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Abstract A classical formalism for the weakly nonlin-
ear instability analysis of a gravitating rotating viscoelas-
tic gaseous cloud in the presence of gyratory dark matter is
presented on the cosmic Jeans flat scales of space and time.
The constituent neutral gaseous fluid (NGF) and dark matter
fluid (DMF) are inter-coupled frictionally via mutual gravity
alone. Application of standard nonlinear perturbation tech-
niques over the complex gyro-gravitating clouds results in a
unique conjugated pair of viscoelastic forced Burgers (VFB)
equations. The VFB pair is conjointly twinned by correla-
tional viscoelastic effects. There is no regular damping term
here, unlike, in the conventional Burgers equation for the
luminous (bright) matter solely. Instead, an interesting lin-
ear self-consistent derivative force-term naturalistically ap-
pears. A numerical illustrative platform is provided to reveal
the micro-physical insights behind the weakly non-linear
natural diffusive eigen-modes. It is fantastically seen that
the perturbed NGF evolves as extended compressive solitons
and compressive shock-like structures. In contrast, the per-
turbed DMF grows as rarefactive extended solitons and hy-
brid shocks. The latter is micro-physically composed of rar-
efactive solitons and compressive shocks. The consistency
and reliability of the results are validated in the panoptic
light of the existing reports based on the preeminent non-
linear advection-diffusion-based Burgers fabric. At the last,
we highlight the main implications and non-trivial futuristic
applications of the explored findings.
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1 Introduction

It is well known that dark matter plays an important role
in the formation of large-scale cosmic structures in the uni-
verse beginning from the inflationary stage (Binney and
Tremaine 1987; Tsiklauri 1998, 2000; Mo et al. 2010;
Bertin 2014). This is mainly because of complex coupling
dynamics between the neutral gaseous fluid (NGF) clouds
and the dark matter fluid (DMF) clouds via mutual gravity.
Although dark matter (nonluminous) does not shine, unlike
visible bright matter (luminous); but, it still exerts a gravita-
tional force on the matter around it. As a consequence, the
gravitational stability analysis in the presence of dark matter
is very important, since dark or nonluminous matter together
with dark energy constitutes a significant portion (∼90%)
of the present expanding universe (Stahler and Palla 2004;
Blain 2005). It is pertinent to add that the global cloud col-
lapse leading to bounded structure formation begins when-
ever the cloud thermal pressure is not sufficient to prevent
the gravitational long-range force field (Jeans 1902).

The gravitational interaction of NGF with DMF is well
established and substantially well-known towards cosmic
structure and cluster formation processes (Tsiklauri 1998,
2000). The DMF presence in the complex clouds induces
classically a considerable diminution in the resultant Jeans
length, Jeans time and hence, the subsequent Jeans mass
(Zhang and Li 1995; Tsiklauri 1998, 2000). In such cosmo-
logical environments, many researchers consider cold dark
matter, where the constituents have relatively slow motion.
This is because the hot dark matter has very large value
of kinetic energy (>keV) and randomizes the formation of
galactic structural units. Very recently, a close mapping with
analogy is demonstrated to exist between interstellar realis-
tic cosmic fluids and purported Maxwell fluids in the form of
rich hydrodynamic structures on the lowest-order viscoelas-
tic properties (Brevik 2016). The gravitational fluctuation
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analyses in such correlative cooperative clouds, amid grav-
itating dark matter, are, however, yet to be substantially ex-
plored and well empathized.

We propose a new theoretical formalism for the grav-
itational instability in a gravitating composite fluid, com-
posed of NGF and DMF frictionally inter-coupled via mu-
tual gravity, on the cosmological Jeans flat scales of space
and time. The model includes the lowest-order viscoelas-
ticity, Coriolis force and inter-layer frictional coupling dy-
namics in the bi-fluidic charter in spatially-flat geometry.
The factors considered afresh are indeed the properties of
a true viscoelastic cosmic fluid (Brevik 2016; Borah et al.
2016). The reason for the inclusion of fluid viscoelastic-
ity stems in a rich variety of cosmic structures (Brevik
2016). The cosmic fluids, even with one-component con-
stituents, are well-known to be highly viscoelastic in nature
offering a plethora of collective wave excitations (Brevik
2016). The Coriolis force here modifies the dynamics and
insures the conservation of angular momentum (Rozelot and
Neiner 2009). A multi-scale analysis, which is based on the
regular (reductive) perturbation technique (Burgers 1974;
Whitham 1999; Ablowitz 2011), is carried out to obtain
a conjugate pair of the viscoelastic forced Burgers (VFB)
equations. A numerical illustrative platform is elaborately
developed to reveal the exact nature of the weakly non-linear
natural eigen-modes in both the hydrodynamic and kinetic
regimes of the slight perturbations. Finally, new implications
and non-trivial applications in the dark matter-dominated
astro-cosmic contexts are concisely indicated.

2 Physical model and formulation

We, as a first-step model setup, consider a complex astro-
cloud composed of interstellar viscoelastic gaseous cloud
in the presence of viscoelastic dark matter, inter-coupled
frictionally only via mutualistic gravity. The viscoelastic-
ity is considered for the constituent cosmic gravito-coupled
fluids. This is because they are widely well known to be-
have as viscoelastic non-Newtonian fluids (Frenkel 1946;
Landau and Lifshitz 1987; Borah et al. 2016; Brevik 2016).
Such fluids exhibit a rich spectrum of structures via con-
joint action of viscosity (sink for free energy dissipation)
and elasticity (source for free energy storage). Therefore, in-
terplay between the two fluid properties in a composite form
is expected to support a rich cornucopia variety of hydro-
gravitational fluctuation modes. Moreover, our gravitating
fluid system is unbounded and infinitely spatially extended
on the cosmic Jeansian fluid scales of space and time. And,
hence, it is rationally treated in the framework of spatially-
flat (sheet-like, planar) geometry approximation. In order to
validate this geometric approximation, it is presumed that
the radius of curvature of the bi-slab fluidic system (gravita-
tionally confining the complex fluid) is much greater than all

the characteristic scale lengths in the system. Such spatially-
flat fluid sheet-like (or disk-like, small in thickness) geom-
etry of the expanding universe has already been predicted
in the inflationary model descriptions as well (Binney and
Tremaine 1987; Mo et al. 2010). We account also for the
effect of viscoelasticities, Coriolis forces and frictional cou-
pling forces on the gravitational dynamics in hydrostatic ho-
mogenous equilibrium condition. The frictional interaction
arises here due to the resistive fluid-layer-coupling between
the NGF and the DMF via microscopic particle interactions.
The plasma effects (via polarization due to ionic species,
sourced by contact interaction with cosmic rays) are ignored
due to smallness of the Debye screening length in compari-
son with the characteristic Jeans lengths (Karmakar and Bo-
rah 2016; Borah et al. 2016; Karmakar and Das 2017). The
effectuation by interstellar turbulence and gravitational ef-
fect of distant astrophysical objects is also not allowed to in-
fluence the gravitational dynamics on the defined spatiotem-
poral scales of current interest.

A quantitative essence of the gravito-thermal coupling of
the considered fluids to judge the DMF inclusion may be
drawn as follows. We consider the cosmic gaseous cloud
as consisting of hydrogen at a temperature of Tg = 20 K
(Stahler and Palla 2004; Gnedin et al. 2016). In such a situa-
tion, the gravito-thermal coupling constant of the gaseous
fluid on the gas Jeans scale extension (λJg), with all the
usual notations (Stahler and Palla 2004; Gnedin et al. 2016),
is now estimated as Γg = (Gm2

g/λJgkBT ) ∼ 4.3 × 10−84.
In parallel, we take the DMF as composed of weakly in-
teracting massive particles (WIMPs) with a typical mass
md = 10−7 kg at temperature Td = 1011 K (Blain 2005).
The gravito-thermal coupling constant for the DMF on
the same gas Jeans scale extension is calculated as Γd =
(Gm2

d/λJdkBT ) ∼ 0.62. Thus, the ratio of the gas-to-dark
matter gravito-thermal coupling on the common gas Jeans
scale is Γg/Γd ∼ 10−84. It clearly indicates why and how
the cosmic universe is dominated by the gravitating DMF
influences. Hence, the DMF dynamics needs to be included
in understanding the real formation mechanism of diverse
large-scale structures in galaxies (Blain 2005).

This is well known that a gravitating complex fluid sys-
tem in the presence of dark matter, as considered in our
model configuration here, can be well regarded as a bi-
component (bright matter plus dark matter) fluid (Zhang
and Li 1995). As a first gradation, herein, our model con-
sists of an infinite complex fluid disk or sheet which may
be assumed to be a collection of infinitely populous wires.
A constituent wire is supposed to spatially extend from the
initial position x = 0 at the initial time t = 0 to an instan-
taneous position x = x at any instant of time t = t . We
now implement the modified equations of continuity, mo-
mentum transfer, thermodynamic state, gravitational Pois-
son potential distribution in hydrostatic equilibrium condi-
tion in a closed coupled form for both the NGF and DMF;
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respectively. The subscript “g” stands for the gas and sub-
script “d”, the dark matter. Thus, the neutral gas dynam-
ics of the considered fluid sheet is classically described in
the flattened coordination space-time (x, t) in the customary
notations with all usual significances (Tsiklauri 1998, 2000;
Karmakar and Das 2017) as follows

∂ρg

∂t
+ ∂

∂x
(ρgug) = 0, (1)

[
1 + τmg

(
∂

∂t
+ ug

∂

∂x

)]

×
[
ρg

(
∂ug

∂t
+ ug

∂ug

∂x

)
+ ∂pg

∂x
+ ρg

∂φ

∂x

− 2ρgugyΩgz − ρgνdg(ug − ud)

]

=
(

4

3
ηg + ζg

)
∂2ug

∂x2
, (2)

and

pg = γgngTg = γg

(
ρg

mg

)
Tg. (3)

In the above, mg , ρg = mgng , ug(ud), pg and Tg denote
the mass, density, velocity (dark matter velocity), pressure
and temperature of the NGF; respectively. The viscoelas-
tic relaxation time of the NGF is symbolized as τmg . The
notations, ηg and ζg , are the shear (or first) viscosity (re-
sistance to flow) and bulk (or second) viscosity (resistance
to expansion) of the fluid arising due to microscopic parti-
cle motions (Frenkel 1946; Landau and Lifshitz 1987); re-
spectively. For the isothermal NGF, the adiabaticity index is
adopted as, γg = 1. Then, Ωgz and νdg are the z-components
of the angular frequency of the rotating gas cloud and the
binary collisional rate (collisional frequency) of momentum
transfer between the DMF to NGF; respectively.

In a standardized way, the dynamics of gravitating DMF
is portrayed by a similar set of fluid structuring equations,
but in a modified form with all the usual notations (Tsiklauri
1998, 2000; Karmakar and Das 2017), as follows

∂ρd

∂t
+ ∂

∂x
(ρdud) = 0, (4)

[
1 + τmd

(
∂

∂t
+ ud

∂

∂x

)]

×
[
ρd

(
∂ud

∂t
+ ud

∂ud

∂x

)
+ ∂pd

∂x
+ ρd

∂φ

∂x

− 2ρdudyΩdz − ρdνgd(ud − ug)

]

=
(

4

3
ηd + ζd

)
∂2ud

∂x2
, (5)

and

pd = γdndTd = γd

(
ρd

md

)
Td. (6)

Here, analogously, md , ρd = mdnd , pd , Td denote the mass,
density, pressure and temperature of the DMF; respectively.
The viscoelastic relaxation time of the DMF is symbolized
by τmd . Likewise, ηd and ζd are the shear viscosity and
bulk viscosity (Frenkel 1946; Landau and Lifshitz 1987)
of the DMF; respectively. Further, Ωdz and νgd are the z-
component of the angular frequency of the rotating DMF
and the binary collisional rate (collisional frequency) of mo-
mentum transfer from the NGF to DMF. As before, for the
isothermal DMF, the adiabaticity index is taken as, γd = 1.

The closure of our model is obtained by the gravitational
Poisson equation and the hydrostatic equilibrium condition
setup in an inter-coupled fluid form respectively given as

∂2φ

∂x2
= 4πG

{
ρg + ρd − (ρg0 + ρd0)

}
, (7)

and

∂pg

∂x
+ ∂pd

∂x
= −(ρg + ρd)

φ

x
, (8)

where, φ is the unipolar gravitational potential, conjointly
contributed by both the coupled NGF and DMF density
fields. Further, ρg0 and ρd0 are their respective equilib-
rium (unperturbed) densities. Lastly, G = 6.673 ×
10−11 N m2 kg−2 is the universal gravitational (Newtonian)
constant via which the cosmic gravitational interaction is
perceptible.

It may be pertinent to add here that the momentum con-
servation laws, as given by Eq. (2) and Eq. (5), are valid
only for the most generalized class of compressible fluids
with the first-order viscoelasticity. In such a case, none of
the viscosity coefficients remarkably change either with the
fluid pressure, or with the fluid temperature throughout the
fluid transits (Frenkel 1946; Landau and Lifshitz 1987). In
other words, both the classes of the viscosity coefficients
are spatiotemporally independent (constant) throughout the
model setup.

This is a well-established fact that the growth of dark
matter fluctuations, gravitationally inter-coupled with neu-
tral gaseous ones, has an organic linkage to the Jeans
scale (Papantonopoulos 2007). We, therefore, adopt a stan-
dard cosmic normalization scheme relevant on the cosmic
Jeans scales of space and time (Jeans 1902; Binney and
Tremaine 1987; Papantonopoulos 2007; Mo et al. 2010;
Bertin 2014). The normalized set of the basic governing
equations (Eqs. (1)–(8)), after using the equations of state
(Eq. (3) and Eq. (6)) for both the fluids, is respectively ob-
tained in a closed form as

∂Dg

∂τ
+ ∂

∂ξ
(DgMg) = 0, (9)
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[
1 + τmgωJg

(
∂

∂τ
+ Mg

∂

∂ξ

)]

×
[
Dg

(
∂Mg

∂τ
+ Mg

∂Mg

∂ξ

)
+ ∂Dg

∂ξ
+ Dg

∂Φ

∂ξ

− 2DgMgy

(
Ωgz

ωJg

)
− Dg

(
νdg

ωJg

)
(Mg − Md)

]

= V 2
xg

c2
sg

τmgωJg

∂2Mg

∂ξ2
, (10)

∂Dd

∂τ
+ ∂

∂ξ
(DdMd) = 0, (11)

[
1 + τmdωJg

(
∂

∂τ
+ Md

∂

∂ξ

)]

×
[
Dd

(
∂Md

∂τ
+ Md

∂Md

∂ξ

)
+ ∂Dd

∂ξ
+ Dd

∂Φ

∂ξ

− 2DdMdy

(
Ωdz

ωJg

)
− Dd

(
νgd

ωJg

)
(Md − Mg)

]

= V 2
xd

c2
sg

τmdωJg

∂2Md

∂ξ2
, (12)

∂2Φ

∂ξ2
= (Dg + Dd) − (1 + Dd0), (13)

and

∂Dg

∂ξ
+ ∂Dd

∂ξ
= −(Dg + Dd)

Φ

ξ
. (14)

Here, V 2
xg = (4/3ηg + ζg)/ρg0τmg and V 2

xd =
(4/3ηd + ζd)/ρg0τmd are the squares of viscoelastic mode
velocities associated with the gas and dark matter, respec-
tively. The independent variables, like position, ξ , and
time, τ , are normalized by the neutral gas Jeans length,
λJg and Jeans time, τJg = ω−1

Jg = (4πρg0G)−1/2; respec-
tively. The new symbols, Dg , Dd and Dd0 are the nor-
malized population densities of the NGF, DMF and the
DMF equilibrium population density, normalized each by
the NGF equilibrium population density, ρg0; respectively.
Also, Mg and Md are the corresponding normalized veloc-
ities (or Mach numbers) of the NGF and DMF; normalized
each by the NGF acoustic phase speed, csg = √

γgpg/ρg .
Lastly, the normalized gravitational potential is denoted by
Φ = φ/c2

sg .
The focal goal of our investigation lies in exploring the

excitation processes of weakly nonlinear gravitational fluc-
tuations, where the perturbed density variables are feebler
in magnitude than the corresponding equilibrium (average)
values. We now apply the standard methodology of reduc-
tive perturbation technique (Burgers 1974; Whitham 1999;
Wazwaz 2009; Ablowitz 2011) over inter-coupled Eqs. (9)–
(15). The relevant dependent physical variables describing

the coupled cloud dynamical system are expanded non-
linearly as

⎡
⎢⎢⎢⎢⎣

Dg

Dd

Mg

Md

Φ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
1
0
0
0

⎤
⎥⎥⎥⎥⎦ + ε

⎡
⎢⎢⎢⎢⎣

Dg1

Dd1

Mg1

Md1

Φ1

⎤
⎥⎥⎥⎥⎦ + ε2

⎡
⎢⎢⎢⎢⎣

Dg2

Dd2

Mg2

Md2

Φ2

⎤
⎥⎥⎥⎥⎦ + · · · . (15)

In parallel, the normalized space variable, ξ , and the time
variable, τ , are strained into a new space defined by the
stretched coordinate transformations as X := ε1/2(ξ − τ)

and T := ε3/2τ . Here, ε is a small expansion parameter
characterizing the normalized relative amplitude of the col-
lective wave excitations. In the new space of slow tem-
poral variation, the linear differential operators transform
as, ∂/∂ξ ≡ ε1/2∂/∂X and ∂/∂τ ≡ ε3/2∂/∂T − ε1/2∂/∂X.
We apply the perturbative series expansion (Eq. (15)) in
Eqs. (9)–(14) for order-by-order analyses. Thus, equating
the like terms in various powers of ε from Eq. (9), one
gets

O
(
ε

3
2
): −∂Dg1

∂X
+ ∂Mg1

∂X
= 0, (16)

which implies,

Dg1 = Mg1, (17)

O
(
ε

5
2
): −∂Dg2

∂X
+ ∂Dg1

∂T

+ ∂

∂X
(Dg1Mg1) + ∂Mg2

∂X
= 0, (18)

and so forth. Similarly, from Eq. (10), one gets

O
(
ε0): −2(τmgωJg) = 0, (19)

O
(
ε1): −2(τmgωJg)Dg1

−
(

νdg

ωJg

)
(Mg1 − Md1) = 0, (20)

which implies,

2(τmgωJg)Dg1 = −
(

νdg

ωJg

)
(Mg1 − Md1), (21)

O
(
ε

3
2
): −∂Mg1

∂X
+ ∂Dg1

∂X
+ ∂Φ1

∂X

+ 2(τmgωJg)Mgy

(
Ωgz

ωJg

)
∂Dg1

∂X

+ (τmgωJg)

(
νdg

ωJg

)
∂

∂X
(Mg1 − Md1)

= 0, (22)
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with the application of Eq. (17) and Eq. (21) in Eq. (22)
yielding

∂Φ1

∂X
= 0, (23)

O
(
ε2): −2Mgy

(
Ωgz

ωJg

)
Dg2 −

(
νdg

ωJg

)
(Mg2 − Md2)

−
(

νdg

ωJg

)
(Mg1 − Md1)Dg1

− τmgωJg

∂2Dg1

∂X2
− τmgωJg

∂2Φ1

∂X2

= V 2
xg

c2
sg

τmgωJg

∂2Mg1

∂X2
, (24)

O
(
ε

5
2
): ∂Mg1

∂T
− Dg1

∂Mg1

∂X
− ∂Mg1

∂X
+ Mg1

∂Mg1

∂X

+ ∂Dg2

∂X
+ ∂Φ2

∂X
+ Dg1

∂Φ1

∂X

− 2τmgωJgMgy

(
Ωgz

ωJg

)
∂Dg1

∂T

− τmgωJg

(
νdg

ωJg

)
∂

∂T
(Mg1 − Md1)

+ 2τmgωJgMgy

(
Ωgz

ωJg

)
∂Dg2

∂X

+ τmgωJg

(
νdg

ωJg

)
∂

∂X
(Mg2 − Md2)

+ τmgωJg

(
νdg

ωJg

)
∂

∂X

{
Dg1(Mg1 − Md1)

}

+ τmgωJg

(
νdg

ωJg

)
∂

∂X

{
Dg1(Mg2 − Md2)

}

− 2τmgωJgMgy

(
Ωgz

ωJg

)
Mg1

∂Dg1

∂X

− τmgωJg

(
νdg

ωJg

)
Mg1

∂

∂X
(Mg1 − Md1)

= 0, (25)

and so on. Likewise, for the DMF, order-by-order analysis
of Eq. (11) yields

O
(
ε

3
2
): −∂Dd1

∂X
+ ∂Md1

∂X
= 0, (26)

which, in turn, implies,

Dd1 = Md1, (27)

O
(
ε

5
2
): −∂Dd2

∂X
+ ∂Dd1

∂T

+ ∂

∂X
(Dd1Md1) + ∂Md2

∂X
= 0, (28)

and so on. Similarly, from Eq. (12), one finds

O
(
ε0): −2(τmdωJg) = 0, (29)

O
(
ε1): −2(τmdωJg)Dd1

−
(

νgd

ωJg

)
(Md1 − Mg1) = 0, (30)

which yields,

2(τmdωJg)Dd1 = −
(

νgd

ωJg

)
(Md1 − Mg1), (31)

O
(
ε

3
2
): −∂Md1

∂X
+ ∂Dd1

∂X
+ ∂Φ1

∂X

+ 2(τmdωJg)Mwy

(
Ωdz

ωJg

)
∂Dd1

∂X

+ (τmdωJg)

(
νgd

ωJg

)
∂

∂X
(Md1 − Mg1)

= 0, (32)

wherein, using Eq. (27) and Eq. (31) in Eq. (32), one
gets

∂Φ1

∂X
= 0, (33)

O
(
ε2): −2Mdy

(
Ωdz

ωJg

)
Dd2 −

(
νgd

ωJg

)
(Md2 − Mg2)

−
(

νgd

ωJg

)
(Md1 − Mg1)Dd1

− τmdωJg

∂2Dd1

∂X2
− τmdωJg

∂2Φ1

∂X2

= V 2
xd

c2
sg

τmdωJg

∂2Md1

∂X2
, (34)

O
(
ε

5
2
): ∂Md1

∂T
− Dd1

∂Md1

∂X
− ∂Md1

∂X
+ Md1

∂Md1

∂X

+ ∂Dd2

∂X
+ ∂Φ2

∂X
+ Dd1

∂Φ1

∂X

− 2τmdωJgMdy

(
Ωdz

ωJg

)
∂Dd1

∂T

− τmdωJg

(
νgd

ωJg

)
∂

∂T
(Md1 − Mg1)

+ 2τmdωJgMdy

(
Ωdz

ωJg

)
∂Dd2

∂X

+ τmdωJg

(
νgd

ωJg

)
∂

∂X
(Md2 − Mg2)

+ τmdωJg

(
νgd

ωJg

)
∂

∂X

{
Dd1(Md1 − Mg1)

}
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+ τmdωJg

(
νgd

ωJg

)
∂

∂X

{
Dd1(Md2 − Mg2)

}

− 2τmdωJgMdy

(
Ωdz

ωJg

)
Md1

∂Dd1

∂X

− τmdωJg

(
νgd

ωJg

)
Md1

∂

∂X
(Md1 − Mg1)

= 0, (35)

and so on. Now, from Eq. (13), one finds

O
(
ε0): 1 − Dd0 = 0, (36)

O
(
ε1): Dg1 = −Dd1, (37)

O
(
ε2): ∂2Φ1

∂X2
= Dg2 + Dd2, (38)

etc. In a similar way, Eq. (14) gives

O
(
ε

3
2
): ∂Dg1

∂X
+ ∂Dd1

∂X
= 0, (39)

O
(
ε

5
2
): ∂Dg2

∂X
+ ∂Dd2

∂X
= −(Dg1 + Dd1)

Φ1

X
, (40)

and so forth. Using Eq. (37), Eq. (40) becomes

∂Dg2

∂X
+ ∂Dd2

∂X
= 0. (41)

Also, spatially differentiating Eq. (38), one gets

∂3Φ1

∂X3
= ∂Dg2

∂X
+ ∂Dd2

∂X
. (42)

Moreover, using Eq. (41) in Eq. (42), one obtains

∂3Φ1

∂X3
= 0. (43)

Now, for solving Eq. (42), in the light of Eq. (25) and
Eq. (35) after cancelling the higher-order terms due to
weakly nonlinear fluctuations, one gets

∂Dg2

∂X
= 1

{1 + τmgωJgMgy(
Ωgz

ωJg
)}

×
[
−∂Dg1

∂T
+ ∂Dg1

∂X
− Dg1

∂Φ1

∂X

+ 4τmgωJgMgy

(
Ωgz

ωJg

)
Dg1

∂Dg1

∂X

]
. (44)

Similarly, for the DMF dynamics with the derived condition
Dd1 = −Dg1 (as in Eq. (37)), we see that Eq. (44) reduces

to

∂Dd2

∂X
= 1

{1 + τmdωJgMdy(
Ωdz

ωJg
)}

×
[

∂Dg1

∂T
− ∂Dg1

∂X
+ Dg1

∂Φ1

∂X

+ 4τmdωJgMdy

(
Ωdz

ωJg

)
Dg1

∂Dg1

∂X

]
. (45)

Now, combining Eqs. (44)–(45) in Eq. (42), one finally
gets

∂Dg1

∂T
+ αDg1

∂Dg1

∂X
= ∂Dg1

∂X
, (46)

and

∂Dd1

∂T
− αDd1

∂Dd1

∂X
= ∂Dd1

∂X
. (47)

Thus, it is seen that the nonlinear perturbation dynamics
of the composite cloud is collectively governed by non-
static Eqs. (46)–(47) in the framework of nonlinear dif-
fusion as a combined effect of dissipation and dispersion.
They form a conjugate pair of the viscoelastic forced Burg-
ers (VFB) equations for the NGF and DMF, viscoelasti-
cally inter-coupled via mutualistic gravity alone; respec-
tively. The VFB pair appears in conjugation with the fluid
flow convections in opposite phases. It may be noted that
there is no damping term in the pair VFB equations, un-
like in the conventional Burger equation (Burgers 1974;
Whitham 1999; Ablowitz 2011). Instead, a linear self-
consistent derivative force-term appears in the derived VFB
system. Moreover, it is founded on the fact that the lowest-
order density fluctuations of the NGF and DMF propagate
in opposite phases. Lastly, it is speculated that the con-
jugate pair of the VFB equations is well connected via
the conjugate bi-fluidic viscoelastic parameter, α, presented
as

α = 2

⎡
⎢⎢⎢⎣

(τmgωJg)Mgy

(
Ωgz

ωJg

)
+ (τmdωJg)Mdy

(
Ωdz

ωJg

)

+4(τmgωJg)Mgy

(
Ωgz

ωJg

)
(τmdωJg)Mdy

(
Ωdz

ωJg

)

⎤
⎥⎥⎥⎦

/(
(τmgωJg)Mgy

(
Ωgz

ωJg

)
− (τmdωJg)Mdy

(
Ωdz

ωJg

))
.

(48)

We are interested in the evolutionary fluctuation patterns
in both the static (∂/∂T ∼ 0) and dynamic (∂/∂T �= 0)
forms. As a first step, we look for the steady-state solu-
tions for the fluctuations spatially governed by the conju-
gate time-stationary derivative VFB pair (Eqs. (51)–(52) in
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Fig. 1 Spatial profiles of the normalized perturbed gas (a) density
(Dg1), (b) density gradient (∂Dg1/∂r), (c) phase portrait on density
(Dg1) and density gradient (∂Dg1/∂r), and (d) density gradient scale
[Dg1/(∂Dg1/∂r)] for different values of the frame-velocity (Mf ). Var-

ious lines link to (1): Mf = 0.4 (Line 1, blue), (2): Mf = 0.8 (Line 2,
red), and (3): Mf = 1.2 (Line 3, black); respectively. The initials and
inputs are highlighted in the text

the Appendix). After having it done, as a second step, the
spatiotemporal dynamics of the fluctuations is numerically
analyzed for the dynamic solutions in the framework of the
non-stationary conjugate pair VFB equations (Eqs. (46)–
(47)).

3 Results and discussions

The gravity-induced instability analysis of the cosmic vis-
coelastic clouds, consisting of the gravito-coupled NGF and
DMF, is methodically carried out. It applies a non-linear
classical perturbation theory in the framework of standard
reductive perturbation technique to derive a unique pair
of conjugated VFB equations. The lowest-order diffusive
eigen-modes stemming in it are numerically explored. The
NGF dynamics as in Figs. 1, 2, 3, 4 and the DMF dynam-
ics in Figs. 5, 6, 7, 8 are illustrated. It may be mentioned
that the fourth-order Runge–Kutta method (Lindfield and
Penny 2012; Gnedin et al. 2016) is implemented to obtain
the spatial profiles (Figs. 1, 2, 3 and Figs. 5, 6, 7); and the

finite element method (Lindfield and Penny 2012; Gnedin
et al. 2016) is utilized to construct the spatiotemporal pro-
files (Fig. 4 and Fig. 8). The different multi-parametric in-
puts and initial values employed in the analysis are fed from
the diversified sources available in the literature (Binney
and Tremaine 1987; Tsiklauri 1998, 2000; Mo et al. 2010;
Beringer et al. 2012; Bertin 2014; Karmakar and Das 2017).

3.1 Gaseous fluid dynamics

In Fig. 1, we show the spatial profiles of the normal-
ized perturbed gas (a) density (Dg1), (b) density gradi-
ent (∂Dg1/∂r), (c) phase portrait on density (Dg1) and
density gradient (∂Dg1/∂r), and (d) density gradient scale
[Dg1/(∂Dg1/∂r)] for different values of the frame-velocity
(Mf ). Various lines refer to (1): Mf = 0.4 (Line 1, blue),
(2): Mf = 0.8 (Line 2, red), and (3): Mf = 1.2 (Line 3,
black); respectively. Various input values used are τmgωJg =
0.01, τmdωJg = 1 × 10−4, Mgy(Ωgz/ωJg) = 2.8 × 10−2,
Mdy(Ωdz/ωJg) = 1 × 10−4. Figure 1(a) shows that, in the
subsonic range, the NGF matter perturbed density evolves
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Fig. 2 Same as Fig. 1, but for different values of the gaseous viscoelastic relaxation time (τmgωJg ). Various lines now link to (1): τmgωJg = 0.1
(Line 1, blue), (2): τmgωJg = 0.2 (Line 2, red) and (3): τmgωJg = 0.3 (Line 3, black); respectively

as extended compressive solitons-like structures. In the su-
personic regime, the perturbed gas density propagates as
shock-like structures. The inferences are drawn merely from
the numerical confirmatory illustrative pedestal. Further, it
implicates that Mf = 1 must correspond to hybrid phase
trajectory structure, intermediate between the two classes,
although excluded here in the display for simplicity and
consistency. In Fig. 1(b), in the subsonic regime on the de-
fined spatial scale length, an admixture of peakon (com-
pressive) and anti-peakon (rarefactive) structures (Ablowitz
2011) is found to propagate. However, in the supersonic
range, only peakon-like structures (Wazwaz 2009) are found
to evolve. Figure 1(c) shows the geometrical trajectories of
the gas dynamical fluctuations in the defined phase plane.
The dynamical evolution of the gaseous eigen-structures is
an asymmetric aperiodic one and the phase trajectories are
open. Hence, the conjugate VFB system indeed represents a
non-conservative dynamics. The phase trajectories are het-
eroclinic in nature. Figure 1(d) depicts the inhomogeneity
scale-behaviour of the fluctuations. Corresponding to the
extreme behaviour of the density gradients, irregular reso-
nance poles are found to exist at different distances relative

to the centre of the cloud matter distribution. It also shows
that the resonance poles exhibit singular behaviours of the
fluctuations, which in turn, implicate the possibility of re-
organized triggering of mechanical instability on the next
higher orders (although weaker). Figure 2 depicts the same
as Fig. 1, but for different values of the gaseous viscoelas-
tic relaxation time (τmgωJg). Various lines now correspond
to (1): τmgωJg = 0.1 (Line 1, blue), (2): τmgωJg = 0.2
(Line 2, red) and (3): τmgωJg = 0.3 (Line 3, black); re-
spectively. Various input values used are same as Fig. 1,
except in the frame velocity, Mf = 0.5. Figure 3 is same
as Fig. 1, but for different values of the dark-matter vis-
coelastic relaxation time (τmdωJg). Various lines now link
to (1): τmdωJg = 1.0 × 10−4 (Line 1, blue), (2): τmdωJg =
1.2 × 10−4 (Line 2, red), and (3): τmdωJg = 1.4 × 10−4

(Line 3, black); respectively. Various input values used here
are same as Fig. 1, but for the gaseous viscoelastic relaxation
time, τmgωJg = 0.002.

Figure 4 depicts the spatiotemporal profile of the gas den-
sity fluctuations on the lowest-order. Here too, various input
values used here are the same as Fig. 1. The initial condi-
tion applied here is Dg1 = sinh−1(X), which is indeed a
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Fig. 3 Same as Fig. 1, but for different values of the dark-matter viscoelastic relaxation time (τmdωJg ). Various lines now link to
(1): τmdωJg = 1.0 × 10−4 (Line 1, blue), (2): τmdωJg = 1.2 × 10−4 (Line 2, red), and (3): τmdωJg = 1.4 × 10−4 (Line 3, black), respectively

Fig. 4 Spatiotemporal evolution of the normalized perturbed gaseous
matter density (Dg1). The initial conditions and other details are pre-
sented in the text

compressive shock-like pattern, speculatively obtained from
the spatial profile description presented before. Unlike in the
moving frame, as before, here in this case of lab-frame, the
fluctuation dynamics reveals a plethora of eigen-modes of

different characteristic features. Initially, it shows a shock-
like behaviour over space; but, quite stable in the time frame.
Hereafter, the spectral richness of the eigen-modes evolves
both in space and time. Thus, the spatiotemporal display re-
veals a rich spectrum of nonlinear eigen-structures caused
by the conjoint mutualistic action of viscoelastic effects of
the component gravitating fluids structuring the global com-
posite cloud.

3.2 Dark matter fluid dynamics

In Fig. 5, we depict the spatial profiles of the normal-
ized perturbed dark-matter (a) density (Dd1), (b) density
gradient (∂Dd1/∂r), (c) phase portrait on density (Dd1)
and density gradient (∂Dd1/∂r), and (d) density gradient
scale (Dd1/(∂Dd1/∂r)) for different values of the frame-
velocity (Mf ). Various lines link to (1): Mf = 0.4 (Line 1,
blue), (2): Mf = 0.8 (Line 2, red), and (3): Mf = 1.2
(Line 3, black); respectively. Different input values used
are τmgωJg = 0.01, τmdωJg = 1 × 10−4, Mgy(Ωgz/ωJg) =
2.8 × 10−2, Mdy(Ωdz/ωJg) = 1 × 10−4. In Fig. 5(a), in
the subsonic regime, we see hybrid shock-like structures
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Fig. 5 Spatial profiles of the normalized perturbed dark-matter (a)
density (Dd1), (b) density gradient (∂Dd1/∂r), (c) phase portrait
on density (Dd1) and density gradient (∂Dd1/∂r), and (d) den-
sity gradient scale (Dd1/(∂Dd1/∂r)) for different values of the

frame-velocity (Mf ). Various lines link to (1): Mf = 0.4 (Line 1,
blue), (2): Mf = 0.8 (Line 2, red), and (3): Mf = 1.2 (Line 3,
black); respectively. The initials and inputs are highlighted in the
text

composed of rarefactive extended solitons and compressive
monotonic shocks. However, in the supersonic regime, we
see only rarefactive extended solitons-like structures over
the defined spatial scale length. Figure 5(b) shows that, the
dark matter density fluctuations propagate as hybrid struc-
tures composed of anti-peakons (rarefactive) accompanied
by micro-peakons (compressive). The remaining figures,
Fig. 5(c)–(d), convey the same physics, as described pre-
viously in Fig. 1(c)–(d). Clearly, Mf = 1 must correspond
to hybrid trajectory structure, intermediate between the two
distinct classes, Fig. 6 is the same as Fig. 5, but for the dif-
ferent gaseous viscoelastic relaxation time (τmgωJg). Vari-
ous lines now refer to (1): τmgωJg = 0.1 (Line 1, blue), (2):
τmgωJg = 0.2 (Line 2, red) and (3): τmgωJg = 0.3 (Line 3,
black); respectively. Various input values are same as Fig. 4,
but for different value of reference frame velocity Mf = 0.5.
Likewise, Fig. 7 depicts the same as Fig. 5, but for differ-
ent values of the dark-matter viscoelastic relaxation time
(τmdωJg). Various lines link to (1): τmdωJg = 1.0 × 10−4

(Line 1, blue), (2): τmdωJg = 1.2 × 10−4 (Line 2, red) and
(3): τmdωJg = 1.2 × 10−4 (Line 3, black); respectively. Dif-

ferent input values are the same as Fig. 5, but except in
τmgωJg = 0.01 used now.

Finally, in Fig. 8, we show the spatiotemporal fluctuation
dynamics of the DMF density perturbations in the lab-frame.
It reveals a complex spectrum of diffusive eigen-structures.
The initial condition applied here is Dd1 = − sinh−1(X),
which is indeed a rarefactive shock-like pattern, judiciously
constructed from the earlier steady-state description. Only
after a small interval of space and time, the existence of mul-
tiple solitons and shocks, together with associated peakon-
plethora (Wazwaz 2009), is unveiled. It conforms that the
conjugate VFB dynamics internally supports a rich vari-
ety of complex modes of both compressive and rarefactive
nature in environments like dark matter-dominated dwarf
spheroidals in the cosmic universe.

4 Concluding remarks

In conclusion, an semi-analytic formalism is methodologi-
cally constructed to see the gravitational non-linear diffusive
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Fig. 6 Same as Fig. 4, but for different values of the gaseous viscoelastic relaxation time (τmgωJg ). Various lines now link to (1): τmgωJg = 0.1
(Line 1, blue), (2): τmgωJg = 0.2 (Line 2, red) and (3): τmgωJg = 0.3 (Line 3, black); respectively

fluctuation dynamics in a composite cloud fluid on the cos-
mic Jeans scales of space and time. All the possible realis-
tic factors, sensible for the astro-cosmic fluctuation dynam-
ics, are concurrently considered. The viscoelastic coupling
mechanism of the NGF and DMF is included via symbi-
otic gravity. A new set of basic governing equations is con-
structed in a standard normalized scale-invariant form. Ap-
plication of perturbative technique reduces the system into a
unique conjugated pair of the coupled VFB equations. The
numerical standpoint establishes the eigen-modes to evolve
as soliton-shock-like amalgamated hybrid structures. It is
important to note that, there is no damping terms in the VFB
system, unlike in the conventional Burgers equations. In-
stead, linear derivative forced terms appear. We demonstrate
that the NGF perturbed density evolves as extended com-
pressive solitons-like structures in the supersonic regime.
The perturbed density propagates as shock-like structures
in the subsonic regime. Also, we obtain an admixture of
peakon (rarefactive) and antipeakon (compressive) struc-
tures (Wazwaz 2009) in the subsonic regime. However, in
the supersonic range, the perturbed density propagates as
peakon-like structures. Likewise, in the subsonic regime, the

DMF perturbed density propagates as shock-like structures
composed of rarefactive extended solitons and compressive
monotonic shocks. However, in the supersonic regime, we
see only rarefactive extended solitons-like structures over
the defined spatial scale length. We further observe that
the DMF density fluctuations propagate as hybrid structures
composed of anti-peakons (rarefactive) and micro-peakons
(compressive) in a commixed form (Wazwaz 2009).

The proposed analysis shows that the viscoelastic proper-
ties of the gravitating cosmic fluids give rise to linear deriva-
tive sources to the Burgers equations based on nonlinear
diffusive sticking mechanisms of cosmo-gravitational origin
(Gurbatov et al. 1990). It further fairly confirms the deep-
rooted fact that the viscoelasticity of cosmic fluids really
reveals a rich structural spectral plethora of eigen-patterns,
as already recently reported in the literature (Brevik 2016).
It may be noted that the obtained results are valid only on
the cosmic Jeans scales of space and time in the presence
of dark matter. This is because of the well-established fact
that the growth of dark matter fluctuations has an organic
linkage to the Jeans scale (Papantonopoulos 2007). Pertur-
bations of smaller size fail to undergo gravitational collapse
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Fig. 7 Same as Fig. 5, but for different values of the dark-matter viscoelastic relaxation time (τmdωJg ). Various lines link to
(1): τmdωJg = 1.0 × 10−4 (Line 1, blue), (2): τmdωJg = 1.2 × 10−4 (Line 2, red) and (3): τmdωJg = 1.2 × 10−4 (Line 3, black); respectively

Fig. 8 Spatiotemporal evolution of the normalized dark-matter density
(Dd1). The initial conditions and other details are presented in the text

due to internal pressure support, arising from internal ran-
dom kinetics, even at low redshift. In contrast, perturbations
of larger scale undergo dynamic growth via gravity at the

same rate independent of any scale of astrophysical inter-
est (Papantonopoulos 2007; Beringer et al. 2012). The con-
sideration of hydrostatic homogeneous equilibrium in our
study can widen the horizon of applicability from the Jeans
scales to the ones ranging from galaxies to cluster of galax-
ies with some facts and faults. It is to be admitted here that
a simplistic classical Jeans theory is not self-sufficient in
depicting a comprehensive tapestry of star formation pro-
cesses in the gigantic molecular clouds. The realistic op-
erational mechanisms preventing the gigantic clouds from
dynamic collapse are still clearly not understood (Tsiklauri
1998). Despite such complications, the application of the
classical Jeans theory reliably determines the accurate mass
scale of stellar structures (∼ solar mass) in the interstellar
normal molecular clouds (Tsiklauri 1998). We, therefore,
finally hope that the results, although obtained here in the
classical fluid framework of weak perturbation analysis in
the lowest-order, may extensively be useful in understanding
the basic formation mechanism of nonlinear organizations
in the sub-luminous dark matter-dominated cosmic dwarf
spheroidals in the form of panecakes, filamentary edifices
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or clumps and their merging mechanisms leading to large-
scale non-homologous bounded structures from a new cos-
mic viscoelasticity viewpoint of collective correlative wave-
excitation processes in the predictable future.
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Appendix: Stationary conjugate pair VFB
equations

In order to explore the steady-state solutions for the grav-
itational fluctuations, Eqs. (46)–(47) are to be transformed
into the corresponding time-stationary form as a first step.
We introduce a standard Galilean reference frame trans-
formation defined as, r := f (X,T ) = X − Mf T , where
Mf is the reference frame velocity (normalized by csg).
It renders a liner operator transformation as ∂/∂X ≡ ∂/∂r

and ∂/∂T ≡ −∂/∂r . As a consequence of this exercise, the
pair VFB equations (Eqs. (46)–(47)) acquire the respective
steady pair form as

−(1 + Mf )
∂Dg1

∂r
+ αDg1

∂Dg1

∂r
= 0, (49)

and

−(1 + Mf )
∂Dd1

∂r
− αDd1

∂Dd1

∂r
= 0. (50)

Again, for a detailed numerical characterization of the fluc-
tuations with computational compatibility, one-step spatial
differentiation of Eqs. (49)–(50) yields

∂2Dg1

∂r2
=

[
α

(1 + Mf ) − αDg1

](
∂Dg1

∂r

)2

, (51)

and

∂2Dd1

∂r2
= −

[
α

(1 + Mf ) + αDd1

](
∂Dd1

∂r

)2

. (52)

It is now clear that the spatiotemporal dynamics of the
composite cloud fluctuations is governed by the conjugate
VFB equation pair (Eqs. (46)–(47)); whereas, their spatial

evolution is dictated by the conjugate derivative VFB pair
(Eqs. (51)–(52)). The conjugate VFB system, which is de-
rived under the condition of non-vanishing potential fluctu-
ations, is numerically analyzed to portray the exact fluctu-
ation patterns in a judicious cosmological multi-parametric
platform in both the dynamic and static frames of reference
as presented in the main text.
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