
Astrophys Space Sci (2017) 362:154
DOI 10.1007/s10509-017-3133-9

O R I G I NA L A RT I C L E

Bianchi type-II universe with wet dark fluid in general theory
of relativity

Chandra Rekha Mahanta1 · Azizur Rahman Sheikh1

Received: 19 December 2016 / Accepted: 1 July 2017 / Published online: 2 August 2017
© Springer Science+Business Media B.V. 2017

Abstract In this paper, dark energy models of the universe
filled with wet dark fluid are constructed in the frame work
of LRS Bianchi type-II space-time in General Theory of
Relativity. A new equation of state modeled on the equation
of state p = γ (ρ − ρ∗), which can describe liquid including
water, is used. The exact solutions of Einstein’s field equa-
tions are obtained in quadrature form and the models cor-
responding to the cases γ = 0 and γ = 1 are discussed in
details.

Keywords Bianchi type-II · Wet dark fluid · Anisotropy ·
Deceleration

1 Introduction

The studies of remote type Ia supernova (SNeIa) in 1998
(Perlmutter et al. 1998, 1999; Riess et al. 1998, 2004) sug-
gest that the expansion of the universe is accelerating. This
discovery is viewed as a major breakthrough of the obser-
vational cosmology as till 1998 it was thought that the uni-
verse was expanding with deceleration due to the attraction
of the masses within it. The accelerated expansion of the
universe can be accounted for by attributing 68.3% (Ade
et al. 2014) of the energy density of the universe to a myste-
rious source of energy, dubbed dark energy (DE) with neg-
ative pressure, the true nature of which is still unknown.
However, there is no dearth of candidates for DE proposed
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in literature. Some of them are the Cosmological constant
(Λ), Quintessence (Ratra and Peebles 1988; Caldwell 1998),
K-essence (Armendariz-Picon et al. 1999, 2001), phantom
energy (Caldwell 2002, 2003; Carroll et al. 2003), Chaply-
gin gas (Kamenshchik et al. 2001) etc. Holman and Naidu
(2005) introduced a new candidate for DE, called the wet
dark fluid (WDF) with the equation of state (EOS)

pw = γ (ρw − ρ∗) (1)

where pw is the pressure, ρw the energy density of WDF and
the parameters γ and ρ∗ are taken to be positive with the re-
striction 0 < γ < 1. Babichev et al. (2005) also proposed a
dark energy model with a linear equation of state similar to
(1), which is p = α(ρ − ρ0), where α and ρ0 are free pa-
rameters, to overcome the hydrodynamical instability of the
dark energy with the usually used EOS p = ωρ where ω =
constant < 0. They discussed four different types of evolu-
tion of the universe depending on the signs of 1+α and αρ0.
Equation (1) is modeled on an empirical EOS proposed by
Tait (1988) and Hayward (1967) to treat water and aqueous
solutions. WDF has two components: one of them behaves
as the Cosmological constant and the other as standard fluid
including water. The second component can be used as dark
matter. Thus, WDF unifies the two dark components. Many
authors like Singh and Chaubey (2008), Adhab et al. (2010),
Chaubey (2009, 2011), Katore et al. (2012), Ravishankar
et al. (2013), Chirde and Rahate (2013), Deo et al. (2014),
Kandalkar et al. (2014) studied WDF in different contexts.

Though it is believed that our universe is spatially flat,
some experimental data have suggested that our present uni-
verse is not perfectly flat, but it possesses a small curva-
ture (Bennet et al. 2003; Spergel et al. 2003). In this sce-
nario, Bianchi type metrics are suitable for studying the
evolution of the universe as these give anisotropy and el-
lipsoidality to the universe. However, the Bianchi models
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isotropize at late times even for ordinary matter. In fact this
isotropization is due to the implicit assumption that the DE
is isotropic in nature. Bianchi type-II space-time models can
be used to construct cosmological models suitable for de-
scribing early stages of evolution of the universe. Recently,
Pradhan et al. (2011), Kumar and Akarsu (2012), Singh and
Kumar (2006), Saha and Yadav (2012) have studied Bianchi
type-II models in different contexts.

In this paper, we present cosmological models in the
framework of LRS Bianchi type-II space-time with wet dark
fluid. We have used the EOS (1) for WDF with the restric-
tion 0 ≤ γ ≤ 1. The paper is organized as follows: In Sect. 2
we obtain field equations for LRS Bianchi type-II metric and
in Sect. 3, we obtain exact solutions for the field equations
in quadrature form. In Sect. 4, we discuss some particular
cases of the obtained results together with their physical
properties. We conclude the paper with a brief discussion
in Sect. 5.

2 Metric and field equations

We consider anisotropic LRS Bianchi type-II metric in the
form

ds2 = −dt2 + A2(dx − zdy)2 + B2(dy2 + dz2) (2)

where A and B are directional scale factors and are func-
tions of cosmic time t alone.

The Einstein’s field equations are given by

Rij − 1

2
Rgij = kTij (3)

where k is the gravitational constant and Tij is the energy-
momentum tensor for WDF and is given by

T
j
i = (ρw + pw)uiu

j − pwg
j
i (4)

where ui is the flow vector satisfying

giju
iuj = 1 (5)

In comoving co-ordinates, the field equations (3) with re-
spect to the metric (2) are found to be

2
ȦḂ

AB
+

(
Ḃ

B

)2

− 1

4

A2

B4
= kρw (6)

Ä

A
+ B̈

B
+ ȦḂ

AB
+ 1

4

A2

B4
= −kpw (7)

2
B̈

B
+

(
Ḃ

B

)2

− 3

4

A2

B4
= −kpw (8)

where an over dot denotes differentiation with respect to t .

The equation of continuity is

ρ̇w + 3H(ρw + pw) = 0 (9)

where H is the average Hubble parameter given by

3H = V̇

V
= Ȧ

A
+ 2

Ḃ

B
(10)

The volume expansion parameter V is given by

V = AB2 (11)

The expansion scalar θ , anisotropy parameter Δ, shear
scalar σ 2 and the deceleration parameter q , which is a di-
mensionless measure of the cosmic acceleration of the ex-
pansion of the universe, are defined by

θ = V̇

V
= Ȧ

A
+ 2

Ḃ

B
(12)

Δ = 1

3

3∑

i=1

[Hi − H ]2

H 2
= 2

3H 2

(
Ȧ

A
− Ḃ

B

)2

(13)

σ 2 = 1

2

[
3∑

i=1

H 2
i − 1

3
θ2

]

= 3

2
ΔH 2 (14)

q = d

dt

(
1

H

)
− 1 (15)

Again, using (1) in (9) with H = 1
3

V̇
V

and integrating we get

ρw = C

V 1+γ
+ γ

1 + γ
ρ∗ (16)

where C(> 0) is a constant of integration.

3 The solution of the field equations

From (6)–(8), we have

Ä

A
+ 2

B̈

B
+ 4

ȦḂ

AB
+ 2

(
Ḃ

B

)2

− A2

2B4
= 3k

2
(ρw − pw) (17)

Again, from (10)

V̈

V
= Ä

A
+ 2

B̈

B
+ 4

ȦḂ

AB
+ 2

(
Ḃ

B

)2

(18)

Using (18) in (17), we get

V̈

V
− A2

2B4
= 3k

2
(ρw − pw) (19)

Equations (9) and (19) with H = 1
3

V̇
V

yield

V̇ V̈

V 2
− A2

2B4

V̇

V
− 3k

2
ρ̇w = 3k

V̇

V
ρw (20)



Bianchi type-II universe with wet dark fluid in general theory of relativity Page 3 of 6 154

which can be put in the form

2V̇ V̈ − A2

B4
V V̇ = 3k

d

dt

(
V 2ρw

)
(21)

Now, we have three equations (6)–(8) and four unknown pa-
rameters A, B , ρw and pw . So, we require one more physi-
cal condition relating the parameters to solve the equations
completely. For this purpose, we take

B = Am (m > 0) (22)

From (11) and (22) we get

A = V
1

2m+1 , B = V
m

2m+1 (23)

Equations (21) and (23) yield

2V̇ V̈ − V
3−2m
2m+1 V̇ = 3k

d

dt

(
V 2ρw

)
(24)

Again, from (7) and (8)

Ä

A
− B̈

B
+ ȦḂ

AB
−

(
Ḃ

B

)2

+ A2

B4
= 0 (25)

Using (23) in (25) we get

V̈ + 2m + 1

1 − m
V

3−2m
2m+1 = 0 (m �= 1) (26)

which yields

V
3−2m
2m+1 = m − 1

2m + 1
V̈ (27)

Using (27) in (24) we get

2V̇ V̈ = 2k(2m + 1)

m + 1

d

dt

(
V 2ρw

)
(28)

On integration, (28) yields

V̇ 2 = C2ρwV 2 + C1 (29)

where C1 is the integration constant and

C2 = 2k(2m + 1)

m + 1
(30)

Equation (29) with (16) yields

∫
dV

√
C2(

C

V 1+γ + γ
1+γ

ρ∗)V 2 + C1

= t + t0 (31)

where t0 is the integration constant. We may take t0 = 0 as
this will only shift the origin of time.

4 Some particular cases

Case I: γ = 0 (dust universe) Equation (31) reduces to

∫
dV√

CC2V + c1
= t (32)

which yields

V = CC2

4
t2 − C1

CC2
(33)

A =
(

CC2

4
t2 − C1

CC2

) 1
2m+1

(34)

B =
(

CC2

4
t2 − C1

CC2

) m
2m+1

(35)

V̇

V
= 2t

t2 − 4C1
C2C2

2

(36)

Ȧ

A
= 2t

(2m + 1)(t2 − 4C1
C2C2

2
)

(37)

Ḃ

B
= 2mt

(2m + 1)(t2 − 4C1
C2C2

2
)

(38)

H = 2t

3(t2 − 4C1
C2C2

2
)

(39)

θ = 2t

t2 − 4C1
C2C2

2

(40)

Δ = 6(m − 1)2

(2m + 1)2
(41)

σ 2 = 4(m − 1)2t2

(2m + 1)2(t2 − 4C1
C2C2

2
)2

(42)

ρw = 4C

CC2t2 − 4C1
CC2

(43)

pw = 0 (44)

q = 1

2
+ 6C1

C2C2
2 t2

(45)

Since, V is positive at t = 0, therefore, C1 < 0.
We take

C1 = −C3, C3 > 0 (46)

Equation (45) shows that q ≤ 0 when |t | ≤ 2
√

3C3
CC2

and q > 0

when |t | > 2
√

3C3
CC2

. V decreases for − 2
√

3C3
CC2

< t < 0, in spite
of q being negative. But, this is not physically possible.
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Again, for early inflationary universe, q < 0. Hence, the uni-
verse starts at t = 0 and then expands with acceleration till

t <
2
√

3C3
CC2

and with deceleration thereafter.
A, B , V are all finite at t = 0 and increase to ∞ as t

increases to ∞.
ρw is finite at t = 0 and decreases to zero as t increases

to ∞.
Since, Δ �= 0 (for m �= 1), the universe is anisotropic

throughout its evolution although the WDF in it is isotropic.

Case II: γ = 1 (Zeldovich fluid) Equation (31) reduces
to
∫

dV
√

C1 + CC2 + C2ρ∗
2 V 2

= t (47)

which yields

V = e

√
C2ρ∗

2 t
, if C1 + CC2 = 0 (48)

V =
√

2(C1 + CC2)

C2ρ∗
sinh

(√
C2ρ∗

2
t

)
,

if C1 + CC2 > 0 (49)

V =
√

−2(C1 + CC2)

C2ρ∗
cosh

(√
C2ρ∗

2
t

)
,

if C1 + CC2 < 0 (50)

Subcase II(a) When C1 + CC2 = 0, we have

V = e

√
C2ρ∗

2 t (51)

A = e

√
C2ρ∗

2 t

2m+1 (52)

B = e

m(

√
C2ρ∗

2 t)

2m+1 (53)

V̇

V
=

√
C2ρ∗

2
(54)

Ȧ

A
=

√
C2ρ∗

2

2m + 1
(55)

Ḃ

B
=

m

√
C2ρ∗

2

2m + 1
(56)

H = 1

3

√
C2ρ∗

2
(57)

θ =
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C2ρ∗
2

(58)

Δ = 6(m − 1)2

(2m + 1)2
(59)

σ 2 = C2ρ∗(m − 1)2

2(2m + 1)2
(60)

ρw = C

e
√

2C2ρ∗t
+ ρ∗

2
(61)

pw = C

e
√

2C2ρ∗t
− ρ∗

2
(62)

q = −1 (63)

A, B , V are all zero at t = −∞, unity at t = 0 and infinite
at t = ∞.

Since, q < 0 for all t , the universe starts from big bang at
t = −∞ and expands with acceleration throughout its evolu-
tion. Since, dH

dt
= 0, in this case the universe has the fastest

rate of expansion.
ρw and pw are both infinite at t = −∞, and decreases to

ρ∗
2 and −ρ∗

2 respectively as t increases to ∞.
Since, Δ �= 0 (for m �= 1), the universe is anisotropic

throughout its evolution.

Subcase II(b) For C1 + CC2 > 0, we have

V =
√

2(C1 + CC2)

C2ρ∗
sinh

(√
C2ρ∗

2
t

)
(64)
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[√
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2
t

)] 1
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2
t
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(66)
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V
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√
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2
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2
t

)
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A
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√
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2

2m + 1
coth
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2
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)
(68)

Ḃ

B
=
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2
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coth
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2
t

)
(69)

H = 1

3

√
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2
coth
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2
t

)
(70)

θ =
√

C2ρ∗
2

coth
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2
t

)
(71)

Δ = 6(m − 1)2

(2m + 1)2
(72)

σ 2 = C2ρ∗(m − 1)2

2(2m + 1)2
coth2

(√
C2ρ∗

2
t

)
(73)

ρw = CC2ρ∗
2(C1 + CC2)

cosech2
(√

C2ρ∗
2

t

)
+ ρ∗

2
(74)
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pw = CC2ρ∗
2(C1 + CC2)

cosech2
(√

C2ρ∗
2

t

)
− ρ∗

2
(75)

q = 3 sech2
(√

C2ρ∗
2

t

)
− 1 (76)

Since, V is negative when t < 0, therefore, t ≥ 0 in this case.

But, q > 0 when 0 ≤ t <
√

2
C2ρ∗ ln(

√
3 + √

2) and q < 0

when t >

√
2

C2ρ∗ ln(
√

3 + √
2). Again, for early inflation-

ary universe q < 0. Hence, the universe starts at t = t0 =√
2

C2ρ∗ ln(
√

3+√
2) and expands with acceleration through-

out its evolution.
A, B , V are all finite at t = t0, increase with t and become

infinite at t = ∞.
ρw and pw are both finite at t = t0 and decrease to ρ∗

2 and
−ρ∗

2 respectively as t increases to ∞.
Since, Δ �= 0 (for m �= 1), the universe is anisotropic

throughout its evolution.

Subcase II(c) For C1 + CC2 < 0, we have

V =
√

−2(C1 + CC2)

C2ρ∗
cosh

(√
C2ρ∗

2
t

)
(77)

A =
[√

−2(C1 + CC2)

C2ρ∗
cosh

(√
C2ρ∗

2
t

)] 1
2m+1

(78)

B =
[√

−2(C1 + CC2)

C2ρ∗
cosh

(√
C2ρ∗

2
t

)] m
2m+1

(79)

V̇

V
=

√
C2ρ∗

2
tanh

(√
C2ρ∗

2
t

)
(80)

Ȧ

A
=

√
C2ρ∗

2

2m + 1
tanh

(√
C2ρ∗

2
t

)
(81)

Ḃ

B
= m

2m + 1

√
C2ρ∗

2
tanh

(√
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2
t

)
(82)

H = 1

3

√
C2ρ∗

2
tanh

(√
C2ρ∗

2
t

)
(83)

θ =
√

C2ρ∗
2

tanh

(√
C2ρ∗

2
t

)
(84)

Δ = 6(m − 1)2

(2m + 1)2
(85)

σ 2 = C2ρ∗(m − 1)2

2(2m + 1)2
tanh2

(√
C2ρ∗

2
t

)
(86)

ρw = CC2ρ∗
2(C1 + CC2)

sech2
(√

C2ρ∗
2

t

)
+ ρ∗

2
(87)

pw = CC2ρ∗
2(C1 + CC2)

sech2
(√
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2

t

)
− ρ∗

2
(88)

q = −3 cosech2
(√

C2ρ∗
2

t

)
− 1 (89)

q < 0 for all t . But, A, B , V all decrease as t increases
from −∞ to zero. This is not physically possible. Hence,
the universe starts at t = 0 and expands with acceleration
throughout its evolution.

A, B , V are all finite at t = 0, increase with t and become
infinite at t = ∞.

ρw and pw are both finite at t = 0 and increase to ρ∗
2 and

−ρ∗
2 respectively as t increases to ∞.
Since, Δ �= 0 (for m �= 1), the universe is anisotropic

throughout its evolution.

5 Conclusions

We study the universe filled with an isotropic wet dark fluid
(WDF) obeying the equation of state pw = γ (ρw −ρ∗) with
0 ≤ γ ≤ 1 in the frame-work of LRS Bianchi type-II space-
time in General Relativity. The solution of the field equa-
tions is obtained in quadrature form. We consider four par-
ticular cases corresponding to γ = 0 and γ = 1 in detail and
discuss some physical properties of the universe represented
by the models. It is found that in all the models the geom-
etry of the universe is anisotropic throughout its evolution
though the WDF is isotropic. We also find that:

(i) For γ = 0, since, the EOS parameter ωw = pw

ρw
= 0,

the universe contains non-phantom energy throughout
its evolution. The universe starts at t = 0 and expands

with acceleration till t <
2
√

3C3
CC2

and then the accelera-
tion changes to deceleration and the universe expands
with deceleration till the end. But, since, A,B,V are
all infinite at t = ∞, the universe reaches the big rip
and does not reach the big crunch.

Thus, this model is suitable for representing the in-
flationary universe of the early era and the universe of
the matter dominating era.

(ii) For γ = 1 and C1 + CC2 = 0, since ωw ≥ −1, the uni-
verse contains non-phantom energy. Also, ωw = −1 at
t = ∞, hence in this case, the WDF behaves like cos-
mological constant at late times of the universe. The
universe starts from the big-bang at t = −∞ and ex-
pands with acceleration throughout its evolution till it
reaches the big rip.

Thus, this model is suitable for early and late time
accelerated expanding universe.

(iii) For γ = 1 and C1 + CC2 > 0, since ωw ≥ −1, the uni-
verse contains non-phantom energy. Also, ωw = −1 at
t = ∞, hence in this case, the WDF behaves like cos-
mological constant at late times of the universe.
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The universe starts at t =
√

2
C2ρ∗ ln(

√
3 + √

2) and

expands with acceleration throughout its evolution till
it reaches the big rip.

Thus, this model is suitable for representing the late
time accelerated expanding universe.

(iv) For γ = 1 and C1 + CC2 < 0, since ωw < −1 for fi-
nite time, the universe contains phantom energy. Also,
ωw = −1 at t = ∞, hence, the WDF behaves like cos-
mological constant at late times of the universe. The
universe starts at t = 0 and expands with acceleration
throughout its evolution till it reaches the big rip. Thus,
this model is suitable for representing the early time in-
flationary universe as well as the late time accelerated
expanding universe.
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