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Abstract The low-thrust propulsion will be one of the most
important propulsion in the future due to its large spe-
cific impulse. Different from traditional low-thrust trajecto-
ries (LTTs) yielded by some optimization algorithms, the
gradient-based design methodology is investigated for LTTs
in this paper with the help of invariant manifolds of LL1

point and Halo orbit near the LL1 point. Their deformations
under solar gravitational perturbation are also presented to
design LTTs in the restricted four-body model. The per-
turbed manifolds of LL1 point and its Halo orbit serve as the
free-flight phase to reduce the fuel consumptions as much
as possible. An open-loop control law is proposed, which is
used to guide the spacecraft escaping from Earth or captured
by Moon. By using a two-dimensional search strategy, the
ON/OFF time of the low-thrust engine in the Earth-escaping
and Moon-captured phases can be obtained. The numerical
implementations show that the LTTs achieved in this paper
are consistent with the one adopted by the SMART-1 mis-
sion.

Keywords Earth–Moon transfer · Low thrust · LL1 point ·
Halo orbit · Invariant manifolds

1 Introduction

Deep Space-1 launched by NASA in 1998 and SMART-1
Lunar probe launched by ESA in 2003 prove that it is fea-
sible to select low-thrust propulsion as the main propulsion
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in deep-space exploration missions. Another recent famous
mission is the DAWN mission, launched by NASA in 2007,
in which a gravity-assist method is adopted. The space-
craft explored Ceres and Vesta located in the asteroid belt
(Polanskey et al. 2011). Considering that propellant econ-
omy is the main factor designed in deep-space exploration
missions, low-thrust propulsion will be one of the most im-
portant propulsions in the future because of its large specific
impulse.

Updates in propulsion are supposed to trigger a revo-
lution in the field of trajectory design. When low-thrust
propulsion is used in the designing of trajectories, their ad-
justment is gradual because of the long-term effects of thrust
arcs. A patched conic technique based on a two-body model
is normally used in the trans-lunar trajectory; however, when
adopting low-thrust propulsion, the large traveling time does
not support the working of the patched conic technique.
Therefore, another model needs to be proposed based on a
three- or four-body problem.

Earth–Moon low-thrust transfer trajectories normally in-
clude the Earth-escaping, free-flight, and Moon-captured
phases (Racca 2003; Racca et al. 2002; Betts and Erb 2006;
Guelman 1995; Herman and Conway 1996). In a conven-
tional LTTs design, the problem is normally transformed
into a nonlinear problem (NLP) by using the collocation
method, and then trajectories under low thrust can be ob-
tained (Betts and Erb 2006; Guelman 1995; Herman and
Conway 1996). This method only uses the optimization al-
gorithm to obtain the target orbit; the search process is
blind and requires a considerable amount of calculation.
A type of Earth–Moon transfer orbit based on the circu-
lar restricted three-body problem (CR3BP) was proposed
by Conley (Conley 1968). This type of trajectory passes
the collinear libration point L1 in the Earth–Moon system
to distinguish from the WSB transfer orbit that passes the
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collinear libration point L2, as proposed by Belbruno and
Miller (2015), the former is named Earth–Moon LL1 trans-
fer orbit, which is being extensively studied by many schol-
ars for further development. These methods can be divided
into three classes stated as follows.

First, the direct method of optimization is used by dis-
cretizing the trajectories and control variables. Thus, high
accuracy is not required for the initial value but a large
CPU time is required for trajectory analysis and optimiza-
tion. More concretely, Howell and Ozimek obtained the so-
lution for a complete time history of the thrust magnitude
and direction by solving a calculus of variation problems to
locally maximize the final spacecraft mass (Howell and Oz-
imek 2010). Lee used a direct transcription and collocation
method to reformulate the continuous dynamic optimization
problem into a discrete optimization problem, which then
is solved using nonlinear programming software (Lee et al.
2014).

Second, an indirect method is adopted in the two fol-
lowing studies, in which boundary and first-order neces-
sary conditions for optimality are enforced for a continu-
ous system. Considering that the convergence domain of the
method is narrow, a high-precision initial value is required,
which is also computationally demanding. Specifically, Gra-
ham and Rao used a variable-order Legendre–Gauss–Radau
(LGR) quadrature orthogonal collocation method, thus ob-
taining a high-accuracy minimum-fuel Earth-orbit transfer
by using low-thrust propulsion (Graham and Rao 2014).
Furthermore, in another paper, they used the same method
to obtain a high-accuracy minimum-time Earth-orbit trans-
fer by using low-thrust propulsion (Graham and Rao 2015).

Compared with the aforementioned studies aimed to for-
mulate optimizations for LTTs, some other studies aimed to
obtain the initial value of the LTTs by using the libration
point. Some representative studies are presented as follows.
Petropoulos and Longuski proposed a type of shape-based
design (Petropoulos and Longuski 2004). They presented an
exponential sinusoid shape function to solve the dynamical
equations of a spacecraft. Vellutini and Avanzini improved
the method (Vellutini and Avanzini 2015) and proposed a
modified exponential sinusoid shape function. The two ex-
ponential sinusoid shape functions cannot satisfy the start-
ing and ending velocity boundary conditions; thus, they can
only be used to design the trajectories whose launch energy
is not zero. Furthermore, Wall and Conway proposed a sixth-
order inverse polynomial shape function, which is obtained
by fitting the optimal transfer trajectories (Wall and Con-
way 2009). However, the actual dynamic constraints were
not considered; therefore, some feasible trajectories are of-
ten omitted when adopting this method.

Unlike conventional LTTs yielded by some optimization
algorithms, the present study investigated the gradient-based
design methodology for LTTs with the help of invariant

manifolds of the LL1 point and a Halo orbit near the LL1

point. In addition, their deformations under solar gravity
perturbation are represented to design LLTs in the restricted
four-body model. In this paper, the LL1 point and the Halo
orbit near it serve as a free-flight phase so that the fuel con-
sumption is as low as possible (when adopting the LL1 point
as the free-flight, non-thrusting phase, the fuel consumption
is decreased). Next, to design the Earth-escaping and Moon-
captured phases, an open-loop low-thrust control law used
for designing long duration spiral transfers between Earth-
and Moon-centered orbits is presented. By using the LL1

point and the Halo orbit near it as a starting point, respec-
tively, when backward and forward integrations are com-
pleted, the trajectory of Earth-escaping and Moon-captured
phases can be respectively obtained.

Compared with the existing shape-based design, there is
no need to propose a kind of shape function (exponential si-
nusoids or inverse polynomial shape functions). In addition,
the situation in which feasible trajectories are omitted can
be avoided by using this method. Moreover, the Halo orbit
near the LL1 point is adopted as a free-flight phase, which
cuts down the fuel consumption greatly. In this study, the in-
variant manifolds derived from the transportation tube wall
are studied as well.

The obtained cislunar LTTs fundamentally coincide with
those of SMART-1, which has similar boundary conditions.
Supposing that the obtained trajectories are used as the ini-
tial orbit to optimally design low-energy transfer trajecto-
ries to Moon, then the search scope can be narrowed and the
computation of optimal trajectories can be reduced.

2 Dynamical models

The Moon, Earth, and Sun constitute the general concept of
the three-body problem; in this study, the dynamic model is
simplified. In a Sun–Earth–Moon System, the accuracy of
the Spatial Bi-Circular Model (SBCM) is sufficiently high
(Koon et al. 2001). In the model, the inclination of the lunar
plane related to the ecliptic plane is considered, as shown
in Fig. 1. The Moon and Earth are regarded as a whole sys-
tem that nearly composes a two-body motion with the Sun,
and another two-body motion composed of the Earth and the
Moon is not affected by the Sun. The distance between Sun
and Earth is considerably larger than that between the Earth
and Moon; thus, the torque of the solar gravitation affecting
the Earth–Moon system can be ignored and only the force is
considered. The coordinate systems used in this model are
defined as follows.

For the geocentric inertial frame, the Earth’s center is
defined as the origin, and the intersection of the lunar and
ecliptic planes is defined as the x-axis. In addition, the nor-
mal of the lunar plane is defined as the z-axis, whose posi-
tive direction is coincident with that of spin angular velocity,
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Fig. 1 The geometrical view of the SBCM (Xu et al. 2013)

and the y-axis is determined by the right-hand rule. There is
relative acceleration between the defined and inertial frames
but the geocentric inertial frame can be approximately re-
garded as an inertial frame relative to a low-Earth orbit. For
the selenocentric inertial frame, the Moon’s center is de-
fined as the origin, and the definitions of coordinate axes are
the same as those of the geocentric inertial frame, and the
frame can be approximately regarded as an inertial frame
relative to a low-Moon orbit. For the inertial frame in the
Sun–Earth/Moon systems denoted as IS−E+M , the centroid
of the Sun–Earth–Moon system is defined as the origin, and
the definition of coordinate axes are the same as those of the
geocentric inertial frame.

For the syzygy frame in the Sun–Earth/Moon systems de-
noted as SS−E+M , the centroid of the Sun–Earth–Moon sys-
tem is defined as the origin, and the direction to the centroid
of the Earth–Moon system from the Sun is defined as the x-
axis. Furthermore, the normal of the ecliptic plane is defined
as the z-axis, whose positive direction is coincident with that
of spin angular velocity, and the y-axis is determined by the
right-hand rule. For the syzygy frame in the Earth–Moon
system denoted as SE−M , the centroid of the Earth–Moon
system is defined as the origin, and the direction toward the
Moon from Earth is defined as the x-axis. In addition, the
normal of the lunar plane is defined as the z-axis, whose
positive direction is coincident with that of spin angular ve-
locity, and the y-axis is determined by the right-hand rule.

In Fig. 1, the inclination of the lunar plane relative to the
ecliptic plane is considered, with an average angle of 5°9′;
the lunar phasic angle β is measured as the angle between
the line from the Earth to Moon and the intersecting line
of the ecliptic and lunar planes. Moreover, the solar phasic
angle θs is the angle between the line from the Sun to the
barycenter of the Earth–Moon system and the intersecting
line of the ecliptic and lunar planes; the ecliptic plane is de-
picted in yellow, while the lunar plane is depicted in green
(Xu et al. 2013).

To improve efficiency and accuracy, a normalized unit
based on CR3BP is adopted throughout this investigation
(Szebehely 1967). The normalized unit is defined as follows.

When the spacecraft is located in the gravitational influence
region of two primary bodies (m1 and m2; Sun and Earth,
or Earth and Moon in this paper), the unit of account is nor-
mally taken as

⎧
⎨

⎩

[M] = mE + mM

[L] = LE−M

[T ] = [
L3

E−M/G(mE + mM)
]1/2

(1)

where LE−M is the distance between the two primary bod-
ies, mE is the mass of Earth, and mM is the mass of Moon.
According to the new units defined earlier, the gravitational
constant is G = 1.

For SBCM, the dynamical equation is written as

⎡

⎣
ẍ
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where ri (i = 1,2,3) is the distance between the space-
craft and Earth, Moon, and Sun; ωs is the angular veloc-
ity of the Earth relative to the Sun; i is the angle between
the lunar plane and the ecliptic plane; μ is proportion of
the mass of Moon in the Earth–Moon system; μs is the
mass of Sun; as is the average distance between the Sun
and the centroid of the Earth–Moon system; θs is the so-
lar phasic angle; and β is the lunar phasic angle. In addi-
tion, As = [as cos θs, as sin θs,0]T is the position vector of
Sun in IS−E+M , and r = [x, y, z]T is the position vector
of the spacecraft in SE−M, rE = [−μ 0 0]T is the posi-
tion vector of Earth in SE−M , rM = [1 − μ 0 0]T is the
position vector of Moon in SE−M , ms = 328900.54 is the
ratio of the mass of Sun to that of the Earth–Moon system,
R is the position vector of the spacecraft in the SS−E+M ,
and Rs = [−μS 0 0]T is the position vector of Sun in
SS−E+M . The symbol • represents the term r − rE , •′ rep-
resents r − rM , and •′′ represents the term R − asRs .

The initial values t0 = 0°, θs0 = 0°, and β0 is undeter-
mined. Therefore, the geometrical relationship between the
Sun, Earth, and Moon is only determined by β0.

3 Cislunar transfers via LL1 point and its Halo
orbits

3.1 Cislunar transfer via LL1 point with lowest energy

In the CR3BP frame, the invariant manifolds of LL1 point
can be adopted to design the cislunar transfer. In this case,
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the spacecraft can fly with the stable manifolds from the in-
terior area affected by the gravity of Earth to the LL1 point,

Fig. 2 Cislunar transfer opportunities measured using the lunar phasic
angle β: in this study, β = 286°

Fig. 3 Cislunar low-thrust transfer trajectories in the syzygy frame

and then fly from the LL1 point to the exterior area affected
by the Moon’s gravity with the unstable manifolds. How-
ever, considering that the transfer time will approach infin-
ity, this trajectory is unpractical.

For SBCM, under the perturbation of solar gravity, the
infinite transfer time is cut down to a finite time; this is quite
significant for the Earth–Moon transfers. Considering that
a particle at LL1 point has the lowest energy that can form
a “neck” near the LL1 point in the Hill’s open region, the
transfer via LL1 point will obviously have the lowest energy.

In Fig. 2, only the interval of β corresponding to the dot-
ted line can drive the trajectories from Earth to the LL1 point.
Further, only the interval of β corresponding to the solid
line can drive the trajectories from the LL1 point to Moon.
The intersection of these two intervals, that is, [77°, 109°] ∪
[285°, 342°], can be considered as the cislunar transfer op-
portunity bounded by the vertical dashed lines in Fig. 2. In
this paper, it is chosen as β = 286°.

When considering LL1 point as the trajectory in the free-
flight phase, the procedure used to search cislunar LTTs
is described as follows. In the syzygy frame, for a spe-
cific value of β , substitute it into Eq. (2), and integrate the
SBCM dynamics equations. When backward and forward
integrations are finished, the trajectories of Earth-escaping
and Moon-captured phases can be obtained, respectively.
The initial conditions are β = 286° and θs = 0°. The integral
initial point is [xLL1 0 0 0 0 0]T . Figure 3 presents the
cislunar low-thrust transfer trajectories in the syzygy frame.
Figure 4 presents the history of eccentricity and semi-major
axis in free flying without control. The moment when the
initial integration is defined is defined as the epoch time
t = 0.

The motion before the Earth-escaping phase and after the
Moon-captured phase can be regarded as a two-body prob-
lem under perturbation. Commonly, the radius of the Earth’s
sphere-of-influence (SOI) is approximately 924647 km, and

Fig. 4 History of orbit elements in the free-flying phase without control: (a) the history of eccentricity; (b) the history of semi-major axis
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Fig. 5 Invariant manifolds of the Halo orbit near the LL1 point: (a) the manifolds in the CR3BP frame; and (b) the manifolds in the SBCM frame

the radius of the Moon’s SOI is approximately 66190 km.
Figure 3 shows that the altitude of the trajectories of the
Earth-escaping phase is no more than 4 × 105 km, while
the maximum distance from the node on the trajectories
of the Moon-captured phase to the Moon is approximately
5.5 × 104 km. In addition, the trajectories of the Earth-
escaping phase are observed to be located entirely in the
Earth’s SOI; therefore, when a two-body model is adopted
to solve this problem, the accuracy meets the requirement,
and the orbit is stable. On the other hand, some parts of the
trajectories of the Moon-captured phase are located at the
boundary of the Moon’s SOI, and therefore will be unstable;
this is proved by the result in Fig. 4. Moreover, in Fig. 4, the
eccentricity and semi-major axis are defined with respect to
two central bodies depending on time. That is, for t < 0, the
Earth is the center and for t < 0, the Moon is the center.

By considering the instability of the transfer trajectories
in Moon captured phase, the trajectory with a lower altitude
of periapsis is more appropriate to be adopted in the free-
flight phase. If the altitude of periapsis is very high, it will
increase the risk of the spacecraft escaping again before be-
ing captured.

3.2 Cislunar transfer through the Halo orbit near LL1

point with more opportunities

Compared with the cislunar transfers via LL1 point, those
via the Halo orbit near the LL1 point provide more trans-
fer opportunities because another variable is introduced (i.e.,
the phase of the Halo orbit near the LL1 point). This part pro-
vides some results about the cislunar transfer via the Halo
orbit near the LL1 point are obtained, which are similar to
those obtained in Sect. 3.1.

The Halo orbit is the periodic solution around the li-
bration point in CR3BP, and results from orbit bifurcations

(Barden et al. 1996). It is symmetrical with the x–z plane in
the syzygy frame. Poincaré mapping P(z) is defined as

P(z) = φT (z), ∀z ∈ Γ (θ). (3)

Based on the Hamiltonian system’s theory, the derivative of
P(z), that is, Φ = DzP (z) is a symplectic matrix. The com-
plex eigenvalues of the matrix are |λi | = 1, i = 1,2,3,4,
and the real eigenvalues are λ5 = λ−1

6 > 1. These eigenval-
ues of Φ are named characteristic exponents of P(z). The
real eigenvalues reflect the stability of the Halo orbit.

In the symplectic matrix, λ5 > 1 and λ6 < 1; therefore,
the Halo orbit has both stable and unstable manifolds. The
invariant manifolds of the Halo orbit are globally repre-
sented as two-dimensional compact manifolds in the phase
space, and their representation in the position space are
shown in Fig. 5(a). For the Earth–Moon system, the invari-
ant manifolds of the Halo orbit in CR3BP can be divided
into Ws

E , Wu
E , Ws

M , and Wu
M based on stability and ori-

entation; the subscripts “E” and “M” represent the Earth
and Moon orientations, respectively, and the superscripts
“s” and “u” represent the stable and unstable manifolds, re-
spectively. In Fig. 5(a), the green and red areas represent
the stable and unstable manifolds, respectively. Moreover,
Ws

E and Wu
M consist of the transportation tube wall from

Earth to Moon, and Ws
M and Wu

E consist of the transporta-
tion tube wall from Moon to Earth. The transportation tube
wall is still represented as a two-dimensional submanifold
in the phase space, while all the transfer orbits between the
Earth and Moon with the same energy are comprised only
inside the transportation tube (Koon et al. 2000). However,
in SBCM, considering that the Halo orbit is affected by
the solar gravitational perturbations, the closed orbit is no
longer maintained. In addition, the solar gravity can cause
the transportation tube to be deformed or broken (Yamato
and Spencer 2003, 2004).
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Fig. 6 Contour map of transfer opportunities: (a) the opportunities for the Earth-escaping phase; the blue areas represent the feasible opportunities.
(b) The opportunities for the Moon-captured phase; the blue areas represent the feasible opportunities. In this study, (β, τ ) = (150°, 0.5)

In invariant manifolds, the spacecraft travels multiple
loops in the elliptical orbit of the Earth or Moon, and can
be captured by the Moon or Earth’s gravitational force. It
then travels multiple loops in the elliptical orbit of the Moon
or Earth after being captured. During the whole process, the
spacecraft makes a free flight. Ws

E and Wu
M consist of the

transportation tube wall from Earth to Moon, represented by
the dark area in Fig. 5(b), and Ws

M and Wu
E consist of the

transportation tube wall from Moon to Earth, represented by
the light area in Fig. 5(b). Hill’s forbidden area in SBCM is
time-variant but the variation is minute. Therefore, this area
can be approximately derived based on CR3BP. Moreover,
in Fig. 5(b), the solar and lunar phases in the SBCM are 0°
and 60°, respectively.

The spacecraft has enough time to realize the Earth-
escaping and Moon-captured phases in the invariant mani-
folds through the cumulative effects of low thrust. It is not
necessary to consider the chaotic behavior that a tiny change
in velocity can allow the spacecraft escape from the grav-
itational field of Earth–Moon system, which exists in the
N-body problem.

Although the transportation tube wall based on SBCM is
deformed, the invariant manifolds derived from it also dif-
fer. The long-term effects of solar gravity limit the trans-
fer time instead of supporting limitlessness; this is signifi-
cant for the Earth–Moon transfer. Some pairs (β , τ ), rang-
ing over β in [0,2π ] and τ in [0,1], do not represent true
transfer opportunities through the LL1 Halo orbit as pertur-
bations to the manifolds cause crashes or escapes over short
time scales. Only the pairs that enable the transfer from the
Earth to the Halo orbit near the LL1 point and from the Halo
orbit near the LL1 point to the Moon can be adopted to de-
sign the Earth–Moon transfer; these are depicted in Fig. 6.
In this study, the transfer opportunities make up 12.96%
of all possible (β, τ ) combinations, thus satisfying both the

contour-maps shown in Fig. 6. In addition, the satisfactory
(β, τ ) pairs are as follows: ([95°, 150°] ∪ [262°, 345°]) ×
[0,1] and ([100°, 200°] ∪ [270°, 30°]) × ([0.16,0.26] ∪
[0.47,0.58]). In this paper, (β, τ ) = (150°, 0.5), as marked
in Fig. 6.

The procedure used to search for the transfer opportu-
nities is described as follows. (i) The lunar phasic angle β

changes in the range [0°, 360°], and the phase of serial points
on the Halo orbit τ changes in the range [0,360]/360. By
substituting these values in Eq. (3), SBCM dynamics equa-
tions can be integrated. After obtaining a backward inte-
gration, the trajectory of the Earth-escaping phase can be
obtained. When a forward integration is derived, the trajec-
tory of the Moon-captured phase can be obtained. (ii) When
reaching the first periapsis in the Earth-escaping or Moon-
captured phases, record the altitude of the periapsis and draw
the contour map, which can be adopted to find the trans-
fer opportunities. (iii) The position and velocity vectors of
serial points on the Halo orbit are at the same initial condi-
tions as those of the two types of integrations (backward and
forward). Furthermore, the initial lunar phasic angle β = 0°
and solar phasic angle θs change in the range [0°, 360°],
the phase of serial points on the Halo orbit τ changes in the
range [0,1], and the amplitude in the y direction of the Halo
orbit is 40142.16 km.

The most important aspect in the designing of LTTs is to
determine invariant manifolds to extend the low-thrust arcs.
In a time sequence, the spacecraft travels multiple loops in
the elliptic orbit of Earth, and then travels in the Halo or-
bit near the LL1 point. It is then captured by the Moon and
travels in the elliptic orbit of the Moon. There is no con-
trol during the whole process. The initial lunar phasic angle
β0 = 150°, and the phase of the Halo orbit is 180°, which
has been mentioned earlier.
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Similar to the procedure in Sect. 3.1, when considering
the Halo orbit near the LL1 point as the trajectory in the
free-flight phase, the procedure used to search for cislunar
LTTs is described as follows. In the syzygy frame, sub-
stitute values of a specific pair of (β, τ ) into Eq. (2), and
integrate the SBCM dynamics equations. When backward
and forward integrations are completed, the trajectory of the
Earth-escaping and Moon-captured phases can be obtained,
respectively. The initial lunar phasic angle β0 = 150°, phase
of Halo orbit is 180°, as mentioned earlier. Figure 7 presents
the cislunar low-thrust transfer trajectories in the syzygy
frame. Figure 8 shows the history of eccentricity and semi-
major axis in the free-flying phase without control. The mo-
ment of initializing integration is defined as the epoch time
t = 0.

The motion before the Earth-escaping phase and after the
Moon-captured phase can be regarded as a two-body prob-

Fig. 7 Cislunar low-thrust transfer trajectories in the syzygy frame

lem under perturbation. Commonly, the radius of Earth’s
SOI is approximately 924647 km, and the radius Moon’s
SOI is approximately 66190 km. Figure 7 shows that the
altitude of the trajectories of the Earth-escaping phase is no
more than 4×105 km, while the maximum distance from the
cislunar trajectories to Moon is approximately 5.5×104 km.
The trajectories of the Earth-escaping phase are observed to
be located entirely in the Earth’s SOI, indicating that the tra-
jectories are affected mainly by the Earth and will be stable
enough around the Earth with a slight change in their ec-
centricities. Therefore, when a two-body model is adopted
to solve this problem, the accuracy meets the requirement,
with the orbit being stable in this model. Some parts of the
trajectories of the Moon-captured phase are located at the
boundary of the Moon’s SOI, and they are therefore unsta-
ble. This is proved in the results showed in Fig. 8.

Considering the instability of the transfer trajectories in
the Moon-captured phase, the trajectory with a lower alti-
tude of periapsis is more appropriate to be adopted in the
free-flight phase. If the altitude of periapsis is very high, it
will increase the risk of the spacecraft escaping again before
being captured.

4 Low-thrust control strategy for cislunar
trajectories

This section shows the low-thrust transfer by transiting the
Halo orbit near the LL1 point as an instance to design the
low-thrust control strategy.

When initial and terminal conditions are limited, a two-
point boundary problem must be solved to obtain the
ON/OFF time and control law. In this study, the feasibility
of the low-thrust transfer based on the transportation tube
is the main point of our study. Therefore, the satisfaction of
specific phasing requirements of particular missions is not

Fig. 8 History of orbit elements in the free-flying phase without control: (a) the history of eccentricity and (b) of semi-major axis
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Fig. 9 History of eccentricity in the escaping earth phase under the subcontrol law I : (a) the history of the semi-major axis, and (b) of the
eccentricity

required. In addition, only the semi-major axis (ae, am) and
eccentricity (ee, em) are limited in the initial and terminal
states, where ae and ee are defined as the semi-major axis
and eccentricity of the orbit in the geocentric inertial frame.
The parameters am and em are defined as the semi-major
axis and eccentricity of the orbit in the selenocentric inertial
frame.

4.1 Design of subcontrol law for low thrust

Without considering the effects of solar gravity perturbation,
when the spacecraft travels from the Earth to Moon, the Ja-
cobi energy integral J changes from small to large and fi-
nally to small under the effects of low thrust. In this process,
the function of the subcontrol law I is to change the direc-
tion of energy along with the maximum gradient direction.

In CR3BP, the maximum energy gradient direction is
in the direction of the velocity (Petropoulos 2003). J =
1
2 (x2 + y2 + z2) + Ū is a constant under the condition of
no thrust. When the effects of low thrust are considered, the
Hamilton system is no longer conservative. Let the control
acceleration f = [fx,fy, fz]T , then dJ

dt
= [ẋ, ẏ, ż]T ·f . Un-

der the control law I , the thrust angle is 0 rad.
For example, consider the Earth-escaping phase. Under

the subcontrol law provided in this paper, the change rule of
the orbital elements is shown in Fig. 9.

Under the subcontrol law I , the variation of eccentricity
will exceed the allowable range ([0,0.7927]). However, the
semi-major axis is generally small; therefore, based on the
two-body model, another subcontrol law, that is, subcontrol
law II is provided to adjust the eccentricity. To avoid the
additional change in the semi-major axis, the control law II
is made to align with the normal of the inertia velocity, and
the thrust angle is π/2 rad. To demonstrate the foundation
of the optimal controls, the governing differential equation

for eccentricity is presented as follows:

ė = 1

V

[

2(e + cos θ)ft − 1

a
r sin θfn

]

(4)

where V is the inertia velocity, θ is the true anomaly, t rep-
resents the tangential direction of the inertia velocity, and n

represents the normal direction of the inertia velocity. In the
two-body model, control law II does not result in an addi-
tional change of energy.

By applying control law II to Eq. (4),

ė = 1

V

[

−1

a
r|sin θ | · fn

]

. (5)

To obtain more degrees of freedom to develop optimiza-
tions, another transitional subcontrol law is used between
the two given ones. Instead, a linear subcontrol law is
adopted to simplify the problem. The unified control law is
presented as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ |sin θ | < κ1 α = 0

κ1 ≤ |sin θ | < κ2 α = π

2

( |sin θ | − κ1

κ2 − κ1

)

κ2 ≤ |sin θ | ≤ 1 α = π

2
.

(6)

In the law, two thresholds are adopted so that there are two
degrees of freedom to develop optimizations. The optimized
object is the thrust angle required to achieve the following
target: the eccentricity and semi-major axis can reach the
final value simultaneously. The procedure used to describe
the control law is as follows.

The termination condition requires both the semi-major
axis and eccentricity to reach their target values simultane-
ously. Thus, the values of κ1 and κ2 can be obtained as fol-
lows. First, utilize κ1 in the range of (0, 1) and utilize κ2 in
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the range of (κ1,1). Second, for each κ1, a corresponding
κ2 can be obtained according to the termination condition.
In this study, the pair (κ1, κ2) = (0.2,0.7) is achieved nu-
merically to meet the constraints of both flight time and fuel
consumption.

4.2 Design of ON/OFF time

The spacecraft starts up in the low orbit of Earth and acceler-
ates to the OFF time T E

off, travels in the free-flight phase, and
then travels in the Moon-captured phase. At the time of T L

on,
the spacecraft starts up again and slows down to the Moon’s
low orbit.

In the low-thrust transfer by the transiting of LL1 point,
the trajectory is stable before the spacecraft escapes from
Earth; therefore, the choice of T E

off can be loose. Figure 4
shows that there is an inflection point (near −66.9th day) in
the trend curve of both the eccentricity and semi-major axis
in the Earth-escaping phase. Furthermore, any time before
the inflection point can be adopted as T E

off. In this study, it is
−66.9th day. After the spacecraft is captured by the Moon’s
gravitational force, the trajectory is unstable and the eccen-
tricity increases under the control law; as the eccentricity
starts decreasing, the time is chosen as T L

on. In this study, it
is 9.609th day.

In the low-thrust transfer by the transiting of the Halo
orbit near the LL1 point, the trajectory is stable before the
spacecraft escapes from Earth; therefore, the choice of T E

off
is relaxed. Figure 8 shows that there is an inflection point
(near −14.4th day) in the trend curve of both the eccentric-
ity and semi-major axis in the Earth-escaping phase. Further,
any time before the inflection point can be adopted as T E

off. In
this study, it is −14.4th day. After the spacecraft is captured
by the Moon, the trajectory is unstable and the eccentricity
increases under the control law. As the eccentricity starts de-
creasing, the time is chosen as T L

on. In this study, it is 7.075th
day.

To satisfy the requirement that m0 = 350 kg (the mass of
SMART-1), an iterative search must be performed. mfree is
the parameter of search (mfree is the mass of the spacecraft
in the free-flight phase). 
mfree is the step size of the search.
The diagram is shown in Fig. 10.

5 Numerical implementations

PPS-1350 Hall ion engine used in SMART-1 is considered
in this example. The thrust is 73.19 mN, and the velocity of
the fuel gas is 16.434 km/s (Betts and Erb 2006). The initial
time is recorded as 0, during which the lunar phase angle
is 291.1°, and the mass of the spacecraft is 349.2678 kg. In
addition, the semi-major axis of the initial orbit measures
24661.11 km, and the eccentricity is 0.7157.

Fig. 10 Diagram for iterative search to satisfy the requirement of ini-
tial mass

In the low-thrust transfer by the transiting of the LL1

point, the control law functions from the initial time to
the 292.2668th day. The free-flight phase must be instanta-
neous. Then the control law functions from the 292.2668th
to the 331.5628th day. At this time, the spacecraft arrives in
the terminal orbit and the low-thrust transfer is completed.
The semi-major axis of the terminal orbit is 7238.244 km
and the eccentricity is 0.5882. The final mass of the space-
craft is 280.7816 kg. Figure 11 depicts the trajectories
in geocentric inertial and syzygy frames. The total trans-
fer time is 331.5628 days, and the fuel consumption is
69.2184 kg.

In the low-thrust transfer by the transiting of the Halo
orbit near the LL1 point, the control law works from the ini-
tial time to the 191.5556th day. The free-flight phase ranges
from the 191.5556th to the 241.5380th day. Then the con-
trol law works from the 241.5380th to the 260.2504th day.
At this time, the spacecraft arrives in the terminal orbit and
the low-thrust transfer is completed. The semi-major axis
of the terminal orbit is 7238.244 km, and the eccentricity
is 0.5882. The final mass of the spacecraft is 269.0420 kg.
Figure 12 depicts the trajectories in geocentric inertial and
syzygy frames. The total transfer time is 260.2504 days, and
the fuel consumption is 80.9580 kg, including 18.0242 kg
used to control the eccentricity under the subcontrol law II.

Betts and Erb (2006) used the direct collocation method
to optimize the SMART-1 orbit with similar boundary con-
ditions; however, the total transfer time was 201.7267 days
and the fuel consumption was 74.994 kg. The performance
comparison of the three trajectories is shown in Table 1.
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Fig. 11 Trajectory from the Earth to Moon: (a) the trajectory in geocentric inertial frame; (b) the trajectory in syzygy frame

Fig. 12 Trajectory from the Earth to Moon: (a) the trajectory in geocentric inertial frame; (b) the trajectory in syzygy frame

Table 1 Performance
comparison of the three LTTs LL1 point Halo orbit near LL1 point SMART-1

Transfer time 331.5628 days 260.2504 days 201.7267 days

Fuel consumption 69.2184 kg 80.9580 kg 74.994 kg

The table shows that the fuel consumption of the LTTs
when transiting the LL1 point is 5.7756 kg less than that of
SMART-1; however, the diminution of fuel consumption is
at the expense of the transfer time. When making further
optimizations to the LLTs when transiting the LL1 point, the
obtained LLTs may have the lowest fuel consumption. How-
ever, compared with the LTTs when transiting the Halo orbit
near the LL1 point, the window of the passing of LTTs when
transiting the LL1 point is narrower. In other words, the cis-
lunar transfer opportunities when transiting the LL1 point is
[77°, 109°] ∪ [285°, 342°], while the ones when transiting
the Halo orbit near the LL1 point is [0°, 30°] ∪ [96°, 207°] ∪
[269°, 360°].

The fuel consumption of the LTTs when transiting the
Halo orbit near the LL1 point is 5.964 kg more than that
of SMART-1, the main reason of which is described as fol-
lows. The following example is based on the deformation in
SBCM of invariant manifolds derived from the transporta-
tion tube. By considering the dependence on initial values of

the solution, the invariant manifolds can still remain a part of
the transportation tube. However, LLTs of SMART-1 must
be in the transportation tube. Therefore, further optimiza-
tion is required in the future. This paper provides the bound-
ary of trajectory optimization (i.e., the transportation tube).
However, when the trajectory optimization is performed in
SMART-1, there is no boundary and a large amount of com-
putation is needed.

6 Conclusions

In this paper, the low-thrust transfer orbit was analyzed by
studying the invariant manifolds derived from the trans-
portation tube. The deformation of transportation tube in
SBCM was examined thoroughly. Next, a gradient-based de-
sign of the LTTs was represented by analyzing the invariant
manifolds of the LL1 point and the Halo orbit near it. Its
deformation under solar gravity perturbation was also pre-
sented; this is significant for designing LTTs. In other words,
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the LL1 point and the Halo orbit near it will serve in the free-
flight phase such that the fuel consumption can be as low as
possible. In addition, the control law that changes energy
most rapidly was designed based on CR3BP. Furthermore,
a certain ON/OFF time is provided with a two-dimensional
search method. The numerical results fundamentally coin-
cide with the SMART-1 orbit, which has similar boundary
conditions.

The paper focuses on the feasibility of low-thrust trans-
fer based on the transportation tube. However, the results
obtained in this paper have not been optimized. Therefore,
the result can be used as an initial low-energy transfer orbit
between the Earth and Moon. If further optimization can be
conducted, another orbit that can save more energy can be
obtained.
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