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Abstract We present a theoretical model analysis to study
the linear pulsational mode dynamics in viscoelastic com-
plex self-gravitating infinitely extended clouds in the pres-
ence of active frictional coupling and dust-charge fluctua-
tions. The complex cloud consists of uniformly distributed
lighter hot mutually thermalized electrons and ions, and
heavier cold dust grains amid partial ionization in a homoge-
neous, quasi-neutral, hydrostatic equilibrium configuration.
A normal mode analysis over the closed set of slightly per-
turbed cloud governing equations is employed to obtain a
generalized dispersion relation (septic) of unique analytic
construct on the plasma parameters. Two extreme cases of
physical interest depending on the perturbation scaling, hy-
drodynamic limits and kinetic limits are considered. It is
shown that the grain mass and viscoelastic relaxation time
associated with the charged dust fluid play stabilizing roles
to the fluctuations in the hydrodynamic regime. In contrast,
however in the kinetic regime, the stabilizing effects are
introduced by the dust mass, dust equilibrium density and
equilibrium ionic population distribution. Besides, the oscil-
latory and propagatory features are illustrated numerically
and interpreted in detail. The results are in good agreement
with the previously reported findings as special corollaries in
like situations. Finally, a focalized indication to new impli-
cations and applications of the outcomes in the astronomical
context is foregrounded.
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1 Introduction

It is a well-established fact that the dense locations of the
interstellar molecular clouds, which are self-gravitating par-
tially ionized plasmas in the regions between stars, are
active sites for the formation of stars, planets and other
bounded structures in galaxies (Draine and Salpeter 1979;
Pudritz 1990; Spitzer 2004; Murray et al. 2017). The for-
mation processes, which are indeed highly complex in na-
ture, are triggered by a plethora of collective waves, insta-
bilities and oscillations (Pandey et al. 1994; Jeans 1902;
Yaroshenko et al. 2007; Haloi and Karmakar 2017; Kar-
makar and Haloi 2017). It indicates that understanding
such complex wave kinetic processes prevalent in cosmo-
genic fluids is essential to see the seed mechanism re-
sponsible for the galactic structure formation and evolu-
tion via collective transport processes (Bliokh et al. 1995;
Spitzer 2004).

It can be seen that several authors in the past have ex-
plored various instability phenomena leading to bounded
structure formation by using different techniques (Shu et al.
1987). Later, Nakano has boldly studied the star forma-
tion in magnetized cloud cores, revealing, mainly that, the
gravitational collapse dynamics is significantly halted due
to gyro-magnetic action of the cloud constituents (Nakano
1998). More interestingly, it has also been predicted that
partially charged clouds exhibit a new type of collective
mode, termed as the pulsational mode (Dwivedi et al. 1999;
Pandey et al. 2002; Karmakar and Borah 2013; Borah and
Karmakar 2015). This pulsational mode arises because of
dynamic frictional coupling of the gravitational attraction
(inwards) and electrostatic repulsion (outwards) of the mas-
sive like-charged grains constituting the cloud. As far as
known to the best of our knowledge, the pulsational mode
dynamics in interstellar viscoelastic clouds still remains an
open problem yet to address.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-017-3120-1&domain=pdf
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Motivated by the current stage of understanding of the
molecular cloud dynamics, we herein develop an evolution-
ary model analysis to study the linear pulsational mode dy-
namics in viscoelastic complex self-gravitating infinitely ex-
tended clouds. It implements the roles of active frictional
coupling and dust-charge fluctuations in the multi-fluidic
cloud. A normal mode analysis based on the Fourier for-
malism over the closed set of cloud governing equations is
employed to obtain a generalized dispersion relation. Two
extreme cases depending on the perturbation scaling, hydro-
dynamic limit and kinetic limit, are considered. It is seen that
the grain mass, viscoelastic relaxation time associated with
the charged dust fluid play stabilizing roles to the fluctua-
tions in hydrodynamic regime. In the kinetic regime, we see
that the stabilizing effects are introduced by the dust mass
and equilibrium density, and equilibrium ionic population.
In addition to above, new implications and future directions
are concisely indicated.

2 Physical model and formalism

In the present work, we consider a four-component isother-
mal strongly coupled dusty plasma comprised of thermal
electrons, ions; and inertial neutral and charged spher-
ical dust particles of identical shape. The cloud is un-
bounded, infinitely extended and globally quasi-neutral in
nature. The dynamical response frequency of the electrons
and ions with the conventional asymptotic mass scaling,
me/md < mi/md ∼ 10−20 → 0 in the interstellar diffuse
matter (Spitzer 2004), is very high in comparison with that
of the gravitating grains. As usual, here, the masses of elec-
trons, ions and grains are denoted respectively by me , mi

and md ; respectively. The thermal species with zero-inertia
and mutual thermalization are therefore treated under the
Boltzmann distribution formalism for the low-frequency
fluctuations on the gravitational scales of space and time;
whereas the heavier dust species with strong inertia are mod-
elled as fluids. Besides, the dust grains have low thermal ve-
locities and hence, possess highly correlative effects on any
macroscopic scale. The grains are treated therefore as vis-
coelastic fluids, for which in principle, the mean-free path
of the gravitationally interacting grains is almost zero. It is
seen that the only massive grains in the cloud, which in-
teract gravitationally under the long-range Newtonian cou-
pling processes, contribute to the net mass of the cloud.
The charge fluctuation dynamics of the dust grains, which
arises due to interaction of electron and ion thermal cur-
rents on the grain surface randomly (Pandey et al. 2002),
is accounted. The effects of collisional momentum transfer
among all the constituent species are included. The collec-
tive correlation effects are considered through a generalized
hydrodynamic model (Frenkel 1946; Brevik 2016). Influ-

ences from external gravitating objects or stars, electromag-
netic fields, dust-size distribution and dust growth dynam-
ics are ignored for simplicity. The dynamics of such a self-
gravitating grainy plasma system is governed by all the basic
set of fluid equations in the framework of generalized hydro-
dynamic model tailored by viscoelasticity (Frenkel 1946;
Brevik 2016).

The classical dynamics of the thermal electrons and ions
constituting the dust cloud are governed by the equation
of continuity for flux density conservation and momentum
for force density conservation respectively given in the cus-
tomary notations (Dwivedi et al. 1999; Pandey et al. 2002;
Haloi and Karmakar 2017; Karmakar and Haloi 2017) in flat
space-time (x, t) in the non-relativistic regime as

∂nj

∂t
+ ∂

∂x
(njvj ) = −υjdc(nj − nj0), (1)

−Tj

∂nj

∂x
+ enj

∂φ

∂x
− mjnjυjdcvj = 0, (2)

where, nj0, nj , mj , vj and Tj stand for the equilibrium
number density, non-equilibrium number density, mass, ve-
locity and temperature (in eV) of the j th species (j = e for
electrons and i for ions). Moreover, υjdc denotes the col-
lision frequencies of the j th species with the charged dust,
e represents the electronic charge and φ is the electrostatic
plasma potential.

The dynamics of the viscoelastic fluid composed of the
neutral dust grains is described by the equation of continuity
and viscoelastic momentum equation given respectively as

∂ndn

∂t
+ ∂

∂x
(ndnvdn) = 0, (3)

[
1 + τmdn

(
∂

∂t
+ vdn

∂

∂x

)]

×
[
mdnndn

(
∂vdn

∂t
+ vdn

∂vdn

∂x

)
+ Tdn

∂ndn

∂x

+ mdnndn

∂ψ

∂x
+ mdnndnυnc(vdn − vdc)

]

=
(

ζdn + 4ηdn

3

)
∂2vdn

∂x2
. (4)

The evolutionary dynamics of the viscoelastic fluid com-
posed of the charged grains is dictated by the equation of
continuity and viscoelastic momentum equations given re-
spectively as

∂ndc

∂t
+ ∂

∂x
(ndcvdc) = 0, (5)

[
1 + τmdc

(
∂

∂t
+ vdc

∂

∂x

)]

×
[
mdcndc

(
∂vdc

∂t
+vdc

∂vdc

∂x

)
+qdndc

∂φ

∂x
+Tdc

∂ndc

∂x
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Table 1 Adopted normalization scheme

S no Physical parameter Normalizing parameter Normalized parameter Typical value of
normalizing
parameter

Sources

1. Distance (x) Jeans length (λJ ) ξ 7 × 104 m (Dutta et al. 2016)

2. Time (t) Jeans time (ω−1
J ) τ 2.4 × 109 s (Dutta et al. 2016)

3. Plasma frequency (ω),
collision frequencies
(υed , υid , υnc, υcn)

Jeans frequency (ωJ ) Ω , (Fed ,Fid ,Fnc,Fcn) 4.09×10−10 rad s−1 (Dutta et al. 2016)

4. Wave number (k) Jeans critical wavenumber (kJ ) K 1.5 × 10−5 m−1 (Dutta et al. 2016)

5. Number density (ne,i,dn,dc) Equilibrium density
(ne0,i0,dn0,dc0)

Ne,i,dn,dc ne0 = 4 × 107 m−3 (Shukla and Stenflo 2006)

ni0 = 1 × 106 m−3

ndn0 = 4 × 105 m−3

ndn0 = 1 × 105 m−3

6. Velocity (ve,i,dn,dc) Acoustic phase speed (css ) Me,i,dn,dc 2.8 × 10−5 m s−1 (Dutta et al. 2016)

7. Electrostatic potential (φ) Plasma thermal potential (T/e) Φ 1 J C−1 (Shukla and Stenflo 2006)

8. Self-gravitational potential (ψ) Square of the phase speed (c2
ss ) Ψ 7.8 × 10−10 m2 s−2 (Dutta et al. 2016)

9. Dust charge (qd ) Equilibrium dust charge (qd0) Qd 1.6 × 10−16 C (Dutta et al. 2016)

+ mdcndc

∂ψ

∂x
+ mdcndcυcn(vdc − vdn)

]

=
(

ζdc + 4ηdc

3

)
∂2vdc

∂x2
. (6)

The symbols ndn(dc), mdn(dc), vdn(dc) and Tdn(dc) denote
the population density, mass, flow velocity and temper-
ature of neutral (charged) dust, respectively. qd is the
charge of dust grain treated as a dynamical variable. Also,
τmdn(dc), ηdn(dc), ζdn(dc) stand for viscoelastic relaxation
time, shear viscosity coefficient (resistance to flow) and
bulk viscosity coefficient (resistance to expansion) of neutral
(charged) dust particles, respectively. The symbols υnc and
υcn represent the electron-dust, ion-dust, neutral-charged
and charged-neutral collision frequencies, respectively.
φ and ψ are electrostatic potential and self-gravitational po-
tential developed by fluid density fields, respectively. The
Poisson equation for these potential distributions in unnor-
malized form can respectively be written as

∂2φ

∂x2
= 4πe

[
(ne − ni) − qd

ndc

e

]
, (7)

∂2ψ

∂x2
= 4πG(mdnndn + mdcndc), (8)

where, G = 6.673 × 10−11 N m2 kg−2 is the universal grav-
itational (Newtonian) coupling constant via which gravita-
tional interaction is perceptible.

Assuming, mdn ≈ mdc = md , Eq. (8) can be written as

∂2ψ

∂x2
= 4πGmd(ndn + ndc). (9)

Lastly, the dynamics of the fluctuating electric charge of the
dust grains is governed by the charge fluctuation equation
given as

(
∂

∂t
+ vd

∂

∂x

)
qd

= e

[
υed

(ne − ne0)

nd0
− υid

(ni − ni0)

nd0

]
. (10)

It can be seen from Eqs. (1)–(10) that the plasma thermal
species (hot, mutually thermalized) constitute here inertia-
less fluids (Eqs. (1)–(2)); whereas, the cold dusty species
form the inertial fluids (Eqs. (3)–(6)). In the extreme limits
of md → 0, υnc → 0 and υcn → 0, all the species can col-
lectively be treated in a common footing of the Boltzmann
(thermal) equilibrium and associated distribution laws. Now,
for simplicity of our analysis, we adopt a standard astrophys-
ical normalization procedure to be applied in Eqs. (1)–(10)
to study the scale-free scenarios. The details of the normal-
ization scheme together with typical values are presented in
Table 1. The normalization scheme together with normal-
ized notations, for instant reference, is mathematically high-
lighted as

ξ = x

λJ

, τ = t

ω−1
J

, Nj = nj

nj0
, Nβ = nβ

nβ0
,

Mβ = vβ

css

, Φ = φe

T
, Ψ = ψ

c2
ss

, Qd = qd

qd0

and

τ ∗
mdn(mdc) = τmdn(mdc)ωJ .
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Here, j = ‘e’ for electrons, ‘i’ for ions; and β = ‘dn’ for

neutral dust and ‘dc’ for charged dust. The normalized form

of Eqs. (1)–(10), thus constructed, is respectively written

as

∂Nj

∂τ
+ ∂

∂ξ
(NjMj ) = −Fjdc(Nj − 1), (11)

∂Nj

∂ξ
+ Nj

∂Φ

∂ξ
+ Fjdc

(
mj

md

)
NjMj = 0, (12)

∂Ndn

∂τ
+ ∂

∂ξ
(NdnMdn) = 0, (13)

[
1 + τ ∗

mdn

(
∂

∂τ
+ Mdn

∂

∂ξ

)]

×
[
Ndn

(
∂Mdn

∂τ
+ Mdn

∂Mdn

∂ξ

)
+

(
Tdn

T

)
∂Ndn

∂ξ

+ Ndn

∂Ψ

∂ξ
+ Fnc

{
Ndn(Mdn − Mdc)

}]

= χ2
rxnτ

∗
mdn

∂2Mdn

∂ξ2
, (14)

∂Ndc

∂τ
+ ∂

∂ξ
(NdcMdc) = 0, (15)

[
1 + τ ∗

mdc

(
∂

∂τ
+ Mdc

∂

∂ξ

)]

×
[
Ndc

(
∂Mdc

∂τ
+ Mdc

∂Mdc

∂ξ

)
+

(
Tdc

T

)
∂Ndc

∂ξ

+ QdNdc

∂Φ

∂ξ
+ Ndc

∂Ψ

∂ξ
+ Fcn

{
Ndc(Mdc − Mdn)

}]

= χ2
rxcτ

∗
mdc

∂2Mdc

∂ξ2
, (16)

∂2Φ

∂ξ2
= 4πe2

mdω2
J

[
(ne0Ne − ni0Ni) − ndc0QdNdc

qd0

e

]
, (17)

∂2Ψ

∂ξ2
=

[(
ω2

Jc

ω2
J

)
Ndc +

(
ω2

Jn

ω2
J

)
Ndn

]
, (18)

∂Qd

∂τ
+ Mdc

∂Qd

∂ξ
= e

qd0

[
Fed

(
ne0

nd0

)
(Ne − 1)

− Fid

(
ni0

nd0

)
(Ni − 1)

]
. (19)

The scale-invariant dynamic properties of the cloud in an

unperturbed arrangement are governed by the closed set of

Eqs. (11)–(19) devised in normalized form. This coupled set

is used to disclose the properties of the dynamic stability

of the complex astrocloud against slight perturbations under

consideration.

3 Normal mode analysis

We apply a standard normal mode analysis locally to the
unbounded self-gravitating grainy plasma to study the local
stability behavior of the viscoelastic pulsational mode. To do
that, the relevant dependent normalized variables describing
the cloud are allowed to undergo slight perturbation around
the respective hydrostatic equilibrium values as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ne

Ni

Ndn

Ndc

Me

Mi

Mdn

Mdc

Φ

Ψ

Qd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ne1

Ni1

Ndn1

Ndc1

Me1

Mi1

Mdn1

Mdc1

Φ1

Ψ1

Qd1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Applying the above Fourier perturbation scheme, as given
by Eq. (20), the linearized set of Eqs. (11)–(19) respectively
reads as

∂Ne1

∂τ
+ ∂Me1

∂ξ
= −FedcNe1, (21)

∂Ne1

∂ξ
− ∂Φ1

∂ξ
+ Fedc

(
me

md

)
Me1 = 0, (22)

∂Ni1

∂τ
+ ∂Mi1

∂ξ
= −FidcNi1, (23)

∂Ni1

∂ξ
+ ∂Φ1

∂ξ
+ Fidc

(
mi

md

)
Mi1 = 0, (24)

∂Ndn1

∂τ
+ ∂Mdn1

∂ξ
= 0, (25)

(
1 + τ ∗

mdn

∂

∂τ

)[
∂Mdn1

∂τ
+

(
Tdn

T

)
∂Ndn1

∂ξ
+ ∂Ψ1

∂ξ

+ Fnc(Mdn1 − Mdc1)

]

= χ2τ ∗
mdn

∂2Mdn1

∂ξ2
, (26)

∂Ndc1

∂τ
+ ∂Mdc1

∂ξ
= 0, (27)

(
1 + τ ∗

mdc

∂

∂τ

)[
∂Mdc1

∂τ
+

(
Tdc

T

)
∂Ndc1

∂ξ
+ ∂Φ1

∂ξ
+ ∂Ψ1

∂ξ

+ Fcn(Mdc1 − Mdn1)

]

= χ2τ ∗
mdc

∂2Mdc1

∂ξ2
, (28)
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∂2Φ1

∂ξ2
= 4πe2

mdω2
J

[
(ne0Ne1 − ni0Ni1)

− ndc0
qd0

e
(Ndc1 + Qd1)

]
, (29)

∂2Ψ1

∂ξ2
=

[(
ω2

Jc

ω2
J

)
Ndc1 +

(
ω2

Jn

ω2
J

)
Ndn1

]
, (30)

∂Qd1

∂τ
= e

qd0
[FedNe1 − FidNi1]. (31)

The unbounded infinitely extended geometry of the inter-
stellar molecular cloud allows the fluctuations in the relevant
cloud parameters to grow periodically in the Fourier form of
plane waves as ∼ exp{−i(Ωτ − Kξ)}. Here, Ω = ω/ωJ is
the Jeans-normalized fluctuation frequency and K = k/kJ

is the Jeans-normalized angular wavenumber. The Fourier
analysis of Eqs. (21)–(31) mapped in the coordination space
(ξ, τ ), on mutual parametric decoupling, yields respectively
the following set of algebraic equations in the Fourier space
(K,Ω) as

Ne1 = K2Φ1

( me

md
)Fedc(iΩ − Fedc) − K2

, (32)

Ni1 = −K2Φ1

(
mi

md
)Fidc(iΩ − Fidc) − K2

, (33)

Ndc1 = K2Zd0Φ1

/[
Ω(Ω + iFcn) − K2

(
Tdc

T

)

+ iΩK2
(

χ2
rxcτ

∗
mdc

1 − iΩτ ∗
mdc

)
+

(
ω2

Jc

ω2
J

)]

−
[(

ω2
Jn

ω2
J

)
− iΩFcn

][(
ω2

Jc

ω2
J

)
− iΩFnc

]

/[
Ω(Ω + iFnc) − K2

(
Tdn

T

)

+ iΩK2
(

χ2
rxnτ

∗
mdn

1 − iΩτ ∗
mdn

)
+

(
ω2

Jn

ω2
J

)]
, (34)

Φ1 = 4πe2

mdK2ω2
J

[
(ni0Ni1 − ne0Ne1)

+ ndc0
qd0

e
(Ndc1 + Qd1)

]
, (35)

Qd1 = ie

Ωqd0
(FedcNe1 − FidcNi1). (36)

Therefore, applying the method of decomposition and elim-
ination, Eqs. (32)–(36) can be transformed into the follow-
ing linear generalized dispersion relation under the condi-
tion of non-vanishing gravito-electrostatic potentials in the

linear order as

1 + Ω2
pe

(1 − i
Ω

Fed)−1[iΩFedc − {F 2
edc + (

md

me
)K2}]

+ Ω2
pi

(1 − i
Ω

Fid)−1[iΩFidc − {F 2
idc + (

md

mi
)K2}]

= Ω2
pd/[
Ω(Ω + iFcn) − K2

(
Tdc

T

)

+ iΩK2
(

αdc

1 − iΩτ ∗
mdc

)
+

(
ω2

Jc

ω2
J

)]

−
[(

ω2
Jn

ω2
J

)
− iΩFcn

][(
ω2

Jc

ω2
J

)
− iΩFnc

]

/[
Ω(Ω + iFnc) − K2

(
Tdn

T

)

+ iΩK2
(

αdn

1 − iΩτ ∗
mdn

)
+

(
ω2

Jn

ω2
J

)]
, (37)

where, Ωpe, Ωpi and Ωpd are electron-plasma frequency,
ion-plasma frequency and dust-plasma oscillation frequency,
respectively. The role of each of the terms in Eq. (37) is self-
explanatory and centered around the customary scheme of
notations. If the contributions from the viscoelastic sources,
via τ ∗

mdn, τ ∗
mdc, αdn and αdc, are altogether ignored; then

Eq. (37) agreeably reduces to the well-known form of the
linear pulsational mode dispersion relation in a charge-
fluctuating cloud (Pandey et al. 2002). Moreover, if the grain
charge dynamics, alongside viscoelasticity, too is neglected
in Eq. (37), the pulsational mode dispersion relation for
static clouds (Dwivedi et al. 1999) gets reproduced. These
functional matching of the three distinct classes of disper-
sion relation put forward a quick reliability check-up of our
entire analytical calculation scheme. We now use Eq. (37)
to investigate the oscillatory and propagatory dynamics of
the linear gravito-electrostatic (pulsational) mode in the vis-
coelastic complex cloud. To do that, two extreme cases of
physical interest depending on the perturbations, such as
hydrodynamic and kinetic limits, in the wave propagation
dynamics are considered and elaborately discussed the next
sub-sections.

3.1 Hydrodynamic limit

In the hydrodynamic limits (Ωτ ∗
mdn,Ωτ ∗

mdc � 1), which
typify the low-frequency fluctuations in the cloud, the gen-
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eralized dispersion relation (Eq. (37)) reduces to

1 + Ω2
pe

(1 − i
Ω

Fed)−1[iΩFedc − {F 2
edc + (

md

me
)K2}]

+ Ω2
pi

(1 − i
Ω

Fid)−1[iΩFidc − {F 2
idc + (

md

mi
)K2}]

= Ω2
pd

[Ω2 + iΩ(Fcn + K2αdc) − K2(
Tdc

T
) + (

ω2
Jc

ω2
J

)]

−
[(ω2

Jn

ω2
J

) − iΩFcn][(ω2
Jc

ω2
J

) − iΩFnc]

[Ω2 + iΩ(Fnc + K2αdn) − K2(
Tdn

T
) + (

ω2
Jn

ω2
J

)]
.

(38)

An execution of algebraic operation for mathematical sim-
plification reduces Eq. (38) into the following simplified
septic form in the hydrodynamic regime as

Ω7 + a6Ω
6 + a5Ω

5 + a4Ω
4

+ a3Ω
3 + a2Ω

2 + a1Ω + a0 = 0; (39)

where, the different involved coefficients are described in
Appendix A. The different coefficients control the dynamics
of the instability under the considered limit. The root of the
instability lies in dynamic relaxation processes by virtue of
sources of free energy stemming in the long-range gravito-
electrostatic interplay. Applying now the condition for ex-
tremely low-frequency fluctuations in Eq. (39), we obtain
the expression for the growth rate as

Ωi = f (K,αdn,αdc) =
√

4a0a2 − a2
1

2a2
. (40)

It is evident from Eq. (40) that the source responsible be-
hind the extremely low-frequency instability growth is at-
tributable to the conjoint action of the viscosity (sourcing to
energy dissipation) and elasticity (sourcing to wave energy
restoration).

3.2 Kinetic limit

In the kinetic limits (Ωτ ∗
mdn,Ωτ ∗

mdc � 1), which account
for the high-frequency fluctuations in the adopted cloud,

Eq. (37) gets transformed into

1 + Ω2
pe

(1 − i
Ω

Fed)−1[iΩFedc − {F 2
edc + (

md

me
)K2}]

+ Ω2
pi

(1 − i
Ω

Fid)−1[iΩFidc − {F 2
idc + (

md

mi
)K2}]

= Ω2
pd

[Ω2 + iΩFcn − K2(
Tdc

T
+ χ2

rxc) + (
ω2

Jc

ω2
J

)]

−
[(ω2

Jn

ω2
J

) − iΩFcn][(ω2
Jc

ω2
J

) − iΩFnc]

[Ω2 + iΩFnc − K2(
Tdn

T
+ χ2

rxn) + (
ω2

Jn

ω2
J

)]
. (41)

An algebraic exercise reduces Eq. (40) in the kinetic regime
into the following simplified septic form as

Ω7 + a6Ω
6 + a5Ω

5 + a4Ω
4

+ a3Ω
3 + a2Ω

2 + a1Ω + a0 = 0; (42)

where, the different involved coefficients are presented ex-
plicitly in Appendix B. More particularly, the origin of the
free energy sources can also be derived and interpreted
specifically by reducing Eq. (42) for the kinetic regimes as
follows.

Ωi = f (K,χrxn,χrxc) =
√

4a5 − a2
6

2
. (43)

We see from Eq. (43) that the source of the onset for the
high-frequency instability is ascribable to the diversified
joint interaction of the collective correlative interaction pro-
cesses (dissipation-restoration of wave energy) introduced
through viscoelasticity.

4 Results and discussions

The focal goal of the present contribution is to investigate
the gravito-electrostatic (pulsational) stability properties of
a complex astrophysical viscoelastic cloud. The closed set of
basic governing equations is accordingly reduced into two
extreme forms of dispersion relations in the hydrodynamic
limit (Eq. (38)) and kinetic limit (Eq. (41)). We carry out
a numerical analysis to extract the dispersion properties by
using a suitable root-finding method of polynomial decom-
position (Lindfield and Penny 2012). The numerical analysis
is based in the framework of parametric domains of realistic
astrophysical fluids (McKelvey 1984). The results, thus ob-
tained by numerical analysis, are illustrated and interpreted
in Figs. 1–8 as follows
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Fig. 1 Profile of the normalized (a) real frequency (Ωr ) and (b) growth rate (Ωi ) of the gravito-electrostatic fluctuations in the hydrodynamic
limits (Ωτ ∗

mdn,Ωτ ∗
mdc � 1) for different values of the dust mass (md ) as shown in the legends. The fine numerical details are given in the text

Fig. 2 Same as Fig. 1, but for different values of the equilibrium dust charge (qd0) as in the legends

Fig. 3 Same as Fig. 1, but for different values of viscoelastic relaxation time for neutral dust (τ ∗
mdn) as in the legends

Fig. 4 Same as Fig. 1, but for different values of normalized viscoelastic relaxation time for charged dust (τ ∗
mdc) as in the legends
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Fig. 5 Profile of the normalized (a) real frequency (Ωr ) and (b) growth rate (Ωi ) of the gravito-electrostatic fluctuations in the kinetic limits
(Ωτ ∗

mdn,Ωτ ∗
mdc � 1) for different values of the dust mass (md ) as shown in the legends. The fine details are given in the text

Fig. 6 Same as Fig. 5, but for different values of the equilibrium electron density (ne0) as in the legends

Fig. 7 Same as Fig. 5, but for different values of the equilibrium ion density (ni0) as in the legends

Fig. 8 Same as Fig. 5, but for different values of the equilibrium dust density (nd0) as in the legends
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In Fig. 1, we present the dynamic profile patterns of the
normalized (a) real frequency (Ωr ) and (b) growth rate (Ωi )
of the gravito-electrostatic fluctuations in the hydrodynamic
limits (Ωτ ∗

mdn,Ωτ ∗
mdc � 1) for different values of the dust

mass (md ). The other inputs are ne0 = 10–50 cm−3, ni0 =
5–30 cm−3, nd0 = 10−2–10 cm−3, me = 9.1 × 10−28 g,
mi = 1.67 × 10−24 g, Te ≈ Ti = 1–10 eV, Tdn ≈ Tdc ≈
Td = 0.01 eV, τ ∗

mdn = 0.01, τ ∗
mdc = 0.01, qd0 = 1.6 ×

10−16 C and r = 1.28 μm (Spitzer 2004; Shukla and Stenflo
2006; Dutta et al. 2016; Karmakar and Haloi 2017). It is seen
from Fig. 1a that the fluctuations of the astrocloud in the hy-
drodynamic regime are comprised of bi-scale dynamic be-
haviors. In this perturbation domain, the Jeans mode is spec-
ulated to exist for the large-wavelength zone (K → 0). The
mode here is found to be highly dispersive in nature. More-
over, as the spectral domain beyond K = 1 is reached, a
quasi-linear mode transformation into non-dispersive acous-
tic wave is found to occur. It can be seen that, in the con-
sidered cloud model, the origin of the dispersive properties
is sourced collectively by deviation from the exact gravito-
acoustic neutrality triggered by the Poisson potential curva-
tures (via Eqs. (17)–(18)). It is further noteworthy that the
increasing magnitude of the dust mass reduces the veloc-
ity (both phase as well as group velocity), and vice-versa
(Fig. 1a). It may therefore be concluded that the dust mass
plays a decelerating role to the collective wave fluctuations.
It is further seen that the critical limit in the K-space, as
indicated by K = 1, allows the perturbations to undergo ex-
plosive growth (Fig. 1b). The growth is persistent in the rel-
atively high-K spectral domain. It is pertinent to note fur-
ther that the grain mass develops a stabilizing propensity
thereby allowing the wave fluctuations to damp out with
the increment in dust inertia. The basic physics underly-
ing the above fluctuation properties (Figs. 1, 2, 3, 4) is as-
cribable to the long-range gravito-electrostatic coupling of
the long-wavelength Jeans mode and its transformed form
of relatively short-wavelength pure acoustic (electrostatic)
mode amid the stabilizing agency incorporated afresh via the
charge-varying dust dynamics on the astrophysical scales of
space and time.

We also obtain the spectral pattern profiles of the wave
parameters (Ωr,Ωi) having functional dependence on K

for enhancing values of qd0 (Fig. 2), τ ∗
mdn (Fig. 3) and τ ∗

mdc

(Fig. 4). They show analogous characteristic wave features,
but with minor quantitative modifications in the propagation
dynamical properties. It is thereby revealed that an enhance-
ment in qd0 results in a two-step behavior for the excitation
of the collective gravito-electrostatic waves and oscillations
(Fig. 2). The wave mode gets first highly decelerated due to
the qd0-increment in the domain K < 1 (Fig. 2a). However,
in the K-space defined by K ≥ 1, the qd0-increment acts
as a destabilizing agency to the collective wave fluctuations
(Fig. 2b). An enhancement in τ ∗

mdn (Fig. 3) results in similar

wave patterns as in Fig. 2; however, reverse propensities in
the dynamics are speculated for the τ ∗

mdc enhancement and
vice-versa (Fig. 4). It can therefore, be added that the prop-
agatory features of the wave patterns supported in the cloud
in the hydrodynamic regime are numerically revealed.

As in Fig. 5, we display the profile structures of the nor-
malized (a) real frequency (Ωr ) and (b) growth rate (Ωi )
of the gravito-electrostatic fluctuations in the kinetic limits
(Ωτ ∗

mdn,Ωτ ∗
mdc � 1) for different values of the dust mass

(md ). The input and initial values used here are the same as
Fig. 1, but now with τ ∗

mdn = 0.1 and τ ∗
mdc = 0.1, against the

hydrodynamic limits. It is found in the kinetic limits that the
md -enhancement results in acceleration process of the wave
fluctuation mode (Fig. 5a). Also, it imparts a stabilizing ef-
fect on the fluctuations (Fig. 5b), because the magnitude
of the fluctuation growth decreases with the augmentation
in the grain mass. The gravito-electrostatic perturbations in
this case are found to be highly dispersive in nature because
of linear dispersive functional dependence of Ω on K . As
a consequence, the group velocity and the phase velocity
in this case are equal, unlike those found in the earlier hy-
drodynamic limits. Moreover, a reverse effect on the fluc-
tuation propagation dynamics is speculated to be induced
by the ne0-enhancement. The profile patterns with the ni0-
enhancement (Fig. 7) are almost similar to Fig. 5, but with
an opposite evolutionary trend. In other words, the equilib-
rium electron number density plays a destabilizing role to
the fluctuations. Thus, it is seen that the characteristic fea-
tures revealed in Fig. 5 and Fig. 7 are fairly equivalent on
the same comparative footing, but with a pronounced dy-
namic reversibility. It is pertinent to mention here that md ,
ni0 and nd0 introduce stabilizing effects to the cloud fluctu-
ations (Fig. 5 and Figs. 7, 8) at the cost of gravito-acoustic
interplay in the presence of charge-fluctuating grain dynam-
ics.

As a consequence of our numerical calculation scheme,
we can say that the relevant wave features in both the hy-
drodynamic and kinetic limits, under the conjoint action of
gravito-electrostatic interplay in the presence grain-charge
fluctuation dynamics in the viscoelastic astrocloud fluid, are
explored along with the stabilizing sources identified and
characterized. We invoke isothermal dust-fluid formulation
for analytic simplification. It is, however, expected that the
variable dust-temperature if considered, would introduce ad-
ditional stability effects (sourced not only by density fluc-
tuations, but also by temperature fluctuations) against the
global dynamic cloud collapse leading to stars, planets, etc.
In order to obtain a naturalistic illustrative pattern of the
fluctuations responsible for fluid material redistribution pro-
cesses on the verge of structure formation, it is admitted
that a suitably constructed set of initial and input values
of sensible astro-space parameters from different sources
in the literature (Spitzer 2004; Shukla and Stenflo 2006;
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Dutta et al. 2016; Karmakar and Haloi 2017) is adopted.
It may, however, be noted that, for a realistic bounded as-
trophysical equilibrium structure to form in the gravitat-
ing dust molecular clouds, the dust charge-to-mass ratio,
md/Qd ∼ √

G (Gisler et al. 1992) leading to a perfect
gravito-electrostatic equilibrium, needs to be asymptotically
fulfilled against the collective plasma wave excitations and
oscillations.

5 Conclusions

The stability dynamics of the viscoelastic pulsational mode,
which is an outcome of complex gravito-electrostatic inter-
play in the presence of viscoelasticity in a charge-fluctuating
cloud, is theoretically analyzed. The closed set of the cloud
structure equations in normalized form accordingly under-
goes a slight perturbation around the defined hydrostatic
homogeneous equilibrium implicating uniform distribution
of the cloud plasma constituents. The perturbed model, on
being decoupled in the Fourier space, reduces to a gen-
eralized septic dispersion relation with diversified plasma-
dependent coefficients of explicit nature. It is shown from
the dispersion arguments that the fluctuation dynamics un-
der consideration is an outcome of the plasma dynamic re-
laxation processes at the cost of free energy sources stem-
ming in the long-range gravito-electrostatic interplay and
associated fluid currents. Two extreme cases of practical rel-
evants sourced by perturbation dimensions in the fluctuation
dynamics, termed as the hydrodynamic and kinetic regimes,
are considered. The graphical shape-analysis of the fluctua-
tion features shows that the dust mass (md ) and viscoelastic
relaxation time for the charged dust fluid (τ ∗

mdc) give rise
to stabilizing influences in the hydrodynamic limits. Fur-
thermore, the equilibrium dust charge (qd0) and viscoelas-
tic relaxation time for the neutral dust fluid (τ ∗

mdn) introduce
destabilizing effects to the fluctuations in the same regime. It
is concurrently demonstrated that the dust mass (md ), equi-
librium ion number density (ni0) and equilibrium dust num-
ber density (nd0) play the stabilizing roles. On the other
hand, the equilibrium electron number density (ne0) plays
the destabilizing role to the collective excited fluctuations in
the kinetic limits.

The analysis presented here is based on isothermal dusty
plasma fluid-framework as an idealization against analytic
complications. In reality, the thermodynamic variables in
space and astrophysical environments keep on changing
from point to point due to the presence of large-scale in-
homogeneities and gradient forces. Thus, it opens a new
scope for future refinements of the analysis in the frame-
work of non-local stability theory. The mathematical ansatz
used herein, despite the pros and pons, might have com-
modious applications in the theoretical study of instabil-

ity phenomenology in different types of astrophysical flu-
ids, provided that the equilibrium remains a local (uniform,
homogeneous and static) one. The results may in parallel
also be extensively useful in apprehending the triggering
mechanisms responsible for the excitation of active gravito-
electrostatic collapse dynamics in interstellar clouds giving
birth to astrophysical large-scale structures in galaxies.
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Appendix A: Dispersion coefficients in the
hydrodynamic regime

a6 = i

{
Fnc + Fcn + K2(αdn + αdc)

+ m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

}
,

a5 = {
1 − 2K2 − (Fncαdc + Fcnαdn)K

2 − αdnαdcK
4}

+
(

mΩ2
pe + nΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

− Ω2
pd − {

Fnc + Fcn + K2(αdn + αdc)
}

×
{(

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

)}
,

a4 = i

{
(Fnc + Fcn)

(
1 − K2)

+ αdnK
2
(

ω2
Jn

ω2
J

− K2
)

+ αdcK
2
(

ω2
Jc

ω2
J

− K2
)}

+ i
{
1 − 2K2 − (Fcnαdn + Fncαdc)K

2 − αdnαdcK
4}

·
{

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

}

× i

{
mΩ2

pe + nΩ2
pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

}

· {Fnc + Fcn + K2(αdn + αdc)
}

− i

(
nFedΩ2

pe + mFidcΩ
2
pi

FedcFidc

)

− i

{(
Fnc + K2αdn

) +
(

n

Fidc

+ m

Fedc

)}
Ω2

pd,
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a3 = K4 −
(

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

)

·
{
(Fnc + Fcn)

(
1 − K2)

+ αdnK
2
(

ω2
Jn

ω2
J

− K2
)

+ αdcK
2
(

ω2
Jc

ω2
J

− K2
)}

+
{

mΩ2
pe + nΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

}

× {
1 − 2K2 − (Fcnαdn + Fncαdc)K

2 − αdnαdcK
4}

+
(

nFedΩ2
pe + mFidΩ2

pi

FedcFidc

)

× {
Fnc + Fcn + K2(αdn + αdc)

}

+
{(

K2 − ω2
Jn

ω2
J

)
+ (

Fnc + K2αdn

)( n

Fidc

+ m

Fedc

)

+ mn

FedcFidc

}
Ω2

pd,

a2 = i

(
m − Ω2

pe

Fedc

+ n − Ω2
pi

Fidc

)

× K4i

(
mΩ2

pe + nΩ2
pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

·
{
(Fnc + Fcn)

(
1 − K2)

+ αdnK
2
(

ω2
Jn

ω2
J

− K2
)

+ αdcK
2
(

ω2
Jc

ω2
J

− K2
)}

− i

(
nFedΩ2

pe + mFidΩ2
pi

FedcFidc

)

× {
1 − 2K2 − (Fcnαdn + Fncαdc)K

2 − αdnαdcK
4}

+ i

{(
m

Fedc

+ n

Fidc

)(
ω2

Jn

ω2
J

− K2
)

+ mn(Fnc + K2αdn)

FedcFidc

}
Ω2

pd,

a1 =
(

mΩ2
pe + nΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)
K4

+
(

nFedΩ2
pe + mFidΩ2

pi

FedcFidc

)

×
{
(Fnc + Fcn)

(
1 − K2) + αdnK

2
(

ω2
Jn

ω2
J

− K2
)

+ αdcK
2
(

ω2
Jc

ω2
J

− K2
)}

−
mn(K2 − ω2

Jn

ω2
J

)Ω2
pd

FedcFidc

,

a0 = −i

(
nFedΩ2

pe + mFidΩ2
pi

FedcFidc

)
· K4.

Appendix B: Dispersion coefficients in the kinetic
regime

a6 = i

(
Fnc + Fcn + m − Ω2

pe

Fedc

+ n − Ω2
pi

Fidc

)
,

a5 = 1 − K2(χ2
rxn + χ2

rxc + 2
)

− (Fnc + Fcn)

(
m − Ω2

pe

Fedc

+ n − Ω2
pi

Fidc

)

+
(

nΩ2
pe + mΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

− Ω2
pd,

a4 = i(Fnc + Fcn)

×
(

nΩ2
pe + mΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

+ i

{
1 − K2(χ2

rxn + χ2
rxc + 2

)

×
(

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

)}

+ i

{(
Fnc

ω2
Jn

ω2
J

+ Fcn

ω2
Jc

ω2
J

)

− K2(Fncχ
2
rxc + Fcnχ

2
rxn

)}

− i

(
nFedΩ2

pe + mFidΩ2
pi

FedcFidc

)

− i

(
n

Fidc

+ m

Fedc

+ Fnc

)
Ω2

pd,

a3 = K2(1 + χ2
rxc

){
K2(1 + χ2

rxn

) − ω2
Jn

ω2
J

}

+
(

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

)

×
{(

Fnc

ω2
Jc

ω2
J

+ Fcn

ω2
Jn

ω2
J

)

+ K2(Fncχ
2
rxc + Fcnχ

2
rxn

)}
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+ {
1 − K2(χ2

rxn + χ2
rxc + 2

)}

×
(

nΩ2
pe + mΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

+
{

mn

FedcFidc

+ Fnc

(
m

Fedc

+ n

Fidc

)
+ K2(1 + χ2

rxn

)}

× Ω2
pd

− (Fnc + Fcn)

(
nFedΩ2

pe + mFidΩ2
pi

FedcFidc

)
,

a2 = iK2(1 + χ2
rxc

){
K2(1 + χ2

rxn

) − ω2
Jn

ω2
J

}

×
(

m − Ω2
pe

Fedc

+ n − Ω2
pi

Fidc

)

− i
{
1 − K2(χ2

rxn + χ2
rxc + 2

)}

×
(

nFedΩ2
pe + mFidΩ2

pi

FedcFidc

)

+ i

{(
K2 + K2χ2

rxn − ω2
Jn

ω2
J

)(
m

Fedc

+ n

Fidc

)

+ mnFnc

FedcFidc

}
Ω2

pd

+ i

(
nΩ2

pe + mΩ2
pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

×
{(

Fnc

ω2
Jc

ω2
J

+ Fcn

ω2
Jn

ω2
J

)

− K2(Fncχ
2
rxc + Fcnχ

2
rxn

)}
,

a1 = K2(1 + χ2
rxc

){
K2(1 + χ2

rxn

) − ω2
Jn

ω2
J

}

×
(

nΩ2
pe + mΩ2

pi − mn

FedcFidc

− FedΩ2
pe

Fedc

− FidΩ2
pi

Fidc

)

−
mn{K2(1 + χ2

rxn) − ω2
Jn

ω2
J

}Ω2
pd

FedcFidc

+
{(

Fnc

ω2
Jc

ω2
J

+ Fcn

ω2
Jn

ω2
J

)
− (

Fncχ
2
rxc + Fcnχ

2
rxn

)
K2

}

×
(

nFedΩ2
pe + mFidΩ2

pi

FedcFidc

)
.
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