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Abstract We develop a theoretic model to study the lin-
ear stability behaviour of pulsational (gravito-electrostatic)
mode in a self-gravitating, magnetized, collisional, turbu-
lent and unbounded dust molecular cloud (DMC). The ana-
lytic model consists of lighter electrons and ions; and mas-
sive charged dust grains with partial ionization over the
geometrically infinite extension. The semi-empirically ob-
tained Larson logatropic equation of state, correlating all
the thermo-turbo-magnetic pressures concurrently, is in-
cluded afresh to model the constituent fluid turbulence pres-
sures arising because of multiple randomized aperiodic flow
scales of space and time. A linear normal mode analysis
over the slightly perturbed composite cloud, relative to the
defined homogeneous hydrostatic equilibrium, results in a
unique mathematical construct of generalized polynomial
(octic) dispersion relation with different coefficients sen-
sitively dependent upon the diversified equilibrium cloud
parameters. The main features of the modified pulsational
mode dynamics are numerically explored over a commodi-
ous window of parametric values. It is shown and estab-
lished that the grain mass introduces a dispersive stabilizing
effect to the mode (with enhancement in phase speed), and
vice-versa. A spatiotemporal illustrative tapestry is also por-
trayed for further confirmation of the dispersive mode with
sporadic properties. The tentative application of our findings
in different space and astrophysical circumstances is briefly
outlined.
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1 Introduction

The interstellar space, which is the region between stars,
is well known from astronomical observations to be both
magnetized and turbulent in nature (Adams et al. 1994;
Vazquez-Semadeni and Gazol 1995; Gehman et al. 1996;
Mo et al. 2010). The pressures developed due to magnetic
and turbulent effects play a significant role in the active
mechanism of bounded structure formation in the dense
sites of such interstellar media known as dust molecular
clouds (DMCs). The modified waves and instabilities due to
such key kinetic factors play an important role in triggering
new distribution of interstellar fluid materials in the form of
structure formation via various kinetic transport processes
sourced by re-distribution of mass, energy and angular mo-
mentum in the media.

As clearly seen in the past, a number of researchers
have investigated various waves and instabilities of such
complex astrophysical fluids (Pudritz 1990; Adams et al.
1994; Vazquez-Semadeni and Gazol 1995; Gehman et al.
1996; Balsara 1996; Elmegreen and Scalo 2004; Karmakar
2011; Karmakar and Borah 2013; Murray et al. 2017; Ork-
isz et al. 2017). For example, Gehman and his group in-
vestigated the instability behaviors in magnetized turbu-
lent complex astroclouds, thereby revealing mainly that the
magneto-active fluid turbulence introduces a stability influ-
ence against the self-gravitational cloud-collapse dynamics
(Gehman et al. 1996). Even in the nonlinear regime, a num-
ber of investigators have found diversified nonlinear eigen-
modes and eigenpatterns triggering the fragmentation, fila-
mentation and clumping of the global cloud leading to cloud
collapsing as bounded sub-structures (Adams et al. 1994;
Karmakar and Borah 2013). In contrast, the pure charac-
teristic eigen-features (field-free), named as nonlinear pul-
sational mode, in the presence of grain-charge fluctuations
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have also been specifically reported in the literature (Kar-
makar and Borah 2013). The pulsational instability arises
due to the dynamic coupling between the bipolar Coulom-
bic interaction (among constituent charged species) and
unipolar Newtonical interaction (among constituent heavier
species) in a periodic fashion. Moreover, people have stud-
ied also the nonlinear formation processes of stars in self-
gravitating turbulent fluids with the help of high-resolution
simulation techniques (Murray et al. 2017). Recently, the
nonlinear fluctuation dynamics in related magnetized de-
generate plasma environments with the quantum diffraction
effects (Bohm potential) taken into account has been ad-
dressed (Hussain and Mahmood 2017). It has been demon-
strated therein the excitation insights of soliton hump struc-
tures (high-Mach) and soliton dip structures (low-Mach)
in such high-beta (β ∼ 106) plasmas. It can, however, be
noted that the instability analyses of complex magneto-
active turbulent astroclouds, alongside various heteroge-
neous collisional and grain-charge dynamics triggering star-
formation processes, still constitute an open long-standing
long-spurred challenge yet to be well addressed.

The present paper, after being well motivated by the
above astrophysical stability scenarios, is constructed to deal
with the linear pulsational instability analysis of such a
complex molecular cloud with all the key kinetic factors
included afresh. In other words, it includes the effects of
magnetic field, turbulence and collisional dynamics concur-
rently. A standard technique of the Fourier-formulaic-based
normal mode analysis (Tignol 2001) over the slightly per-
turbed cloud yields a generalized linear dispersion relation
(octic in degree) of unique form for the pulsational mode
fluctuations under consideration. A numerical tapestry anal-
ysis (on the basis of a standard root-finder) portrays the
unique characteristic features of the cloud instability dynam-
ics, focusing mainly on the role of dust mass sourcing to
dispersive stability. Lastly, we indicate an elaborate inter-
pretation of the pulsational propagatory dynamics together
with non-trivial implications and futuristic applications in
the astro-cosmic context.

2 Physical and mathematical models

We consider an astrophysical situation of self-gravitating
magnetized collisional dust molecular clouds (DMCs) in
fluid model framework. It compositionally consists of lighter
electrons and ions; and massive negatively charged dust
grains together with partial ionization. The dust grains are
electrically charged, and hence, are coupled to the plasma
through the long-range electromagnetic interactions. It may
be worth mentioning that the grains are composed mainly of
graphites, silicates and metallic compounds (Pandey et al.
1999). The dust grains are assumed to be micro-sphere of

identical shape with variable electric charge due to ran-
dom surface-interactions with the thermal electron-ion cur-
rents (Pandey et al. 1999). For the low-frequency analy-
sis, we consider the dust species to behave as isothermal
(inertial) fluids, whereas the electrons and ions as inertia-
less ones. A global quasi-neutrally is assumed to pre-exist
in the adopted spatially flat-geometry (sheet-like) configu-
ration under hydrostatic homogeneous equilibrium of the
unbounded DMC. The justification of the flat geometry is
that the radius of the cloud curvature is much greater than
all the characteristic scale lengths in the cloud. The com-
plex grainy plasma fluid is turbulent in nature due to ir-
regular aperiodic distribution of flow energy and vorticity.
In other words, the model supports energy cascading pro-
cesses, whereby large-scale flow energy gets transformed
into short-scale ones. The complex admixture of the diver-
sified constituent species is embedded in a uniform back-
ground magnetic field, �B = Bẑ, acting along the z-direction.
The vindication for considering the magnetic field in our
model is that the estimated value of the plasma-beta, β =
4.03 × 10−25(ndTp/B2) � 1 with all the usual notations
in SI units (Bellan 2006) described in the following, which
is also known as the bulk plasma relative thermo-magnetic
pressure ratio, is estimated as small as β ≈ 10−2–10−3.
This is for the realistic magnetic field, B ≈ 10−9–3 × 10−9

Tesla, present in the interstellar molecular clouds (Adams
et al. 1994). As a consequence of the low plasma-beta,
β � 1 (Bellan 2006), the net pressure, comprising of an
isothermal component of the thermal, a logatropic compo-
nent of the turbulent pressure and a quadratic component of
the magnetic pressure, is modelled with the Larson logat-
ropic equation of state (Larson 1981; Lizano and Shu 1989;
Adams et al. 1994; Vazquez-Semadeni and Gazol 1995;
Lada and Kylafis 1999). It may be added that, in the case
of alike magnetized degenerate plasma environments with
the quantum diffraction effects (Bohm potential) taken into
account (Hussain and Mahmood 2017), there is a rapid aug-
mentation in the plasma-beta (β ∼ 106).

The macroscopic state of the astrofluid dynamics is de-
scribed by the continuity, momentum and closed electro-
gravitational Poisson potential distribution equations given
respectively in dimensional form with all the customary
symbols as

∂ne

∂t
+ �∇.(ne �ue) = −νedc(ne − ne0), (1)

0 = −�∇pe − ene
�∇φ − meneνedc �ue, (2)

∂ni

∂t
+ �∇.(ni �ui) = −νidc(ni − ni0), (3)

0 = −�∇pi + eni
�∇φ − miniνidc �ui, (4)

∂ndc

∂t
+ �∇.(ndc �udc) = 0, (5)
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mdcndc

(
∂

∂t
+ �udc. �∇

)
�udc

= −�∇pdc − qdndc
�∇φ − mdcndc

�∇ψ

− mdcndcνcn(�udc − �udn), (6)

∂ndn

∂t
+ �∇.(ndn�udn) = 0, (7)

mdnndn

(
∂

∂t
+ �udn. �∇

)
�udn

= −�∇pdn − mdnndn
�∇ψ − mdnndnνnc(�udn − �udc), (8)

∇2φ = −4π
{
e(ni − ne) − qdndc

}
, (9)

∇2ψ = 4πG(mdcndc + mdnndn). (10)

The dust grain charge-fluctuation dynamics at the cost of the
colliding plasma thermal currents in the presence of inter-
stellar ultra-weak magnetic field (Spitzer 2004) is governed
by

(
∂

∂t
+ �udc. �∇

)
qd = e

[
νed

(
ne − ne0

nd0

)
− νid

(
ni − ni0

nd0

)]
.

(11)

It is, as mentioned before too, clearly seen from (11) that
the grain-charge (LHS) is contributed purely by the random
collisional interaction of the thermal electron-ion currents
(RHS) at the grain surfaces. In other words, if the thermal
species cease to collide (νed, νid ∼ 0) onto the grains, the
grain-charge becomes static (dqd/dt ∼ 0).

The dynamics of the embedded magnetic field lines is
governed by the magnetic induction equation (field lines
frozen-in condition) in the absence of any kind of advective-
convective contribution in the mean fluid (highly conduct-
ing) framework with all the usual notations (Goedbloed and
Poedts 2004) as
(

∂

∂t
+ �va. �∇

)
�B = �∇ × (�va × �B). (12)

The parameters nj , mj , uj and Tj are the population den-
sity, mass, flow velocity and temperature of the j th-species,
respectively. Here, subscript j = e for electrons, i for ions,
dc for charged dust and dn for neutral dust. The nota-
tions, ne0, ni0 and nd0 denote the equilibrium population
densities of electrons, ions and charged dust grains. More-
over, pj is the total pressure composed of three parts: ther-
mal pressure pj(iso) = Tjnj , turbulent pressure pj(turbo) =
Tjnj0 log(ρj /ρ0) and magnetic pressure pj(mag) = B2/8π .
It may be worth mentioning here that, the logatropic equa-
tion of state originally stems in a semi-emperical inter-
vention consistent with observational mensuration of non-
thermal spectral line-widths in the turbulent DMCs (Lar-
son 1981; Lizano and Shu 1989; Adams et al. 1994; Lada

and Kylafis 1999). In a broader sense, the line-width in the
accustomed generic notations is (	υ) ∼ ρ−1/2, which im-
plicates to (	υ)2 = u2

turb = ∂p/∂ρ ≈ p0/ρ, and, finally,
p = p0 log(ρ/ρ0), upon introverted integration. Further, we
consider Te ≈ Ti = Tp � Tdc ≈ Tdn = Td and mdc = mdn =
md . The terms, φ and ψ present respectively the electric
and self-gravitational potentials. Moreover, �va = (�ui − �ue +
�ud) ≈ �ue − �ui denotes the mean fluid velocity contributed
by the ionic flow (�ui ) and electronic flow (�ue) for the con-
sidered cold dust configuration (�ue, �ui � �ud ). Besides, qd

is the grain charge and G (= 6.67 × 10−11 m3 kg−1 s−2)
is the universal gravitational constant representing gravita-
tional coupling. Finally, the symbols νedc , νidc, νcn, νnc , νed

and νid denote the collisional momentum transfer frequen-
cies between the different constituent species as indicated by
the corresponding subscripts (Pandey et al. 2002); respec-
tively.

We are interested in a scale-invariant formalism of the
fluctuations for which a standard scheme of astrophysical
normalization (Karmakar and Borah 2013) is invoked. The
details of the normalizing parameters alongside the typical
values are discussed in Appendix A. Accordingly, the nor-
malized set of (1)–(12) is respectively presented as

∂Ne

∂T
+ ∂

∂X
(NeMe) = −Fedc(Ne − 1), (13)

∂Ne

∂X
+ 1

Ne

∂Ne

∂X
+ α1BN

∂BN

∂X
+ Ne

∂Φ

∂X

+ β1FedcNeMe = 0, (14)

∂Ni

∂T
+ ∂

∂X
(NiMi) = −Fidc(Ni − 1), (15)

∂Ni

∂X
+ 1

Ni

∂Ni

∂X
+ α2BN

∂BN

∂X
− Ni

∂Φ

∂X

+ β2FidcNiMi = 0, (16)

∂Ndc

∂T
+ ∂

∂X
(NdcMdc) = 0, (17)

[
∂Mdc

∂T
+ Mdc

∂Mdc

∂X

]

= −
(

Td

Tp

)
1

Ndc

∂Ndc

∂X
−

(
Td

Tp

)
1

N2
dc

∂Ndc

∂X

− α3
1

Ndc

BN

∂BN

∂X
−

(
qd0

e

)
Qd

∂Φ

∂X
− ∂Ψ

∂X

− Fcn(Mdc − Mdn), (18)

∂Ndn

∂T
+ ∂

∂X
(NdnMdn) = 0, (19)

[
∂Mdn

∂T
+ Mdn

∂Mdn

∂X

]
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= −
(

Td

Tp

)
1

Ndn

∂Ndn

∂X
−

(
Td

Tp

)
1

N2
dn

∂Ndn

∂X
− ∂Ψ

∂X

− Fnc(Mdn − Mdc), (20)

∂2Φ

∂X2
= −μ

[
e(nioNi − neoNe) − ndcoqdoQdNdc

]
, (21)

∂2Ψ

∂X2
= 1

ρ0
md(ndnoNdn + ndcoNdc), (22)

(
∂

∂T
+ Mdc

∂

∂X

)
Qd

= e

qdo

[(
neo

ndco

)
Fed(Ne − 1) −

(
nio

ndco

)
Fid(Ni − 1)

]
,

(23)

∂BN

∂T
= − ∂

∂X
(MaBN). (24)

The normalized position (X) and time (T ) here are nor-
malized by the Jeans length (λJ ) and jeans time (ω−1

J ), re-
spectively. Then, Nj and Mj are the normalized popula-
tion density and fluid velocity of the j th-species, normalized
by their respective equilibrium value (nj0) and dust acous-
tic phase speed (css = √

Tp/md ). Moreover, β1 = me/md

and β2 = mi/md represent the masses of electrons and
ions divided by the grain mass, respectively. Besides, μ =
e/(ρ0mdG) denotes a new electro-gravitational coupling pa-
rameter, where ρ0 is the material density of the cloud. Fur-
ther, the grain charge Qd is the normalized by the equilib-
rium grain charge qd0 = Zd0e, where Zd0 is the equilibrium
dust surface charge number with e as the electronic charge
unit. Furthermore, Φ and Ψ denote the normalized elec-
trostatic and self-gravitational potentials, normalized by the
plasma thermal potential (Tp/e) and square of dust acoustic
phase speed (c2

ss = Tp/md ); respectively. Moreover, Fedc ,
Fidc, Fcn, Fnc, Fed and Fid are the normalized inter-species
collision (indicated by the subscripts as before), each nor-
malized by the Jeans frequency, ωJ = (4πρ0G)1/2. Addi-
tionally, the symbols BN and Ma represent the normalized
magnetic field and mean flow velocity, normalized by equi-
librium magnetic field (B0) and css = √

Tp/md , respec-
tively. Finally, α1 = B2

0/4πne0Tp , α2 = B2
0/4πni0Tp and

α3 = B2
0/4πndc0Tp respectively typify the relative strength

of the inter-species magneto-thermal interactions.

3 Linear analyses

The focal goal of the present investigation lies in the linear
stability analysis of the gravito-electrostatic waves and fluc-
tuations supported in the unbounded dusty cloud of infinite
spatial extension. It, therefore, indicates that any effect of
geometric curvature in the model configuration is irretriev-
ably ignorable. As a first step, we linearly perturb all the

physical dependent variables, appearing in (13)–(24), in the
form of plane waves with the normalized angular frequency
Ω and normalized angular wave number K in accordance
with the standard Fourier techniques (Tignol 2001) as

f (X,T ) = f0 + f1(X,T ) = f0 + f10e
−i(ΩT −KX), (25)

where, the dynamical variables undergoing linear perturba-
tion with amplitude f10 as f = f0 +f1 are f = Ne,Ni,Ndc,

Ndn,Me,Mi,Mdc,Mdn,Φ,Ψ,BN,Qd ; and their homoge-
neous equilibrium values are f0 = 1,1,1,1,0,0,0,0,0,0,

1,1; respectively.
Now, using (25) in (13)–(24), one gets the following re-

spective linearized set of algebraic equations in the Fourier
space defined by (Ω,K) as

Me1 = (Ω + iFedc)K
−1Ne1, (26){

2iK + β1Fedc(iΩ − Fedc)(iK)−1}Ne1

+ iα1KBN1 + iKΦ1 = 0, (27)

Mi1 = (Ω + iFidc)K
−1Ni1, (28){

2iK + β2Fidc(iΩ − Fidc)(iK)−1}Ni1

+ iα2KBN1 − iKΦ1 = 0, (29)

Mdc1 = ΩK−1Ndc1, (30){
2i

(
Td

Tp

)
K − iΩ2K−1 + FcnΩK−1

}
Ndc1

= −iα3KBN1 − i

(
qd0

e

)
KΦ1 − iKΨ1

+ FcnMdn1, (31)

Mdn1 = ΩK−1Ndn1, (32){
2i

(
Td

Tp

)
β3K − iΩ2K−1 + FncΩK−1

}
Ndn1

= −iKΨ1 + FncΩK−1Ndc1, (33)

K2Φ1 = μ
[
e(ni0Ni1 − ne0Ne1) − qd0ndc0(Qd1 + Ndc1)

]
,

(34)

K2Ψ1 = − 1

ρ0
md [ndn0Ndn1 + ndc0Ndc1], (35)

iΩQd1 = −
(

e

qd0

)[(
ne0

ndc0

)
FedNe1 −

(
ni0

ndc0

)
FidNi1

]
,

(36)

BN1 = (
Ω−1K

)
Ma1 = (

Ω−1K
)
(Mi1 − Me1). (37)

We now carry out a systematic algebraic exercise to trans-
form (26)–(37) into the following generalized dispersion re-
lation as
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Ω8 + A7Ω
7 + A6Ω

6 + A5Ω
5 + A4Ω

4 + A3Ω
3

+ A2Ω
2 + A1Ω + A0 = 0, (38)

where, the different coefficients, A7–A0, are presented ex-
plicitly in Appendix B.

It is seen that the obtained dispersion relation (see (38)) is
octic in structure; so, it has eight roots. By using the methods
of decomposition (Lindfield and Penny 2012) and of Fer-
rari (Tignol 2001), we analytically obtain all the eight roots.
To see the sensible real stability behavior of the considered
model as per the present motivation, the root with positive
real part (Ωr > 0) and negative imaginary part (Ωi < 0)
are solely physically acceptable for realistic fluctuations to
evolve. This choice of the roots enables us to investigate the
stability mechanism as per our present goal too. We, there-
fore, choose only the seventh root, out of the eight roots of
(38) containing the spurious ones as well, given as

Ω = Ω7 = −A7

8
+ S2 + 1

2

[
−4S2

2 − 2p2 − q2

S2

]1/2

, (39)

where,

p2 = 1

8

[
8

(
A6

2
− A2

7

8
+ A9

)
− 3

(
A7

2

)2]
,

q2 = 1

8

[(
A7

2

)3

− 4

(
A5

2
− A6A7

4
+ A3

7

16
+ A10

A9

)

×
(

A7

2
− 2

)]
,

S2 = 1

2

[
−2

3
p2 + 1

3

(
c1 + c0

c1

)]1/2

,

c1 =
[

1

2

{
b1 + (

b2
1 − 4c3

0

)1/2}]3/2

,

b1 =
[

2

(
A6

2
− A2

7

8
+ A9

)3

− 9

(
A7

2

)(
A6

2
− A2

7

8
+ A9

)

×
(

A5

2
− A6A7

4
+ A3

7

16
+ A10

A9

)

+ 27A
1/2
0

(
A7

2

)2

+ 27

(
A5

2
− A6A7

4
+ A3

7

16
+ A10

A9

)2

− 72A
1/2
0

(
A6

2
− A2

7

8
+ A9

)]
,

c0 =
[(

A6

2
− A2

7

8
+ A9

)2

− 3

(
A7

2

)(
A5

2
− A6A7

4
+ A3

7

16
+ A10

A9

)
+ 12A

1/2
0

]
,

A9 =
[(

A6

2
− A2

7

8

)2

+ 2A
1/2
0

+ A7

(
A5

2
− A6A7

4
+ A3

7

16

)]
,

A10 =
[
−

(
A3

2

)
+ A

1/2
0

(
A7

2

)

+
(

A6

2
− A2

7

8

)(
A5

2
− A6A7

4
+ A3

7

16

)]
.

4 Results and discussion

The work presented here aims to explore the linear stabil-
ity of gravito-electrostatic (pulsational) waves in the par-
tially ionized DMC. For this purpose, the hydrostatic ho-
mogeneous equilibrium model is methodologically reduced
to derive a generalized polynomial octic dispersion relation
(see (38)). We numerically analyze the system in the judi-
cious plasma parameter windows (Adams et al. 1994; Ver-
heest 2002; Pandey et al. 2002; Karmakar and Borah 2013;
Dutta et al. 2016). The numerical outcomes are shown
graphically in Figs. 1, 2 and 3.

As in Fig. 1, we show the profile of the normalized
(a) real frequency (Ωr ), and (b) damping rate (Ωi ) of the
gravito-electrostatic fluctutations with variation in the nor-
malized wave number (K). Various lines correspond to (a):
md = 2 × 10−11 kg (blue line), (b): md = 3 × 10−11 kg (red
line), and (c): md = 4 × 10−11 kg (black line); respectively.
The other parameters kept fixed are ne0 = 1.20 × 1012 m−3,
ni0 = 4.95 × 1012 m−3, ndc0 = 2.35 × 106 m−3, ndn0 =
4 × 106 m−3, qd0 = 100e, Tp = 1.00 eV, Td = 2.00 ×
10−2 eV, B0 = 1 × 10−3 μT, νedc/ωJ = 0.1, νidc/ωJ = 0.1,
νdcn/ωJ = 0.1 and νndc/ωJ = 0.1. It is seen that the real
frequency (Fig. 1(a)) and damping (Fig. 1(b)) rate increase
with increase in the dust mass, md . It is noticeable that, there
exists a critical value in the angular wave number space,
Kc ≈ 0.18, above which the pulsational fluctuations prop-
agate as a dispersive mode, but with damping in amplitude.
This happens physically due to the fact that enhanced grain
mass increases the strength of gravitational interaction lead-
ing to a reorganized stabilized equilibrium amid the periodic
gravito-electrostatic counter-play. Thus, it enables us to con-
clude that the dust mass (md ) plays a stabilizing influential
role to the wave fluctuation dynamics under consideration
dispersively.

Figure 2 depicts the profile of the normalized (a) group
velocity (VG), and (b) group dispersion (DG) of the fluctu-
tations with variation in the normalized angular wave num-
ber (K) under the same conditions as Fig. 1. Here, we see
the magnitude of both VG (Fig. 2(a)) and DG (Fig. 2(b))
increase with increase in K . It indicates that the fluctu-
ations in the astro-fluid medium are dispersive in nature.
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Fig. 1 Profile of the normalized (a) real frequency (Ωr ), and (b)
damping rate (Ωi ) of the gravito-electrostatic fluctutations with vari-
ation in the normalized wave number (K). Various lines correspond
to (a): md = 2 × 10−11 kg (blue line), (b): md = 3 × 10−11 kg (red
line), and (c): md = 4 × 10−11 kg (black line); respectively. The other

parameters kept fixed are ne0 = 1.20 × 1012 m−3, ni0 = 4.95 ×
1012 m−3, ndc0 = 2.35 × 106 m−3, ndn0 = 4 × 106 m−3, qd0 = 100e,
Tp = 1.00 eV, Td = 2.00 × 10−2 eV, B0 = 1 × 10−3 μT, νedc/ωJ =
0.1, νidc/ωJ = 0.1, νdcn/ωJ = 0.1, and νndc/ωJ = 0.1

Fig. 2 Profile of the normalized
(a) group velocity (VG), and
(b) group dispersion (DG) of
the gravito-electrostatic
fluctutations with variation in
the normalized wave number
(K). The fine details are the
same as Fig. 1

Fig. 3 Profile of the normalized
(a) real frequency (Ωr ), and
(b) damping rate (Ωi ) of the
gravito-electrostatic
fluctutations with variation in
the normalized wave number
(K) and unnormalized dust
mass (md in kg). The ‘zero’ on
the md -scale signifies
md ≈ 10−21 kg. The fine details
are the same as disscused in
Fig. 1 in the text

In other words, the medium through which fluctuations
propagate is relatively dispersive in character. It is seen
that, in the ultra low-frequency domain (K → 0), the long-
wavelength fluctuations (gravitational) undergo group diper-
sion of singular (Fig. 2(b)). It means that the ultra low-
frequency perturbations are spectrally degenerate in the de-
fined Fourier space. Moreover, it is interesting to note that
DG > 0, which indicates that in a wave packet model, the
waves of shorter wavelength propagate faster in a time du-
ration than the longer wavelength ones. It exhibits that the

plasma medium spectrally behaves as an anamolous disper-
sive medium (DG > 0); but, not as a normal dispersive one
(DG < 0).

Finally, Fig. 3 shows the spectral profile of (a) real fre-
quency (Ωr ), and (b) damping rate (Ωi ) of the gravito-
electrostatic fluctutations with conjoint variation in the nor-
malized wave number (K) and unnormalized dust mass (md

in kg) concurently. The fine details are the same as Fig. 1,
but the grain mass lies in the range of md ∼ 10−9–10−21 kg
in the realistic cloud parametric window (Verheest 2002). It
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may be noted here that the ‘zero’ on the md -scale (Fig. 3)
signifies md ≈ 10−21 kg. We see that Ωr (Ωi ) increases
(decreases) with increase in both K and md , but the wave
amplitude decreases. Thus, the graphical findings now com-
prehensively confirm the stability characteristic features of
the pulsational mode fluctuations as depicted before as well
(Figs. 1 and 2).

In addition to the above, it is seen that the mean phase
velocity of the fluctuations is 〈vp〉 ≈ 1.6 × 10−1css (as in
Fig. 1(a)). It means that the linear pulsational modes propa-
gate through the cloud plasma fluid with velocities roughly
comparable with the usual fluid acoustic phase velocity. It
can further be seen that the real value of the mode fre-
quency comes out as ωr = ΩrωJ = 2.7 × 10−1 μHz. This
indeed validates our low-frequency pulsational mode sta-
bility analysis in complex charge-varying magnetized tur-
bulent astrofluids amid homogeneous quasi-neutral hydro-
static equilibrium. Here, we want to present a quantitative
glance on the pulsational fluctuations under the auspice of
normal cloud multi-parametric window (Bliokh et al. 1995;
Verheest 2002). The physical strength of the electrostatic
fluctuations can be ∼ 2 V for Tp ∼ 104 K; while, the grav-
itational fluctuations can go as ∼ 10−10 J kg−1 for md =
10−8 kg and Tp ∼ 104 K. The smallness in the gravito-
electrostatic potential strengths is subject to the chosen
multi-parametric set of diverse plasma properties considered
in different astro-plasma circumstances.

5 Conclusions

The pulsational instability phenomena in complex charge-
varying magnetized turbulent astrofluids are theoretically in-
vestigated in the framework of multi-fluidic approach. The
instability behaviors, depending mainly on the dust mass,
are illustrated numerically in detail. It is shown that the grain
mass acts as a dispersive stabilizing source to the instability.
In addition, the main conclusive remarks are presented as
follows

1. A theoretical model study of the pulsational mode in-
stability in complex charge-fluctuating, magnetized, tur-
bulent and collisional astroclouds is procedurally con-
structed.

2. The gravito-electrostatic (pulsational) instability is char-
acterized to have both propagatory and dispersive fea-
tures.

3. The dust grain introduces both dispersive and stabilizing
sources to the instability.

4. The instability propagates through the plasma fluid with
velocities approximately comparable with the usual dust
acoustic phase velocity.

5. The group dispersion of the pulsational instability inter-
estingly exhibits a singular type of behaviors in the ultra

low-frequency domain; whereas, the dispersion turns into
an intermittent (sporadic) pattern in the relatively high-
frequency domain.

6. The propagatory features of the pulsational wave dynam-
ics are further illustratively confirmed also in the frame-
work of mass-energy-spectral integration scheme.

It is an important point to be admitted here that the
simplistic choice of the normalizing velocity as the dust
acoustic phase speed, instead of the effective fluid acous-
tic speed contributed by both the normal acoustic speed and
turbulence-induced speed (Mo et al. 2010), may not be phys-
ically so justifiable in highly turbulent cloud complexes. The
presented analysis, amid some facts and faults however, may
be commodiously useful in understanding the formation in-
sights of dusty structures, associated wave instability pro-
cesses, and early phases of large-scale bounded structures
via global gravitating cloud collapse in astro-cosmic envi-
ronments.
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Appendix A: Description of normalization
procedure

We present the estimated values of the normalizing parame-
ters in our defined normalizing scheme in Table 1. The dif-
ferent inputs employed in the estimation are validated for
the realistic space, astrophysical and cosmic environments
from different sources available in the literature (Shukla and
Mamun 2002; Verheest 2002; Khare and Shukla 2006; Kar-
makar and Borah 2013; Karmakar and Haloi 2017; Kar-
makar and Haloi 2017; Karmakar and Das 2017). The dust
mass used for the calculation lies in the range of ≈ 10−9–
10−21 kg (Verheest 2002). The cloud plasma temperature is
Tp = 1.00 eV (Verheest 2002; Karmakar and Borah 2013;
Dutta et al. 2016)

Appendix B: Various dispersion coefficients

The derived polynomial dispersion relation (see (38)) has
diversified dispersion coefficients, which are dependent on
the equilibrium cloud plasma parameters, presented respec-
tively as

A7 = [
a−1

1 a2 + a−1
8 a9 + a−1

15 a16 − a19a
−1
21

]
,

with

a1 = (β1Fedc)K
−1,
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Table 1 Adopted astrophysical normalizing scheme

S No Normalized parameter
(symbol)

Normalizing parameter (formula) Normalizing parameter (typical value and source)

1. Distance (X) Jeans length (λJ = √
Tp/4πρ0mdG) 1.05 × 101–1.05 × 1013 m

(Inputs from Verheest 2002; Karmakar and Borah 2013;
Dutta et al. 2016)

2. Time (T ) Jeans time (ω−1
J = −1

√
4πρ0G) 8.33 × 105–8.33 × 1011 s

(Inputs from Verheest 2002)

3. Plasma number density (N) Equilibrium plasma (dust-free)
density (n0)

1012–1016 m−3

(Shukla and Mamun 2002)

4. Dust density (Nd ) Equilibrium dust density (nd0) 106–1012 m−3

(Shukla and Mamun 2002; Khare and Shukla 2006;
Karmakar and Borah 2013)

5. Fluid flow velocity (Md ) DAW phase speed (css = √
Tp/md ) 1.26 × 10−5–1.26 × 101 m s−1

(Inputs from Verheest 2002; Karmakar and Borah 2013;
Dutta et al. 2016)

6. Electrostatic potential (Φ) Thermal potential (Tp/e) 1.00 V
(Inputs from Verheest 2002; Karmakar and Borah 2013;
Dutta et al. 2016)

7. Gravitational potential (Ψ ) Square of DAW phase speed
(c2

ss = Tp/md )
1.6 × 10−10–1.6 × 102 m2 s−2

(Inputs from Verheest 2002; Karmakar and Borah 2013;
Dutta et al. 2016)

a2 = i(2 − α1)K + i
(
β1F

2
edc − ne0eμ

)
K−1,

a8 = (β2Fidc)K
−1,

a9 = i(2 + α2)K + i
(
β2F

2
idc − ni0eμ

)
K−1,

a15 = −K−1,

a16 = FcnK
−1,

a19 = −FncK
−1,

a21 = −iK−1;

A6 = [
a1a3 + a−1

8

{
a9

(
a−1

15 a16 − a19a
−1
21

)
+ a10 + a−1

1 (a2a9 − a4a7) − a−1
21 a22

− a−1
15 a17 − a−1

1 a2
(
a16a

−1
15 − a19a

−1
21

)}]
,

with

a3 = (α1Fedc)K + (ne0eμ)FedcK
−1,

a4 = iα1K + i(ni0eμ)K−1,

a7 = iα1K + i(ne0eμ)K−1,

a10 = −(α2Fidc)K + (ni0eμFidc)K
−1,

a17 = 2i

(
Td

Tp

)
K + i

{
ndc0

(
q2
d0

e

)
μ + mdndc0ρ

−1
0

}
K−1,

a22 = 2i

(
Td

Tp

)
K − imdndn0ρ

−1
0 K−1;

A5 = (a8a15a21)
−1[a−1

1

{
a2a8(a15a22 + a17a21)

− (a15a19 − a16a21)(a2a9 + a3a8 − a4a7)

+ (a15a21)(a2a10 + a3a9 − a5a7)

+ a3a4a6a11a21 − a6a8a10a21
}

+ a8(a16a22 − a17a19 − a18a19 + a16a20)

+ a9(a15a22 + a17a21) − a10(a15a19 − a16a21)

− a6a13a21
]
,

with

a5 = −(α1Fidc)K − (ni0eμFidc)K
−1,

a6 = −i(qd0ndc0μ)K−1,

a11 = −iα3K − i(ne0qd0μ)K−1,

a13 = iα3K + i(ni0qd0μ)K−1,

a18 = −imdndn0ρ
−1
0 K−1;

A4 = (a8a15a21)
−1[a8(a17a22 − a18a20)

+ a9(a16a22 − a17a19 − a18a19 + a16a20)

+ a10(a15a22 + a17a21) + a6(a13a19 − a14a21)

+ a−1
1

[
a2a8(a16a22 − a17a19 − a18a19 + a16a20)

+ (a15a22 + a17a21)(a2a9 + a3a8 − a4a7)

− (a15a19 − a16a21)
{
a2a10 + a3(a4 + a9) − a5a7

}
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− a6a21(a2a13 − a7a13 + a8a12)

+ a3a15a21(a5 + a10)

+ a6a11
{
a21(a4 − a9) + a8a19

}]]
,

with

a12 = (α3Fedc)K + (ne0qd0μFed)K−1,

a20 = −i
(
mdndc0ρ

−1
0

)
K−1;

A3 = (a8a15a21)
−1[a9(a17a22 − a18a20)

+ a10(a16a22 − a17a19 − a18a19 + a16a20)

− a6(a13a22 − a14a19)

+ a−1
1

{
a2a8(a17a22 − a18a20)

+ (a16a22 − a17a19 − a18a19 + a16a20)

× (a2a9 + a3a8 − a4a7)

+ (a15a22 + a17a21)
{
a2a10 + a3(a4 + a9) − a5a7

}
+ a6

{
a2(a13a19 − a14a21) − 2a3a13a21

− a4(a11a19 − a12a21) + a5a11a21

− a7(a13a19 − a14a21)

− a11(a8a22 − a9a19 + a10a21)

+ a12(a8a9 − a9a21)
}}]

,

with

a14 = −(α3Fidc)K − (ni0qd0μFid)K−1;

A2 = (a8a15a21)
−1[a10(a17a22 − a18a20) − a6a14a22

+ a−1
1

{
(a17a22 − a18a20)(a2a9 + a3a8 − a4a7)

+ (a16a22 − a17a19 − a18a19 + a16a20)

× {
a2a9 + a3(a4 + a9) − a5a7

}
− a6

{
a2(a13a22 − a14a19) − 2a3(a13a19 − a14a21)

− a4(a11a22 − a12a19) + a5(a11a19 − a12a21)

− a7(a13a22 − a14a19) + a11(a9a22 − a10a19)

+ a12(a8a22 − a9a19 + a10a21
}

+ a3(a15a22 + a17a21)(a5a10)
}]

,

A1 = [
(a1a8a15a21)

−1

× [
(a17a22 − a18a20)(a2a10 + a3a9 − a4a7)

− a6
[
a2a14a22

+ a3
{
a13(a22 − a19) − a14(a19 − a21)

}

− a4(a11a22 − a12a19) + a5(a11a19 − a12a21)

− a7(a13a22 − a14a19) + a11(a9a22 − a10a19)

+ a12(a8a22 − a9a19 + a10a21)
]

+ {
a16(a20 + a22) − a19(a17 + a18)

}
× {

a3(a4 + a10) − a5a7
} + a5(a15a22 + a17a21)

]]
,

A0 = (a1a8a15a21)
−1[a3(a17a22 − a18a20)(a5 + a10)

− a6
{
a12(a8a22 − a9a19 + a10a21)

+ a22(2a3a14 − a5a12)
}]

.
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