4, and L5 on the other hand, can be either sta-
ble or unstable, depending of course on the particular value
of ε. In panel (b) of Fig. 3 we illustrate the evolution of
the stability of all the equilibrium points, when ε ∈ (0,1].
Our numerical computations suggest that the central libra-
tion point L1 is stable only when ε ∈ [ε1, ε3], while the tri-
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Fig. 4 (a-left): The Newton-Raphson basins of attraction on the con-
figuration (x, y) plane for the classical Newtonian case, where ε = 0.
The positions of the five equilibrium points are indicated by black dots.
The color code denoting the five attractors (equilibrium points) is as

follows: L1 (green); L2 (red); L3 (blue); L4 (magenta); L5 (orange);
non-converging points (white). (b-right): The distribution of the corre-
sponding number N of required iterations for obtaining the Newton-
Raphson basins of attraction shown in panel (a)

angular points L4 and L5 are stable only when ε lies in the
interval [0.65712024, ε4].

4 The basins of attraction

Over the years many methods, for solving numerically sys-
tems of non-linear equations, have been developed. Perhaps
the most well-known method of all is the Newton-Raphson
method. A system of multivariate functions f (x) = 0 can be
solved using the following iterative scheme

xn+1 = xn − J−1f (xn), (20)

where f (xn) is the system of equations, while J−1 is the
corresponding inverse Jacobian matrix. In our case the sys-
tem of differential equations is described in Eqs. (13).

The iterative formulae for each coordinate (x, y), derived
from scheme (20), are

xn+1 = xn −
(

ΩxΩyy − ΩyΩxy

ΩyyΩxx − Ω2
xy

)
(xn,yn)

,

yn+1 = yn +
(

ΩxΩyx − ΩyΩxx

ΩyyΩxx − Ω2
xy

)
(xn,yn)

,

(21)

where xn, yn are the values of the x and y coordinates at the
n-th step of the iterative process.

The numerical algorithm of the Newton-Raphson method
works as follows: The code is activated when an initial con-
dition (x0, y0) on the configuration plane is inserted, while
the iterative procedure continues until an attractor of the
system is reached, with the desired accuracy. If the itera-
tive procedure leads to one of the attractors then we say
that the method converges for the particular initial condi-
tion. However, in general terms, not all initial conditions
converges to an attractor of the system. All the initial condi-
tions that lead to a specific final state (attractor) compose

the Newton-Raphson basins of attraction, which are also
known as basins of convergence or even as attracting re-
gions/domains. At this point it should be highly noticed that
the Newton-Raphson basins of attraction should not be mis-
taken, by no means, with the classical basins of attraction
which exist in the case of dissipative systems. The Newton-
Raphson basins of attraction are just a numerical artifact
produced by an iterative scheme, while on the other hand
the basins of attraction in dissipative systems correspond to
a real observed phenomenon (attraction).

Nevertheless, the determination of the Newton-Raphson
basins of attraction is very important because they reflect
some of the most intrinsic qualitative properties of the dy-
namical system. This is true because the iterative formulae
of Eqs. (21) contain both the first and second order deriva-
tives of the effective potential function Ω(x,y).

In order to unveil the basins of convergence we have to
perform a double scan of the configuration (x, y) plane. For
this purpose we define dense uniform grids of 1024 × 1024
(x0, y0) nodes which shall be used as initial conditions of the
numerical algorithm. Of course the initial conditions cor-
responding to the centers P1 and P2 of the two primaries
are excluded from all grids, because for these initial con-
ditions the distances ri , i = 1,2 to the primaries are equal
to zero and consequently several terms, entering formulae
(21), become singular. During the classification of the initial
conditions we also keep records of the number N of itera-
tions, required for the desired accuracy. Obviously, the bet-
ter the desired accuracy the higher the required iterations. In
our calculations the maximum number of iterations is set to
Nmax = 500, while the iterative procedure stops only when
an accuracy of 10−15 is reached, regarding the position of
the attractors.

The Newton-Raphson basins of convergence when ε = 0
(which correspond to the classical Newtonian case) are pre-
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Fig. 5 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the first case, where thirteen
equilibrium points are present.
(a): ε = 0.01; (b): ε = 0.1;
(c): ε = 0.2; (d): ε = 0.3;
(e): mε = 0.34; (f): ε = 0.3541.
The positions of the equilibrium
points are indicated by black
dots. The color code, denoting
the 13 attractors, is as follows:
L1 (green); L2 (red); L3 (blue);
L4 (magenta); L5 (orange);
L6 (brown); L7 (yellow);
L8 (purple); L9 (pink);
L10 (cyan); L11 (light green);
L12 (gray); L13 (olive);
non-converging points (white)

sented in panel (a) of Fig. 4. Different colors are used for
each basin of attraction, while the positions of the five equi-
librium points (attractors) are indicated by black dots. It is
seen that in the case where both primaries have equal masses
the axes x = 0 and y = 0 are axes of symmetry. The distri-
bution of the corresponding number N of iterations is given
in panel (b) of the same figure, using tones of blue.

In what follows we will try to determine how the tran-
sition parameter ε influences the structure of the Newton-
Raphson basins of attraction in the pseudo-Newtonian pla-
nar circular restricted three-body problem, by considering
five cases regarding the total number of the equilibrium
points (attractors). For classifying the initial conditions on

the configuration (x, y) plane we will use color-coded di-
agrams (CCDs), where each pixel is assigned a color, ac-
cording to the final state (attractor) of the initial condition.
Furthermore, the size of the CCDs (or in other words the
minimum and the maximum values of the coordinates x

and y) is controlled in such a way so as to have, in each
case, a complete view, regarding the geometry of the struc-
tures produced by the attracting domains.

4.1 Case I: Thirteen equilibrium points

Our numerical exploration begins with the first case where
thirteen equilibrium points are present, that is when 0 <
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Fig. 6 The distribution of the
corresponding number N of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 5(a–f).
The non-converging points are
shown in white

ε ≤ ε1. In Fig. 5 we present the evolution of the basins of
convergence for six values of the transition parameter ε.
In panel (a), where ε = 0.01, it is seen that the structure
of the configuration (x, y) plane is almost identical to that
observed in Fig. 4, for the classical Newtonian case. Nev-
ertheless, one may observe the small attracting domains
corresponding to the additional equilibrium points Li , i =
6, . . . ,13. The vast majority of the (x, y) plane is covered
by well-formed basins of attraction, while all basin bound-
aries are highly fractal.1 Thus we may say that these fractal
regions behave as chaotic domains. This argument can be

1When it is stated that a region is fractal we simply mean that it has
a fractal-like geometry, without conducting any additional calculations
for computing the fractal dimension as in Aguirre et al. (2001).

justified as follows: for an initial condition (x0, y0) inside
the chaotic fractal area we will observe that its final state (at-
tractor) is extremely sensitive. More precisely, even a slight
deviation in the initial conditions could lead to a completely
different final state. Therefore, inside the fractal areas of the
configuration (x, y) plane it is next to impossible to predict
from which of the attractors (equilibrium points) each initial
condition will be attracted by.

The structure of the configuration (x, y) plane changes
drastically as the value of the transition parameter increases.
In general terms the most noticeable changes are the follow-
ing:

– The extent of the basins of convergence corresponding to
libration points L2, L3, L4, and L5 decreases.
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Fig. 7 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 5(a–f).
The vertical dashed red line
indicates, in each case, the most
probable number N∗ of
iterations

– The extent of the attracting domains corresponding to
equilibrium points L6, L9, L10, L11, L12, L13 and espe-
cially of L7, L8 increases.

– When ε = 0.3541 (see panel (f) of Fig. 5), that is a value
very close to the critical value ε1, the basins of attraction
corresponding to the collinear points L7 and L8 domi-
nate, while all other basins, except L1, are confined to the
central region of the CCD.

Looking carefully at the CCDs presented in Fig. 5(a-f)
it becomes evident that the basins of attraction correspond-
ing to the central libration point L1 extend to infinity, while
on the other hand the extent of all the other basins of at-

traction is finite. Furthermore, we may say that the shape of
the basins of attraction corresponding to equilibrium points
L2, and L3 look like exotic bugs with many legs and many
antennas, while the shape of the basins of convergence cor-
responding to all other libration points, except L1, look like
butterfly wings.

The distribution of the corresponding number N of iter-
ations is provided, using tones of blue, in Fig. 6(a–f). It is
observed that initial conditions inside the attracting regions
converge relatively fast (N < 10), while the slowest con-
verging points (N > 30) are those in the vicinity of the basin
boundaries. In Fig. 7(a–f) the corresponding probability dis-
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Fig. 8 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the second case, where eleven
equilibrium points are present.
(a): ε = 0.3542; (b): ε = 0.36;
(c): ε = 0.38; (d): ε = 0.403.
The positions of the equilibrium
points are indicated by black
dots. The color code is the same
as in Fig. 5

tribution of iterations is given. The probability P is defined
as follows: if N0 initial conditions (x0, y0) converge to one
of the attractors, after N iterations, then P = N0/Nt , where
Nt is the total number of initial conditions in every CCD.
It was observed that the most probable number N∗ of itera-
tions (see the red vertical dashed line in Fig. 7(a–f)) remains
almost unperturbed and equal to 6 throughout this region of
values of the transition parameter.

4.2 Case II: Eleven equilibrium points

In this case, where ε1 < ε ≤ ε2, there are eleven equilibrium
points: four on the x axis, two on the y axis, four on the
(x, y) plane and of course L1 at the center. In Fig. 8(a–d)
we present the Newton-Raphson basins of convergence for
four values of the transition parameter. When ε = 0.3542,
it is seen in panel (a) of Fig. 8, that two sets of thin elon-
gated figure-eight tentacles appear in the vertical direction.
With increasing value of ε these tentacles are reduced, while
the extent of the basins of attraction corresponding to libra-
tion points L10, L11, L12, and L13 increases. On the other
hand, the extent of all the other attracting domains seems
almost unperturbed. We may argue that as value of the tran-
sition parameter varies in this interval the geometry of the
Newton-Raphson basins of convergence does not change
significantly.

The distribution of the corresponding number N of it-
erations, required for obtaining the desired accuracy in our
computations is illustrated in Fig. 9(a–d). Looking at panel
(a) of Fig. 9 one may observe that the distribution of re-
quired iterations, corresponding to the central equilibrium
point L1, is very noisy. In other words, for all initial condi-
tions that converge to L1 it is almost impossible to have an
estimation about the required number of iterations. This phe-
nomenon becomes much more evident in Fig. 10, where the
corresponding probability distribution of iterations is given.
Indeed, in panel (a) of Fig. 10 we see that the correspond-
ing probability distribution extends up to about N = 200,
while in all other cases (see panels (b–d) of the same fig-
ure) more than 95% of the initial conditions need less than
35 iterations in order to converge to one of the available at-
tractors. The most probable number N∗ of iteration is 15 for
ε = 0.3542, while for all the other studied cases it was found
equal to seven.

The strange behavior, regarding the noisy pattern of re-
quired iterations, observed for ε = 0.3542 can be explained,
in a way, as follows: the particular value of the transition
parameter is just above the first critical value ε1. Around
the critical value ε1 the intrinsic properties of the dynamical
system change drastically, as the total number of equilibrium
points reduces from thirteen to eleven. We believe that this is
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Fig. 9 The distribution of the
corresponding number N of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 8(a–d).
The non-converging points are
shown in white

Fig. 10 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 8(a–d).
The vertical dashed red line
indicates, in each case, the most
probable number N∗ of
iterations
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Fig. 11 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the third case, where seven
equilibrium points are present.
(a): ε = 0.4031; (b): ε = 0.54;
(c): ε = 0.582; (d): ε = 0.5833.
The positions of the equilibrium
points are indicated by black
dots. The color code is the same
as in Fig. 5

Fig. 12 The distribution of the
corresponding number N of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 11(a–d).
The non-converging points are
shown in white
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Fig. 13 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 11(a–d).
The vertical dashed red line
indicates, in each case, the most
probable number N∗ of
iterations

exactly the reason of the noisy basin of attraction observed
for ε = 0.3542.

4.3 Case III: Seven equilibrium points

Our exploration continues with the third case, where ε2 <

ε ≤ ε3. Now there are only seven equilibrium points present.
The Newton-Raphson basins of convergence for four values
of the transition parameter are depicted in Fig. 11(a–d). It
is seen that the pattern of panel (a), where ε = 0.4031, is
almost the same with that observed earlier in panel (d) of
Fig. 8. The only difference concerns the basins of attrac-
tion corresponding to libration points L2 and L3. Now these
two points are absent and the corresponding areas on the
configuration (x, y) plane are shown in white, which means
that these initial conditions do not converge. However ad-
ditional numerical calculations reveal that these particular
initial conditions are in fact slow converging points, which
need much more than 500 iteration in order to converge.
Moreover it was found that all these slow converging points
eventually do converge to the central libration point L1.

As the value of ε increases the pattern of the attracting
domain changes. The most important change is the appear-
ance of figure-eight tentacles at the outer parts of the CCDs.
These tentacles grow in size (especially along the horizon-
tal direction), while all the other basins of convergence are

being confined to the central region of the CCDs (see e.g.,
panel (d) of Fig. 11).

The following Fig. 12 shows the distribution of the corre-
sponding number N of iterations. It is interesting to note that
the highest numbers of iterations are observed (i) near the
vicinity of the places on the x axis, where L2 and L3 used
to be and (ii) along the tentacles. The corresponding proba-
bility distributions are given in Fig. 13(a–d). It is seen that in
all four cases the vast majority of the initial conditions (more
than 95%) converge within the first 35 iterations, while the
most probable number of iterations is constant throughout
and equal to 7.

4.4 Case IV: Nine equilibrium points

In the fourth case, where ε3 < ε ≤ ε4, we have the emer-
gence of two new equilibrium points (L14 and L15) on the
vertical y axis. Therefore we have nine libration points in
total. The CCDs with the basins of convergence are given
in Fig. 14(a–d). We observe in panel (a) of Fig. 14 that
extended areas on the configuration (x, y) plane are occu-
pied by the basins of attraction corresponding to L14 and
L15. These basins of convergence have the shape of butterfly
wings, while they split into many pieces and their extent is
reduced, as we proceed to higher values of the transition pa-
rameter. At the same time, the entire pattern of all the attract-
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Fig. 14 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the fourth case, where nine
equilibrium points are present.
(a): ε = 0.5834; (b): ε = 0.59;
(c): ε = 0.62; (d): ε = 0.8686.
The positions of the equilibrium
points are indicated by black
dots. The color code is the same
as in Fig. 5, while in addition
L14 (teal) and L15 (crimson)

Fig. 15 The distribution of the
corresponding number N of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 14(a–d).
The non-converging points are
shown in white
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Fig. 16 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 14(a–d).
The vertical dashed red line
indicates, in each case, the most
probable number N∗ of
iterations

ing domains comes closer to the center. When ε = 0.8686
(see panel (d) of Fig. 14) the most prominent basins of at-
traction are those of L4, L5, L10, L11, L12, and L13, while
those of L14 and L15 are confined.

In Fig. 15 we can see how the numbers N of required it-
eration are distributed on the configuration (x, y) plane, for
the values of ε of Fig. 14(a–d). There is no doubt that the
most peculiar behavior is observed in panel (d) of Fig. 15,
where ε = 0.8686, that is a value just below the fourth criti-
cal value ε4. More precisely, we observe that all initial con-
ditions composing all basins of attraction, except that of L1,
need relatively high numbers of iterations in order to con-
verge, with respect to the required number of iterations for
basins of L1. So far we have seen that the highest numbers
of iterations correspond mainly to initial conditions in the
vicinity of the fractal basin boundaries. However in this case
initial conditions of both the fractal basin boundaries and
the basins itself require the same high number of iterations.
We believe that this strange behavior must be some kind of
intrinsic warning of the dynamical system, thus telling us
that something extreme is about to happen. At this point we
would like to emphasize that a similar phenomenon (initial
conditions inside basins of attraction with large numbers of
iterations) has also been observed in the planar equilateral
restricted four-body problem (see e.g., panel (i) in Fig. 10
in Zotos 2017a). In both systems we believe that this be-

havior is due to the drastic change of the dynamical prop-
erties of the system (change of the total number of equilib-
rium points). This should be true because in both systems
the phenomenon was observed very close to critical values
of the parameters, just before the change of the total number
of libration points.

Figure 16(a–d) illustrates the corresponding probability
distributions. We see that the most probable number of iter-
ations is 7 for the first three cases, while it drops to 6, when
ε = 0.8686. In panel (d) of Fig. 16 we can see that a sec-
ond peak appears for N = 14. After additional calculations
it was revealed that the most probable number N = 6 corre-
sponds to initial conditions that converge to the central at-
tractor L1, while the second most probable number N = 14
corresponds to initial conditions which converge to all the
other attractors.

4.5 Case V: One equilibrium point

The last case under consideration corresponds to the region
ε4 < ε ≤ 1, where only the central equilibrium point L1

survives. In Fig. 17 we present, through the corresponding
CCDs, the Newton-Raphson basins of convergence for four
values of the transition parameter. In panel (a) of Fig. 17
one may observe something very interesting as well as very
unexpected. About half of the CCD is occupied by initial
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Fig. 17 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the fifth case, where only one
equilibrium point is present.
(a): ε = 0.8687; (b): ε = 0.87;
(c): ε = 0.872; (d): ε = 1. The
positions of the equilibrium
points are indicated by black
dots. The color code is the same
as in Fig. 5. White color denotes
non-converging points

conditions that do not converge to the attractor. What is sim-
ply amazing is the fact that the shape of the non-converging
pattern is exactly the same as that shown earlier in panel (d)
of Fig. 14, where we have measured the highest numbers
of iterations. It is as if someone has removed all the points
of panel (d) of Fig. 14 that converge to any attractor other
than L1. This behavior is completely new and to our knowl-
edge it has not been observed to any other dynamical system
in the past.

The natural question that immediately rises is the fol-
lowing: are these points true non-converging points? In or-
der to answer this question we increased the maximum al-
lowed number of iterations from 500 to 10000 and we re-
constructed the CCD. Our results suggest that now all the
initial conditions converge, sooner or later, to the central
equilibrium point. Therefore, once more we have the case of
slow (or even extremely slow) converging points. We believe
that that was the extreme change for which the system has
informed us earlier, when we have observed high numbers
of iterations for initial conditions forming basins of attrac-
tion. As the value of the transition parameter ε increases the
amount of slow converging points constantly reduces (see
panels (b–c) of Fig. 17) and when ε > 0.92 there is no nu-
merical evidence of slow converging points, whatsoever.

The corresponding distributions of the required num-
ber N of iterations and the probabilities P are given in

Figs. 18(a–d) and 19(a–d), respectively. Combining the in-
formation of these two types of diagrams we can extract two
important features: (a) as long as slow-converging points ex-
ist the required number of iterations cover all the available
interval N ∈ [0,500], while on the other hand for ε > 0.92,
where the slow converging points disappear, more than 95%
of the initial conditions converge to L1 within the first 100
iterations, and (b) even when ε = 1 the distribution of the
required number of iterations N form a specific pattern on
the configuration (x, y) plane. This pattern is the almost the
same with that of panel (d) of Fig. 15. Thus we may argue
that this pattern (which is formed initially when nine attrac-
tors are present) is imprinted also in the case where only
one attractor exists. As for the most probable number of it-
erations it remains constant to 6, apart obviously from the
first case (ε = 0.8687) where it is equal to 500, due to the
large amount of slow converging points.

4.6 An overview analysis

Even though the CCDs, on the configuration (x, y) plane,
provide sufficient information about the basins of conver-
gence they have a major disadvantage since the information
corresponds to a single value of the transition parameter,
each time. For eliminating this drawback we have to work
on an other type of a two-dimensional plane which will give
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Fig. 18 The distribution of the
corresponding number N of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 17(a–d).
The non-converging points are
shown in white

Fig. 19 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 17(a–d).
The vertical dashed red line
indicates, in each case, the most
probable number N∗ of
iterations
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Fig. 20 The Newton-Raphson
basins of attraction on the
(a-upper left): (x, ε) plane and
(c-lower left): (y, ε) plane,
when ε ∈ (0,1]. The color code
denoting the attractors is the
same as in Fig. 14. The black
horizontal dashed lines indicate
the four critical values of the
transition parameter ε.
Panels (b) and (d): The
corresponding distribution of
the required number N of
iterations for obtaining the
Newton-Raphson basins of
convergence shown in panels (a)
and (c), respectively

us the ability to scan a continuous spectrum of values of ε.
The most convenient way is to set one of the (x, y) coor-
dinates equal to zero and therefore work on the (x, ε) and
(y, ε) planes. In panels (a) and (c) of Fig. 20 we provide
the CCDs with the basins of attraction on the (x, ε) and
(y, ε) plane, respectively, when ε ∈ (0,1]. Panels (b) and
(d) of the same figure contain the corresponding distribu-
tions of the required number N of iterations. In both types
of planes the four critical values of the transition parameter,
εi , i = 1, . . . ,4, are indicated using black horizontal dashed
lines.

The CCDs presented in panels (a) and (c) of Fig. 20 give
an excellent perspective regarding the several types of basins
of attraction and how they are formed (begin and end) be-
tween the critical values of the transition parameter. In both
types of planes we detected a small portion (less than 0.1%)
of non-converging initial conditions. Our numerical analy-
sis indicates that the vast majority of these initial conditions
are true non-converging points. This must be true because
they do not converge, to any of the available attractors, even
after 106 iterations. Perhaps, if we increase the maximum al-
lowed number of iterations to an extremely high limit, these
initial conditions might converge. Nevertheless, for the time
being, we assume that these initial conditions are true non-
converging points. Another interesting aspect concerns the

required number of iterations. Indeed, for ε > ε2 for the
(x, ε) plane, and for ε > ε4, for the (y, ε) plane, near the
center there is a considerable amount of initial conditions
with relatively high values of iterations. Additional numer-
ical computations (not shown here) suggest that the most
probable number of iterations is equal to 5, in both types of
planes.

5 Discussion and conclusions

The aim of this work was to numerically compute the
basins of attraction, associated with the libration points,
in the pseudo-Newtonian planar circular restricted three-
body problem, where the primaries have equal masses. Of
paramount importance was the determination of the influ-
ence of the transition parameter ε on the position as well
as on the stability of the equilibrium points. Using the mul-
tivariate Newton-Raphson iterative scheme we managed to
reveal the beautiful structures of the basins of convergence
on several types of two-dimensional planes. The role of the
attracting domains is very important since they describe how
each initial condition is attracted by the equilibrium points
of the system, which act as attractors. Our numerical inves-
tigation allowed us to monitor the evolution of the geometry
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of the basins of convergence as a function of the transition
parameter. Moreover, the basins of attraction have been suc-
cessfully related with both the corresponding distributions
of the number of required iterations, and the probability dis-
tributions.

As far as we know, there are no previous studies on
the Newton-Raphson basins of convergence in the pseudo-
Newtonian planar circular restricted three-body problem.
Therefore, all the presented numerical outcomes of the cur-
rent thorough and systematic analysis are novel and this is
exactly the importance and the contribution of our work.

The most important outcomes of our numerical analysis
can be summarized as follows:

1. The transition parameter strongly influences the dynami-
cal properties of the system. Varying its value in the inter-
val [0,1] it was found that the total number of the equilib-
rium points changes drastically as several points collide
with each other and disappear, while in other cases new
libration points appear.

2. The vast majority of the equilibrium points remain either
stable or unstable throughout the interval [0,1]. Only the
libration points L1, L4, and L5 change from stable to
unstable, and vice versa, during specific intervals.

3. It was observed that all types of two-dimensional planes
contain a complicated mixture of attracting domains with
highly fractal basin boundaries. In the vicinity of the
basin boundaries, where the degree of fractality is high,
it is almost impossible to know beforehand the final state
of an initial condition.

4. In all examined cases, regarding the numerical value of
the transition parameter ε, the basins of attraction cor-
responding to the central equilibrium point L1 extend to
infinity. On the other hand, the areas of the basins of con-
vergence associated with all the other libration points are
always finite.

5. In some cases during the scanning of the configuration
(x, y) plane we detected a portion of non-converging ini-
tial conditions, especially just above the critical value ε4.
Additional numerical calculation (by setting a much
higher limit of allowed iterations) revealed that these ini-
tial conditions are in fact (extremely) slow converging
points, corresponding to attractor L1.

6. Our analysis regarding the convergence properties of the
(x, ε) and (y, ε) planes reported the existence of a small
amount of non-converging points. In this case, it was
found that these particular initial conditions must be true
non-converging points since they do not converge, to any
of the available attractors, even after 106 numerical iter-
ations.

7. In the configuration (x, y) plane the most probable num-
ber of required iterations, N∗, was found to mainly vary
between 6 and 7 (except of course for values of ε just

above the critical levels), while in the (x, ε) and (y, ε)

planes it was slightly reduced to 5.

For all the calculation, regarding the determination of the
basins of attraction, we used a double precision numerical
code, written in standard FORTRAN 77 (Press et al. 1992).
Furthermore, the latest version 11.1 of Mathematica� (Wol-
fram 2003) was used for creating all the graphical illustra-
tion of the paper. For the classification of each set of ini-
tial conditions, in all types of two-dimensional planes, we
needed about 6 minutes of CPU time, using a Quad-Core i7
2.4 GHz PC.

We hope that the present numerical outcomes to be use-
ful in the active field of basins of convergence in dynam-
ical systems. Since our present exploration, regarding the
attracting domains in the pseudo-Newtonian planar circu-
lar restricted three-body problem, was encouraging it is in
our future plans to expand our investigation. In particular, it
would be of great interest to try other types of iterative for-
mulae (i.e., of higher order, with respect to the classical iter-
ative method of Newton-Raphson) and determine how they
influence the geometry of the basins of convergence.
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