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Abstract We investigate perfect fluid stars in (2 + 1) di-
mension in pseudo-spheroidal spacetime with the help of
Vaidya-Tikekar metric where the physical 3-space (t =
constant) is described by pseudo-spheroidal geometry. Here
the spheroidicity parameter a, plays an important role for
determining the properties of a compact star. In the present
work a class of interior solutions corresponding to the
Bañados-Teitelboim-Zanelli (BTZ) (Bañados et al., Phys.
Rev. Lett. 69:1849, 1992) exterior metric has been provided
which describes a static circularly symmetric star with neg-
ative cosmological constant in equilibrium. It is shown that
asymptotically anti-de Sitter (2 + 1) dimensional spacetime
described by BTZ admits a compact star solution with rea-
sonable physical features.
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1 Introduction

After the discovery of the particle named as Neutron by
Chadwick, later on existence of the neutron star was pre-
dicted. A neutron star is the later stage of a gravitation-
ally collapsed star. It becomes stabilized by the degener-
ate neutron pressure, after exhausting all its thermonuclear
fuel. With the discovery of pulsars (Hewish et al. 1968)
this concept got concrete experimental support. However
the estimated mass and radius of different compact object
such as X-ray pulsar Her X-1, X-ray burster 4U 1820-30,
millisecond pulsar SAX J 1808.4-3658 and X-ray sources
RX J 185635-3754 could not be described by the standard
neutron star model. It is found by Ruderman (1972) that the
matter densities of compact stars are to be of the order of
1015 gm/cc or higher, exceeding the nuclear matter density
and at this high density range nuclear interactions must be
treated relativistically. As a result of the anisotropy, pressure
inside the fluid sphere can be decomposed into two parts
namely radial pressure pr and the transverse pressure pt ,
where pt is in the perpendicular direction to pr . Anisotropy
may occurs in various reasons e.g. the existence of solid
core, in presence of type P superfluid, phase transition, rota-
tion, magnetic field, mixture of two fluid, existence of exter-
nal field etc. (Thirukkanesh and Ragel 2014). On the basis of
compactification factor (ratio of mass and radius), the com-
pact objects are classified into a normal star (10−5), white
dwarf (10−3), neutron star (0.1 to 0.2), strange star (0.2 to
<0.5), black hole (0.5) etc. The physics and equation of state
(EOS) of compact objects near the core region are still not
known clearly.

To analyze a compact object Vaidya and Tikekar (1982)
and Tikekar (1990) prescribed a simple form for the space
like hyper surface (t = constant) containing two parameters,
namely spheroidicity parameter (a) and curvature parame-
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ter (R). The Vaidya-Tikekar approach reduces the complex-
ity of field equations which produces solution of relativistic
stars with ultra high densities and is also useful to obtain
stellar solution for a compact star with Einstein-Maxwell
field equations (Rhodes and Ruffini 1974). The physics of
the Vaidya-Tikekar metric is discussed in the Refs. (Vaidya
and Tikekar 1982; Knutsen 1988; Tikekar 1990). With dif-
ferent choice of spheroidal parameter Maharaja and Leach
(1996) obtained a new classes of solutions for superdense
stars. Thomas and Tikekar (1998) and Tikekar and Thomas
(1999) obtained a class of relativistic solutions analyzing
compact stars with 3-pseudo-spheroidal geometry for the 3-
space of the interior spacetime. Considering the anisotropic
distribution of fluid including pseudo-spheroidal geome-
try to construct compact star models one may look at the
Refs. (Patel and Mehta 1995; Jotania and Tikekar 2005). In
connection to compact star in one of our earlier works (Shee
et al. 2016) we proposed a model for relativistic dense star
with anisotropy that admits non-static conformal symmetry.

Actively researching in the field of lower dimensional
gravity one can understand substantially some of the crucial
points of astrophysics. Lower dimensional analysis of black
holes has often been preferred to understand the various is-
sues which are to be difficult to resolve in conventional di-
mensions. Bañados et al. (1992) (henceforth BTZ) obtained
a beautiful solution which opened up the possibility of in-
vestigating many interesting features of black holes. They
obtained a analytical solution representing the exterior grav-
itational field of a black hole in (2 + 1) dimensions in the
presence of negative cosmological constant. Mann and Ross
(1993) analyzed collapsing dust cloud (p = 0) in (2 + 1)

dimensions leading to a black hole. Later on Martins et al.
(2010) obtained a self similar solution in (2 + 1) dimen-
sions by considering the collapse of a circularly symmetric
anisotropic fluid. The interior solution for an incompress-
ible fluid in (2 + 1) dimensions and the bound on the max-
imum allowed mass of the resulting configuration was ob-
tained by Cruz and Zanelli (1995). The study also claims
that the collapsed stage would always be covered under its
event horizon. A class of interior solutions corresponding
to BTZ exterior was provided by Cruz et al. (2005) by as-

suming a particular density profile ρ = ρc(1 − r2

R2 ), where
ρc is the central density, ρ is the density which is a func-
tion of the radial parameter r and R is the boundary of the

star. Assuming polytropic EOS, such as p = Kρ1+ 1
n , Paulo

(1999) proposed a interior solution corresponding to the
BTZ exterior, where n is the polytropic index and K is the
polytropic constant. A new class of interior solution cor-
responding to the BTZ exterior was provided by Sharma
et al. (2011) by assuming a particular form of mass func-
tion 2m(r) = C − e−2μ(r) − Λr2, where μ(r) is the met-
ric function and m(r) is the mass within the radial distance.
The general BTZ metric is characterized by its mass, angular

momentum and electric charge but is asymptotically anti-de
Sitter rather than flat (Husain 1995).

Being motivated by the above background works we have
presented here a compact star model under (2 + 1) dimen-
sional metric with several interesting physical properties.
The plan of the investigation is as follows: In Sect. 2 we
have provided necessary spacetime background and hence
the Einstein field equations in the presence of cosmologi-
cal constant. We have found solutions for different physical
parameters and matching condition in Sects. 3 and 4 respec-
tively. In Sect. 5 we have explored different physical fea-
tures, viz. the density and mass, pressure and anisotropy,
stability, energy conditions, compactness and redshift etc.
with elaborate discussion. In the last Sect. 6 we have made
some concluding remarks regarding different aspects of the
present model.

2 The spacetime metric

2.1 Interior spacetime

We take the following (2+1) dimensional metric describing
the interior of a static spherically symmetric distribution of
matter as

ds2 = −e2γ (r)dt2 + e2μ(r)dr2 + r2dθ2. (1)

The energy-momentum tensor of the matter distribution in
the interior of the star is given by

Tij = (ρ + pr)uiuj + ptgij + (pr − pt)χiχj , (2)

where ρ represents the energy density, pr is the radial pres-
sure, pt is the tangential pressure, gij are the metric tensors,
χi = e−μ(r)δi

r is a unit three vector along the radial direc-
tion, and ui are the 3-velocity of the fluid.

The Einstein field equations with a cosmological constant
under the specification G = c = 1 are given by

2πρ + Λ = μ′e−2μ

r
, (3)

2πpr − Λ = γ ′e−2μ

r
, (4)

2πpt − Λ = e−2μ
(
γ ′2 + γ ′′ − γ ′μ′), (5)

where a ‘′’ denotes differentiation with respect to the radial
parameter r . Combining Eqs. (3)–(5), we have

(ρ + pr)γ
′ + p′

r + 1

r
(pr − pt) = 0, (6)

which is the conservation equation in (2 + 1) dimensions.
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2.2 Metric potential

Since we take (2 + 1) dimensions in pseudo spheroidal
spacetime, therefore, we use the ansatz (Mann and Ross
1993)

e2μ = 1 + ar2

R2

1 + r2

R2

, (7)

where a is the spheroidicity parameter and R is a geomet-
rical parameter related with the configuration of the star
model.

Using Eq. (7) we get

2μ = ln
R2 + ar2

R2 + r2
. (8)

Therefore differentiating μ with respect to r we get

μ′ = R2r(a − 1)

(R2 + ar2)(R2 + r2)
. (9)

The above equations are used to calculate ρ and pt . How-
ever, here it is to note that the spheroidicity parameter a

and curvature parameter R plays a very important role in
our work. We shall take a = 6 and R = 22.882 km through
out the work as taken by Chattopadhyay et al. (2012) for
X ray pulsar Her X-1. It can be observed that the variation
of these parametric values within the range 5 < a < 10 and
20 < R < 25 shows very negligible effect. However, for the
present prescription on the numerical values of a and R,
we would add that though BTZ black hole is not a three-
dimensional section of a 4D black hole however it facilitates
to understand several key features of the model presented
here.

3 The anisotropic stellar model

It is known that Λ > 0 implies the space is open. To explain
the present accelerating state of the universe, it is believed
that vacuum energy is responsible for this expansion. As a
consequence, it provides the gravitational effect on the stel-
lar structures and this cosmological constant (Λ) plays the
role of vacuum energy or dark energy. In this section we
will study the following features of our model assuming the
value of Λ = 0.00018 km−2 (Kalam et al. 2012). We have
assumed this value as required for the stability of the com-
pact star and mathematical consistency.

The matter density (ρ) can be found from Eq. (3) as

ρ = 1

2π

R2(a − 1)

(R2 + ar2)2
− Λ

2π
. (10)

The variation of ρ i.e. matter density with distance from
the center of the star is given by

ρ′ = dρ

dr
= − 4arR2(a − 1)

2π(R2 + ar2)3
< 0. (11)

The above expression implies that at r = 0 the matter
density remains constant. The second order derivative of ρ

with respect to the distance from the center of the star is
given by

ρ′′ = d2ρ

dr2
= −4aR2(a − 1)(R2 − 5ar2)

2π(R2 + ar2)4
< 0. (12)

The variation of ρ, ρ′ and ρ′′ with the radial distance r

are shown in Fig. 1.
If we take pr = ωρ then we get the differential equation

γ ′ = r

(R2 + ar2)(R2 + r2)

[
ω(a − 1)R2

− Λ(ω + 1)
(
R2 + ar2)2]

. (13)

Integrating the above equation we can get γ as

γ = ω

2
ln

(
R2 + ar2

R2 + r2

)
− Λ

2
(ω + 1)

[
ar2 − R2 lna

] + D,

(14)

where D is the integration constant which can be determined
from boundary conditions.

Using Eqs. (7) and (13) we can get the radial pressure
(pr) from Eq. (4) as

2πpr = ω(a − 1)R2

(R2 + ar2)2
− Λω. (15)

Now we shall calculate variation of the radial pressure
(pr) with the radius (r) of the star as

2π
dpr

dr
= −4ωarR2(a − 1)

(R2 + ar2)3
< 0. (16)

From the above Eq. (15) we have the radial pressure pr

is constant at r = 0. The second order derivative of radial
pressure with respect to radius of the star is given by

2π
d2pr

dr2
= −4ωaR2(R2 − 6ar2)(a − 1)

(R2 + ar2)4
< 0. (17)

The variation of pr , pr
′ and p′′

r with the radial distance
r are shown in Fig. 2. Since dρ

dr
,

dpr

dr
< 0 we can conclude

that both the matter density (ρ) and radial pressure (pr)

are monotonic decreasing function of radius r . From Figs. 1
and 2 it can be observed that these parameters have maxi-
mum value at the center (r = 0) of the star and it decreases
radially outward.
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Fig. 1 Variation of the ρ (upper
left), ρ′ (upper right) and ρ′′
(lower) with r

The variation of the radial pressure with respect to the
matter density is given by

dpr

dρ
= ω = v2

rs , (18)

and has been plotted in Fig. 6 which gives a constant value.
This result physically implies that the radial pressure dose
not changes with the matter density.

The EOS parameter corresponding to radial direction
may be written as

ωr = pr

ρ
= ω, (19)

which is a constant quantity.
As pr = 0 and ρ = 0 at r = b, the radius of compact star,

we get the same result from Eqs. (10) and (15) as

b =
√

R

a

(√
a − 1

Λ
− R

)
. (20)

Putting the numerical values of the constants we get the
radius of the star to be 23.417 km which is exactly same as
obtained from Figs. 1 and 2.

The tangential pressure is given by the following equa-
tion

2πpt − Λ = 1

C3(R2 + r2)

{
r2[(AR2 − BC2)]

× [
R2(A − a + 1) − BC2]

+ AR2[R4 − R2r2(a + 1) − 3ar4]

− BC
[
R4 + R2r2(3a − 1) + ar4]}, (21)

where A = ω(a − 1), B = Λ(ω + 1) and C = R2 + ar2.
The above equation shows that at r = 0 the tangential pres-
sure pt has a finite positive value. Due to complexity in the
expression of p′

t and p′′
t are not given but their graphical

variations are shown here. The variation of pt , p′
t and p′′

t

with the radial distance r are shown in Fig. 3.
Form Fig. 3 it can be seen that the tangential pressure

decreases with the radius and attain a minimum value which
then again increases. This clearly indicates about pulsating
nature of the compact star.

The central density is given by

ρ(0) = 1

2π

[
(a − 1)

R2
− Λ

]
. (22)
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Fig. 2 Variation of the pr

(upper left), p′
r (upper right)

and p′′
r (lower) with r

Fig. 3 Variation of the pt

(upper left), p′
t (upper right)

and p′′
t (lower) with r
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The central radial pressure is given by

pr(0) = ω

(
1

2π

[
(a − 1)

R2
− Λ

])
= ωρ(0). (23)

The central tangential pressure is given by

pt(0) = 1

2πR2
(A − B) + Λ

2π
. (24)

From the above expressions we note that both the central
density and central pressure are finite at the center of the star.
So the present model is free from any central singularity.

4 Matching condition

The exterior (p = ρ = 0) solution corresponds to a static,
BTZ-type black hole is written in the following form as

ds2 = −(−M0 − Λr2)dt2 + (−M0 − Λr2)−1
dr2

+ r2dθ2, (25)

where M0 is the conserved mass of the black hole which is
associated with asymptotic invariance under time-displace-
ments. Here we match the interior spacetime to the BTZ ex-
terior at the boundary outside the event horizon. Continuity
of the metric functions gtt and grr at r = b, radius of the
compact star, gives the value of the integration constant of
Eq. (14) as

D = 1

2
(ω + 1)

[
ln

(
R2 + b2

R2 + ab2

)
+ Λ

(
ab2 − R2 lna

)]
. (26)

Putting ω = 1/3 we get the value of integration constant
as D = −0.5638 and for ω = 1 it yields as D = −0.8457.

5 Physical analysis

5.1 Anisotropic behavior

For the model under consideration the measure of anisotropy
in pressure can be obtained as


 ≡ (pt − pr). (27)

It can be seen that the ‘anisotropy’ will be directed out-
ward when pt > pr i.e. 
 > 0 and inward when pt < pr i.e.

 < 0.

The profile of 
 with the radial distance is shown in
Fig. 4. From this figure it is clear that the anisotropic factor
does not vanish at the center of the star. It is positive from 1
km (for ω = 1) to 2 km (for ω = 1/3) i.e. pt > pr . This im-
plies anisotropy is repulsive. Again for ω = 1 the anisotropic
factor is negative between 1 km to 25 km and for ω = 1/3

Fig. 4 Variation of the anisotropic factor 
 with r

the anisotropic factor is negative between 2 km to 20 km.
After that 
 again increases to positive value. Since for the
maximum part of the stellar distribution the anisotropy is
negative so this allows construction of a more massive stel-
lar structure as shown by Ray et al. (2012).

5.2 Energy condition

For an anisotropic fluid sphere the energy conditions, viz.
Weak Energy Condition (WEC), Null Energy Condition
(NEC), Strong Energy Condition (SEC) and Dominant En-
ergy Condition (DEC) are satisfied if and only if the follow-
ing inequalities hold simultaneously by every points inside
the fluid sphere:

NEC: ρ + pr ≥ 0,

WEC: ρ + pr ≥ 0, ρ > 0,

SEC: ρ + pr ≥ 0, ρ + pr + 2pt > 0,

DEC: ρ > |pr |, ρ > |pt |.
We have shown the above inequalities by the help of

graphical representation.
Fig. 5 shows the energy condition for ω = 1/3 (left

panel). In this representation all the energy conditions are
satisfied for our model. On the other hand, right panel of
Fig. 5 shows the variation for ω = 1. This variation also
shows that our model is satisfied for all the energy condition
and our model provides a stable stellar configuration. How-
ever, as the graphs for ρ and pr do overlap so we observe
only five graphs.

5.3 Stability

The velocity of sound should follow the condition 0 < v2
s =

dp/dρ < 1 for a physically realistic model (Herrera 1992;
Abreu et al. 2007; Karar et al. 2012). This condition is
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Fig. 5 Variation of the Energy
Condition against r for ω = 1

3
(left panel) and ω = 1 (right
panel)

Fig. 6 Variation of the
transverse sound velocity v2

ts

(upper left), radial sound
velocity v2

rs (upper right) and
v2
ts − v2

rs (lower) with r

known as causality condition. For our anisotropic model, the
radial and transverse velocities of sound are defined by

v2
rs = dpr

dρ
= ω, (28)

v2
ts = dpt

dρ
. (29)

Due to the mathematical complexity of the expression for
v2
ts we shall show the inequality with the help of graphical

representation only.
The variation of v2

ts , v2
rs and v2

ts–v2
rs with the radial dis-

tance r are shown in Fig. 6. Herrera proposed a technique for
stability check of local anisotropic matter distribution. This
technique is known as the cracking concept which states that
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the region for which radial speed of sound is greater than
the transverse speed of sound is a potentially stable region.
Fig. 6 indicates that there is a change of sign for the term
v2
ts − v2

rs within the specific configuration and thus confirm-
ing that the model has a transition from unstable to stable
configuration. The present stellar model gradually gets sta-
bility with the increase of the radius.

5.4 Buchdahl condition

The mass of the compact star can be calculated from the
density profile

m(r) =
∫

4πr ′2ρdr

= 2R2(a − 1)

[
− r

2a(R2 + ar2)
+ arctan(

√
ar
R

)

2a
3
2 R

]

− 2Λr3

3
. (30)

Now the mass function is regular at the origin as r → 0
m(r) → 0. The profile of mass function is depicted in Fig. 7.
From this figure it is clear that the mass function is mono-
tonic increasing function of r and for 0 ≤ r ≤ b m(r) > 0.

The maximum allowable ratio of the mass to the ra-
dius of a compact star can not be arbitrarily large. Ac-
cording to Buchdahl (1959) the ratio of twice the maxi-
mum allowable mass to the radius is less than 8/9, i.e.
2M/R < 8/9 where M/R is called the compactification fac-
tor which classifies the stellar objects in different categories
as given by Jotania and Tikekar (2006) as follows: (i) for
normal star M/R ∼ 10−5, (ii) for white dwarf M/R ∼ 10−3,
(iii) for neutron star 10−1 < M/R < 1/4, (iv) for ultra-
compact star 1/4 < M/R < 1/2 and (v) for black hole
M/R = 1/2.

The compactification factor of our model is given by

u(r) = m(r)

r

= R(a − 1) arctan(
√

ar
R

)

a
3
2 r

− R2(a − 1)

a(R2 + ar2)
− 2Λr2

3
.

(31)

The variation of the mass and compactification factor
with the radius of the star are shown in Figs. 7 and 8 respec-
tively both of which are monotonic increasing function of r .
Specifically, from the range of the compactification factor
with its maximum value > 0.25 of Fig. 8 we can conclude
that our model of anisotropic star is an ultracompact star. We
also calculate the redshift of our model

Fig. 7 Variation of the mass m(r) with the radial distance r

Fig. 8 Variation of the compactification factor u with the radial dis-
tance r

Zs = (1 − 2u)−
1
2 − 1

=
[

1 − 2R(a − 1) arctan(
√

ar
R

)

a
3
2 r

+ 2R2(a − 1)

a(R2 + ar2)
+ 4Λr2

3

]− 1
2 − 1. (32)

The profile of the redshift function of our compact star
is shown in Fig. 9. In this connection we want to mention
that for anisotropic star the value of the maximum surface
redshift for our model is near about 0.3.

6 Concluding remarks

We have studied in the present work a (2 + 1) dimensional
compact star in the pseudo spheroidal spacetime. The mo-
tivation behind the study is the consideration that (i) the
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Fig. 9 Variation of the redshift Z with the radial distance r

three-dimensional black holes are interesting by themselves,
and (ii) the toy models in 3D may have a radically differ-
ent qualitative behavior with respect to the more realistic
4D setups. Under this background we have studied the in-
terior solution of a (2 + 1) dimensional compact star in the
pseudo spheroidal spacetime. The main guideline used in
this work is a metric found in the Ref. (Vaidya and Tikekar
1982), where a spheroidal 3-space exhibits central symme-
try. It is clear that the investigation of the field of spheroidal
bodies in general relativity has important astrophysical con-
sequences, due to the fact the rotation of planets and stars
produce spheroidal shapes. So, it seems that is a good ap-
proximation (slow rotation) to consider an static spheroidal
spacetime to represent the gravitational field of these celes-
tial bodies.

Therefore in the present work the Vaidya-Tikekar pre-
scription (Vaidya and Tikekar 1982) has been employed to
get the matter density, radial pressure and other quantities
from the Einstein field equations. Some salient and interest-
ing features of the study can be put forward as follows:

(1) The matter density and radial pressure both are regu-
lar at the center and are monotonic decreasing function
of the radial parameter. This behavior indicate that they
have maximum value at the center and it decreases from
the center to the boundary of the star. At the boundary of
the star the radial pressure and matter density do vanish
as expected.

(2) The tangential pressure is also a decreasing function of
the radial distance. It decreases rapidly and within the
stellar structure it has a fluctuating nature.

(3) The metric functions grr and gtt are continuous at the
boundary of the star. From this situation one can calcu-
late the value of integration constant D.

(4) It is well known that the anisotropic factor 	 should
vanish at the origin but our model does not show this
feature rather it has a finite positive value. However,

for the maximum part of our stellar distribution the
anisotropy is repulsive which allows formation of more
massive star.

(5) Our model satisfies all the energy conditions for ω = 1/3
and ω = 1. So our model provides a stable stellar con-
figuration.

(6) We observe that by obeying Herrera’s cracking condi-
tion our model maintains stability with increase of the
radius.

(7) The mass, compactification factor and surface redshift
all are monotonic increasing function of the radius of the
star. The maximum value of the compactification factor
indicates that our model represents an ultra compact ob-
ject. The maximum value of the surface redshift is about
0.3 for the present model.

Finally, we would like to made some comments on our toy
models in 3-dimension relative to the 4-dimensional one. As
mentioned earlier, it seems that the 3D may have a radi-
cally different qualitative behavior with respect to the 4D
having a more realistic setups. In connection to this it is to
be noted that we have used the data from a 3-spatial dimen-
sional object in order to estimate the constants of the model.
Even though one can not have a strong argument about the
physical meaning of the consideration of stellar objects of
2-spatial dimensions, however, for an observer in the plane,
θ = constant, all characteristics will reveal as a (2 + 1) di-
mensional portrait. So superficially it will be more or less
justified to use all the data which are apparently the same
for both the spacetime. However, regarding development of
a valid approach to represent lower dimensional gravity with
spheroidal shapes one may follow the methodology of the
Refs. (Quevedo 1989; Chifu 2012) for further investigation.
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