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Abstract A theoretical evolutionary model to analyze the
dynamics of strongly nonlinear waves in inhomogeneous
complex astrophysical viscous clouds on the gravito-
electrostatic scales of space and time is procedurally set
up. It compositionally consists of warm lighter electrons
and ions (Boltzmanian); and cold massive bi-polar dust
grains (inertial fluids) alongside vigorous neutral dynam-
ics in quasi-neutral hydrodynamic equilibrium. Applica-
tion of the Sagdeev pseudo-potential method reduces the
inter-coupled structure equations into a pair of intermixed
forced Korteweg-de Vries-Burgers (f -KdVB) equations.
The force-terms are self-consistently sourced by inhomo-
geneous gravito-electrostatic interplay. A numerical illus-
trative shape-analysis based on judicious astronomical para-
metric platform shows the electrostatic waves evolving as
compressive dispersive shock-like eigen-modes. A unique
transition from quasi-monotonic to non-monotonic oscil-
latory compressive shock-like patterns is found to exist.
In contrast, the self-gravitational and effective perturba-
tions grow purely as non-monotonic compressive oscil-
latory shock-like structures with no such transitory fea-
tures. It is seen that the referral frame velocity acts as
amplitude-reducing agent (stabilizing source) for the elec-
trostatic fluctuations solely. A comparison in the prog-
nostic light of various earlier satellite-based observations
and in-situ measurements is presented. The paper ends
up with synoptic highlights on the main implications and
non-trivial applications in the interstellar space and cosmic
plasma environments leading to bounded structure forma-
tion.
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1 Introduction

The dynamics of nonlinear waves has long been a widely
interesting area of research due to their diversified roles
played in interstellar space and cosmic plasma environments
(Bliokh et al. 1995; Verheest 2000; Fortov et al. 2005).
A rich modified variety of these waves develops normally
due to the presence of the atypical massive hetero-polar
charged dust grains in the contact plasma background (Ver-
heest 2000; Fortov et al. 2005). In other words, the presence
of charged grains interestingly adapts the copious waves and
instabilities, and also, introduces new saturation patterns of
the normal dust-modified waves in the form of diversified
instability eigen-structures, such as solitary waves, shocks,
double layers, etc. (Shukla and Mamun 2003; Popel and
Gisko 2006; Borah et al. 2016). Such eigen-patterns in self-
gravity play an important role via a unique source mecha-
nism responsible for various cosmic, space and astrophys-
ical phenomena. To name a few, it includes particle accel-
eration to high-energy regime, material transportation and
energy-momentum transfer processes in interstellar space,
thereby leading to the formation of different bounded astro-
structures (Blandford and Ostriker 1978; Bergin et al. 2004;
Fortov et al. 2005; Borah et al. 2016).

The evolutionary dynamics of astro-space eigen-modes
has previously been investigated theoretically (Gisler et al.
1992; Shukla and Mamun 2003; Borah et al. 2016) as
well as experimentally (Samsonov et al. 2003) in diverse
plasma systems. Their signatures and dynamical features
have also been confirmed by various multi-space satellite-
based observations (Gosling et al. 1968; Dovner et al. 1994;
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Berthomier et al. 2003; Lee et al. 2009). In this context,
worth mentioning instances are Freja, Polar, FAST, Vela 3,
etc. It can be seen that most of the earlier studies have as-
sumed simplified models constituted of electrons, ions, neg-
atively charged massive dust grains exclusively. Moreover,
the positively charged grains are known to play crucial roles
in reorganizing the wave-kinetic processes in cometary tails
(Horanyi 1996), Jupiter’s magnetosphere (Horanyi et al.
1993; Horanyi 1996), Earth’s mesosphere (Havnes et al.
1996), molecular clouds (Shukla et al. 2007), etc. Many re-
searchers have reported extensive studies on the wave dy-
namics in bi-polar grainy plasmas both with (Mamun and
Schlickeiser 2015) and without (Mamun and Shukla 2002;
Rahman et al. 2008; Ahmad et al. 2013) self-gravity. Rah-
man et al. have theoretically investigated the dust acous-
tic shock waves by using reductive perturbation method in
unmagnetized viscous dusty plasma with no gravity (Rah-
man et al. 2008). Likewise, researchers have also studied
the strongly nonlinear characteristics of the dust acoustic
solitary waves with opposite-polarity adiabatic dust grains,
non-thermal electrons and ions in the Sagdeev-framework
(Ahmad et al. 2013). Later, Mamun and Schlickeiser have
reported the excitation of finite-amplitude dust acoustic soli-
tary waves in self-gravitating bi-polar dusty plasma sys-
tem in the small-wavelength limit (Mamun and Schlickeiser
2015). In this direction, although important, the dynamics of
neutrals and positively charged grains have never been in-
cluded simultaneously to the best of our knowledge. It indi-
cates that the evolution of strongly nonlinear waves (gravito-
electrostatic in origin) in self-gravitating viscous bi-polar
dust clouds in active neutral gaseous background with all
the possible driving factors taken into account still remains
to be explored.

In this work, after being motivated by the above lacu-
nae, we propose a simplistic theoretical model to inves-
tigate the evolutionary dynamics of the strongly nonlin-
ear realistic gravito-electrostatic fluctuations on the Jeans
scales of space and time. A modified fluid formalism is
constructed to derive a new pair of gravito-electrostatically
coupled energy integral equations on the basis of the
Sagdeev pseudo-potential approach (Sagdeev 1966). The
Jeans-normalized coupled governing equations are further
reduced to a unique pair of intermixed forced Korteweg-
de Vries-Burgers (f -KdVB) equations. It is numerically
shown that the electrostatic fluctuations evolve as compres-
sive dispersive shock-like structures with a unique transi-
tion from quasi-monotonic profile to non-monotonic oscil-
latory compressive shock-like patterns. In contrast, the self-
gravitational and effective gravito-electrostatic waves prop-
agate as non-monotonic compressive dispersive oscillatory
shock-like structures. The main implications and applica-
tions of the new results in the complex astrophysical context
are briefly indicated.

The structure of the paper has a usual layout as follows. In
Sect. 1, the introduction is already described. Section 2 con-
tains the physical model and mathematical formalisms. Sec-
tion 3 describes the methodological derivation of the canoni-
cal energy integral and intermixed f -KdVB equations. Fur-
ther, Sect. 4 depicts the numerical results and discussions.
Lastly, Sect. 5 presents the main conclusions together with
non-trivial implications and applications.

2 Physical and mathematical formalisms

We consider an astrophysical cloud model composed of vis-
cous bi-polar multi-component fluid dust species amid ac-
tive neutral background in a global quasi-neutral hydro-
dynamic equilibrium. The dust grains in the interstellar
clouds (Spitzer 1978) compositionally may be Silicates,
Graphites, Amorphous Carbons, Polycyclic Aromatic Hy-
drocarbon molecules, Silicon Carbides and Magnesium Sul-
fides (with material density ∼107–1011 kg m−3). The elec-
trons and ions are assumed to be inertialess on the Jeans
scales of space and time. The cold multi-component fluid
dust grains are fully inertial adiabatic fluids, with equal
polytropic indices, γ+ = γ− = γn = 3 (Ahmad et al. 2013;
Maharaj et al. 2015). Furthermore, complications, like tur-
bulence, non-thermal chemical kinetics, plasma-neutral col-
lisions, etc. are neglected. Finally, the Jeans swindle (Jeans
1902), which is preponderantly useful in assuming homoge-
neous equilibrium, is also relaxed. This is because plasma
fluids in the presence of gravity-induced (mass-dependent)
stratification are indeed inhomogeneous in nature.

We begin our study by using the continuity equations,
momentum equations, pressure equations and coupling
electro-gravitational Poisson equations in a planar geometry
(1-D). The basic justification behind the plane-geometry ap-
proximation is that the considered model extension (∼Jeans
length) is much greater than all the characteristic plasma
scale lengths. The inertialess electronic and ionic dynamics
(in dimensional form) with all the conventional notations
(Pandey et al. 1994) are respectively presented as

ne = ne0 exp

(
eφ

Te

)
, (1)

and

ni = ni0 exp

(
−eφ

Ti

)
. (2)

The inertial dust dynamics in the similar customary symbols
is described by

∂nj

∂t
+ ∂

∂x
(njuj ) = 0, (3)
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∂uj

∂t
+ uj

∂uj

∂x
= − qj

mj

∂φ

∂x
− 1

mjnj

∂pj

∂x
− ∂ψ

∂x
+ υj

∂2uj

∂x2
,

(4)

and

∂pj

∂t
+ uj

∂pj

∂x
+ γjpj

∂uj

∂x
= 0. (5)

The closing electro-gravitational Poisson equations are re-
spectively presented as

∂2φ

∂x2
= 4πe[ne − ni + Z−n− − Z+n+], (6)

and

∂2ψ

∂x2
= 4πG[m−n− + m+n+ + mnnn]. (7)

To see the effective nature of the electric and self-
gravitational fields (Pandey et al. 1994), we re-formulate
the effective gravito-electrostatic Poisson equation as

∂2

∂x2

[
ψ −

(
q+
m+

+ q−
m−

)
φ

]

= 4π

[
G{m−n− + m+n+ + mnnn}

−
(

q+
m+

+ q−
m−

)
e{ne − ni + Z−n− − Z+n+}

]
. (8)

Here, ne0 and ni0 are the equilibrium population densities
of electrons and ions; respectively. The terms nj , uj , pj ,
γj , mj and υj are the population density, flow velocity, adi-
abatic pressure, adiabatic index, mass and coefficient of vis-
cosity of the j th species; respectively. Here, j = + (posi-
tive grains), − (negative grains) and n (neutral grains). The
notation, qj = Zj |e|, is the grain charge with e as the elec-
tronic charge and Zj as the charge number. Besides, φ and
ψ are respectively the electrostatic and self-gravitational po-
tentials.

The normalized set of Eqs. (1)–(8) is respectively set out
as

Ne = Ne0 exp(Φ), (9)

Ni = Ni0 exp(−Φ), (10)

∂Nj

∂T
+ ∂

∂X
(NjMj) = 0, (11)

∂Mj

∂T
+ Mj

∂Mj

∂X

= −δ−,j

(
qj

e

)
∂Φ

∂X
− 3δ−,j

(
Tj

Tp

)
Nj

∂Nj

∂X

− ∂Ψ

∂X
+ κj

∂2Mj

∂X2
, (12)

∂Pj

∂T
+ Mj

∂Pj

∂X
+ γPj

∂Mj

∂X
= 0, (13)

∂2Φ

∂X2
=

[
e2

(ρ0m−G)

]
[ne0Ne − ni0Ni

+ Z−n−0N− − Z+n+0N+], (14)

∂2Ψ

∂X2
= 1

ρ0
[m−n−0N− + m+n+0N+ + mnnn0Nn], (15)

and

∂2θ

∂X2
= 4π

ω2
J

[
G{m−n−0N− + m+n+0N+ + mnnn0Nn}

− 2{ne0Ne − ni0Ni + Z−n−0N− − Z+n+0N+}].
(16)

The usual parameters Ne, Ni and Nj are the normalized
population densities of electrons, ions and dust species; nor-
malized by their respective equilibrium values ne0, ni0 and
nj0, respectively. The independent variables X and T are
normalized by the Jeans wavelength λJ and Jeans time
ω−1

J = (css/λJ )−1, respectively. The parameter Mj is the
normalized fluid velocity, normalized by the dust acous-
tic phase speed css = (Tp/m−)1/2, where Te ∼ Ti = Tp is
the plasma temperature (in eV). Further, Tp � Tj , where
Tj is the temperature (in eV) for the j th species. More-
over, Pj = pj/pj0 = N

γ

j denotes the normalized adiabatic
pressure, where, pj0 = njTj is the equilibrium isothermal
pressure. The electrostatic potential Φ and self-gravitational
potential Ψ are normalized by the cloud thermal potential
Tp/e and c2

ss , respectively. Moreover, θ = (Ψ − 2Φ) de-
notes the normalized effective gravito-electrostatic poten-
tial, which gives a measure of competitive strength between
Φ and Ψ . In other words, it describes the effective gravito-
electrostatic force field experienced by dust particles with
unit mass and unit charge in the considered cloud model.
Besides, the viscosity coefficient, κj , is normalized by the
Jeans viscosity υj = ωJ λ2

J (Rahman et al. 2008). In addi-
tion, the term δ−,j = m−/mj represents the mass ratio of
the negative to the j th dust species.

3 Sagdeev pseudo-potential method

To analyze the strongly nonlinear fluctuations, we, as al-
ready mentioned above, apply the Sagdeev pseudo-potential
method (Sagdeev 1966). Then, we transform all the equa-
tions into a time-stationary form by using the Galilean co-
ordinate transformation, ξ = X − μT , with μ as the ref-
erence frame velocity. We introduce two integral functions
for mathematical simplicity as, fj (Φ) = ∫ Φ

0 NjdΦ , approx-
imating pure electrostatic case with Ψ as constant; and
gj (Ψ ) = ∫ Ψ

0 NjdΨ , assuming pure self-gravitational case
with Φ as constant.
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In the electrostatic analysis, a simplifying situation with
small but non-zero κj is considered. We used the boundary
conditions as, Ne → 1, Ni → 1, Nj → 1, Mj → 0, Φ → 0,
Ψ → 0 and ∂Φ/∂ξ → 0 at ξ → ±∞ in Eqs. (11)–(13) with
the O(κj )-retention to get

N+ = μ(3α1δ−,+)−1/2

×
{

1 −
(

Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[

1 − 3

2
α1δ−,+μ−4

×
{

1 + 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[
μ2 − (3α1δ−,+)−1/2κ+

∂Φ

∂ξ

×
{

1 +
(

Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[

1 + 3

2
α1δ−,+μ−2

×
{

1 + 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}]

×
[
−2Z+ − 6Z+α1δ

2−,+μ−2

×
{

1 + 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}]]]
,

(17)

and

N− = μ(3α2)
−1/2

{
1 +

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[

1 − 3

2
α2μ

−4
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[
μ2 − (3α2)

−1/2κ−
∂Φ

∂ξ

×
{

1 −
(

Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[

1 + 3

2
α2μ

−2
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}]

×
[

2Z− + 6Z−α2μ
−2

×
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}]]]
, (18)

where α1 = T+/Tp and α2 = T−/Tp represent the tempera-
ture ratios of the positive and negative grains to the plasma
temperature.

Now, we substitute the derived expressions for Ne, Ni

and Nj from Eqs. (9)–(10), (17) and (18) in Eq. (14), and
then, multiply both sides of Eq. (14) by ∂Φ/∂ξ . There-
after, we integrate it under the boundary conditions as
Ne → 1, Ni → 1, Nj → 1, Mj → 0, Φ → 0, Ψ → 0 and
∂Φ/∂ξ → 0 at ξ → ±∞ for local disturbance. The outcome
is the electrostatic energy integral equation given as follows

1

2

(
∂Φ

∂ξ

)2

+ VE(Φ,Ψ ) = 0, (19)

where the electrostatic Sagdeev potential VE(Φ,Ψ ) is de-
rived as

VE(Φ,Ψ )

= −
(

e2

ρ0Gm−

)[
ne0e

(Φ) + ni0e
(−Φ)

+ Z−n−0f−(Φ) − Z+n+0f+(Φ)
]

+
(

e2

ρ0Gm−

)[
ne0 + ni0 + Z−n−0f−(Φ)|Φ=0,Φξ =0

− Z+n+0f+(Φ)|Φ=0,Φξ =0
]
. (20)

The analytical solution of Eq. (19) can be obtained by the
analytic integration as

∫
−

[(
− 2e2

ρ0Gm−

){
ne0e

(Φ) + ni0e
(−Φ)

+ Z−n−0f−(Φ) − Z+n+0f+(Φ)
}

+
(

2e2

ρ0Gm−

)[
ne0 + ni0 + Z−n−0f−(Φ)|Φ=0,Φξ =0

− Z+n+0f+(Φ)|Φ=0,Φξ =0
]]−1/2

dΦ = ξ + CE, (21)

where CE is the constant of integration.
It is seen that the mathematical shape of Eq. (21) is highly

complicated and nonlinear in nature. So, it is non-integrable
analytically, except with numerical techniques. Now, to see
the structural evolutions, we execute analytical tests to check
the existential conditions for the possible nonlinear coherent
structures. It is seen that Eq. (20) satisfies the following con-
ditions intended for the electrostatic compressive shock-like
structures (Haloi and Karmakar 2015) as

VE(Φ,Ψ ) = 0,
∂VE(Φ,Ψ )

∂Φ
�= 0, at Φ = 0, Ψ = 0,

(22a)

∂2VE(Φ,Ψ )

∂Φ2
< 0, at Φ = 0, Ψ = 0, (22b)

VE(Φ,Ψ ) �= 0, at Φ = Φmax, (22c)

VE(Φ,Ψ ) < 0, at 0 < |Φ| < |Φmax|. (22d)
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Moreover, differentiating Eq. (14) with respect to ξ and
applying normal simplistic approximations as, α1 � 1,
α2 � 1, Z± � 1, μ > 1 and Φ3,Ψ 3 ≈ 0; we get the fol-
lowing f -KdVB equation for the electrostatic disturbance
as follows

∂Φ

∂ξ
+ A1Φ

∂Φ

∂ξ
+ A2

∂2Φ

∂ξ2
+ A3

∂3Φ

∂ξ3
= FE(Φ,Ψ ), (23)

where, the associated coefficients, namely, nonlinear con-
vective coefficient (A1), dissipative coefficient (A2), dis-
persive coefficient (A3) and self-consistent nonlinear driv-
ing force (FE(Φ,Ψ )) term are sensitively dependent on the
diverse plasma parameters and are shown in Appendix A.
Clearly, the self-consistent nonlinear driving force arising
because of coupled gravito-electrostatic fluctuations in an
intermixed form (sourced by gravito-electrostatic polariza-
tion effects resulting in deviation from quasi-neutrality) de-
pends on the diverse plasma parameters.

Similarly, for the self-gravitational counterparts, we ap-
ply the boundary conditions as Ne → 1, Ni → 1, Nj → 1,
Mj → 0, Φ → 0, Ψ → 0 and ∂Ψ/∂ξ → 0 at ξ → ±∞ and
considering the similar κj -behaviors as before. The excise
reduces Eqs. (11)–(13) to

N+ = μ(3α1δ−,+)−1/2

×
{

1 −
(

Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[

1 − 3

2
α1δ−,+μ−4

×
{

1 − 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[
μ2 − (3α1δ−,+)−1/2κ+

∂Ψ

∂ξ

×
{

1 +
(

Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}

×
[

1 + 3

2
α1δ−,+μ−2

×
{

1 + 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}]

×
[
−2 − 6α1δ−,+μ−2

×
{

1 + 4

(
Z+δ−,+Φ + Ψ − 3

2
α1δ−,+

)
μ−2

}]]]
,

(24)

N− = μ(3α2)
−1/2

{
1 +

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[

1 − 3

2
α2μ

−4
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[
μ2 − (3α2)

−1/2κ−
∂Ψ

∂ξ

×
{

1 −
(

Z−Φ − Ψ + 3

2
α2

)
μ−2

}

×
[

1 + 3

2
α2μ

−2
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}]

×
[
−2 − 6α2μ

−2

×
{

1 − 4

(
Z−Φ − Ψ + 3

2
α2

)
μ−2

}]]]
, (25)

and

Nn = μ(3α3δ−,n)
−1/2

{
1 −

(
Ψ − 3

2
α3δ−,n

)
μ−2

}

×
[

1 − 3

2
α3δ−,nμ

−4
{

1 + 4

(
Ψ − 3

2
α3δ−,n

)
μ−2

}

×
[
μ2 − (3α3δ−,n)

−1/2κn

∂Ψ

∂ξ

×
{

1 +
(

Ψ − 3

2
α3δ−,n

)
μ−2

}

×
[

1 + 3

2
α3δ−,nμ

−2
{

1 + 4

(
Ψ − 3

2
α3δ−,n

)
μ−2

}]

×
[
−2 − 6α3δ−,nμ

−2

×
{

1 + 4

(
Ψ − 3

2
α3δ−,+

)
μ−2

}]]]
, (26)

where α3 = Tn/Tp is the temperature ratio between neutral
grains and that of plasma.

Now, we replace the derived expression Nj from
Eqs. (24)–(26) in Eq. (15) and multiply both sides of
Eq. (15) by ∂Ψ/∂ξ . Then, we integrate Eq. (15) with the
appropriate boundary conditions, i.e., Ne → 1, Ni → 1,
Nj → 1, Mj → 0, Φ → 0, Ψ → 0 and ∂Ψ/∂ξ → 0 at
ξ → ±∞ for local disturbance. It gives the self-gravitational
energy integral equation as

1

2

(
∂Ψ

∂ρ

)2

+ VG(Φ,Ψ ) = 0, (27)

where, the self-gravitational Sagdeev potential, VG (Ψ ) is
described as

VG(Φ,Ψ ) = − 1

ρ0

[
m+n+0g+(Ψ ) + m−n−0g−(Ψ )

+ mnnn0gn(Ψ )
]

+ 1

ρ0

[
m+n+0g+(Ψ )|

Ψ =0, ∂Ψ
∂ξ

=0
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+ m−n−0g−(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

+ mnnn0gn(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

]
. (28)

The analytical solution of Eq. (27) can also be found from
direct integration as

∫
−[−2ρ−1

0

[
m+n+0g+(Ψ ) + m−n−0g−(Ψ )

+ mnnn0gn(Ψ )
] + 2ρ−1

0

[
m+n+0g+(Ψ )|

Ψ =0, ∂Ψ
∂ξ

=0

+ m−n−0g−(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

+ mnnn0gn(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

]]−1/2
dΨ = ξ + CG, (29)

where CG is the integration constant.
It is clear that the mathematical structure of Eq. (29) is

also highly complicated and nonlinear in nature, like non-
integrable Eq. (21), as discussed earlier. Now, Eq. (28) ful-
fills the following conditions for existence of self-
gravitational compressive shock-like structures (Sagdeev
1966; Haloi and Karmakar 2015) as

VG(Φ,Ψ ) = 0,
∂VG(Φ,Ψ )

∂Ψ
�= 0, at Φ = 0, Ψ = 0,

(30a)

∂2VG(Φ,Ψ )

∂Ψ 2
< 0, at Φ = 0, Ψ = 0, (30b)

VG(Φ,Ψ ) = 0, at Ψ = Ψmax, (30c)

VG(Φ,Ψ ) < 0, at 0 < |Ψ | < |Ψmax|. (30d)

Moreover, differentiating Eq. (15) with respect to ξ and
using the same analytical approximations already mentioned
above with α3 � 1, we get

∂Ψ

∂ξ
+ B1Ψ

∂Ψ

∂ξ
+ B2

∂2Ψ

∂ξ2
+ B3

∂3Ψ

∂ξ3
= FG(Φ,Ψ ). (31)

This is the self-gravitational f -KdVB equation governing
the considered fluctuations. The various involved coeffi-
cients are nonlinear convective coefficient (B1), dissipa-
tive coefficient (B2), dispersive coefficient (B3) and self-
consistent nonlinear driving force (FG(Φ,Ψ )), as shown
in Appendix B. The self-consistent nonlinear self-
gravitational driving force arising because of nonlinear
gravito-electrostatic coupling processes in an intermixed
form (sourced by deviation from exact inertial mass neutral-
ity) as an explicit function of the diverse plasma parameters
is well described therein in the Appendix.

Analogously, we multiply both sides of Eq. (16) by
∂θ/∂ξ and integrate under the previously projected condi-
tions. Finally, we obtain the effective gravito-electrostatic

energy integral equation as follows

1

2

(
∂θ

∂ξ

)2

+ VG−E(θ) = 0, (32)

and its associated gravito-electrostatic Sagdeev potential,
VG−E(θ), presented as

VG−E(θ)

= − 1

ρ0

[
m+n+0g+(Ψ ) + m−n−0g−(Ψ ) + mnnn0gn(Ψ )

]

+ 1

ρ0

[
m+n+0g+(Ψ )|

Ψ =0, ∂Ψ
∂ξ

=0

+ m−n−0g−(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

+ mnnn0gn(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0

]

+
(

1

ρ0Gm−

)[
ne0e

(Φ) + ni0e
(−Φ) + Z−n−0f−(Φ)

− Z+n+0f+(Φ)
]

−
(

1

ρ0Gm−

)[
ne0 + ni0 + Z−n−0f−(Φ)|Φ=0,Φξ =0

− Z+n+0f+(Φ)|Φ=0,Φξ =0
]
. (33)

Moreover, the analytical solution of Eq. (32) can also be ob-
tained from direct integration as

∫
−

[
−2ρ−1

0

[
m+n+0g+(Ψ ) + m−n−0g−(Ψ )

+ mnnn0gn(Ψ )
] + 2ρ−1

0

[
m+n+0g+(Ψ )|

Ψ =0, ∂Ψ
∂ξ

=0

+ m−n−0g−(Ψ )|
Ψ =0, ∂Ψ

∂ξ
=0 + mnnn0g+(Ψ )|

Ψ =0, ∂Ψ
∂ξ

=0

]

+
(

1

ρ0Gm−

)[
ne0e

(Φ) + ni0e
(−Φ) + Z−n−0f−(Φ)

− Z+n+0f+(Φ)
]

−
(

1

ρ0Gm−

)[
ne0 + ni0 + Z−n−0f−(Φ)|Φ=0,Φξ =0

− Z+n+0f+(Φ)|Φ=0,Φξ =0
]]−1/2

dθ = ξ + CG−E, (34)

where CG−E is the integration constant.
For the compressive shock-like structures (Haloi and

Karmakar 2015) to exist, Eq. (33) must satisfy the follow-
ing extreme conditions

VG−E(θ) = 0,
∂VG−E(θ)

∂θ
�= 0, at θ = 0, (35a)

∂2VG−E(θ)

∂θ2
< 0, at θ = 0, (35b)
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Fig. 1 Profile of the normalized
electrostatic (a) Sagdeev
potential [VE(Φ,Ψ )],
(b) physical potential (Φ), and
(c) potential inhomogeneity
scale length
[LΦ = Φ(∂Φ/∂ξ)−1] for the
different μ-values. Various lines
correspond to (A): μ = 2.90
(blue solid line), (B): μ = 2.94
(red dashed line), and (C):
μ = 2.98 (black dotted line),
respectively. Different input and
initial values used in our
numerical analysis are discussed
in the text

VG−E(θ) = 0, at θ = θmax, (35c)

VG−E(θ) < 0, at 0 < |θ | < |θmax|. (35d)

It is evident that the fluctuations satisfy all the analyti-
cal conditions (Eqs. (22a)–(22d), (30a)–(30d) and (35a)–
(35d)) needed for the compressive shock-like patterns to
evolve. It may be noted from Eqs. (23) and (31) that, if the
nonlinear convective effects are balanced under the com-
bined action of dispersion and dissipation, then the fluctu-
ations evolve as dispersive shock-like patterns (Asgari et al.
2011). In contrast, otherwise, the fluctuations propagate as
non-dispersive shock-like eigen-modes. The analytical tests
show explicit possibilities for the fluctuations to propagate
either as compressive dispersive shock-like or compressive
non-dispersive shock-like patterns.

4 Results and discussion

The proposed theoretical work is mainly focused to study
the evolutionary dynamics of strongly nonlinear gravito-
electrostatic waves reinforced in multi-component fluid vis-
cous dust clouds by using the modified Sagdeev pseudo-
potential technique. To see the exact eigen-patterns, we
numerically analyze the developed model dynamics (Eqs.
(14)–(15), (18), (27) and (32)) by using the fourth-order
Runge-Kutta method (Kiusalaas 2005) in the astrophysical
domain of judicious parametric conditions (Spitzer 1978;
Bliokh et al. 1995; Verheest 2000; Fortov et al. 2005). The

results, thus numerically obtained in the sensible parametric
domains (without deviating from order of magnitudes), are
graphically displayed in Figs. 1, 2, 3 and 4.

In the numerical platform of analysis, this may be note
worthy here that, it is only the supersonic domain of the
referral frame (μ > 1) that allows our numerical illustra-
tive platform to run. Since, we are interested to analyze
the fluctuation dynamics on the astrophysical spatial scale,
the evolutionary profiles are restricted to ξ = 10 on the
Jeans scale length only. We take the diverse input paramet-
ric values of the dust grain properties relevant in the cold
(Td = 10−3–10−2 eV) interstellar medium (Spitzer 1978;
Bliokh et al. 1995; Verheest 2000). It is pertinent to add
further that the hydrodynamical approximation (here, on
the Jeans scale) is based on vanishingly small mean free
path, and hence, small viscosity (Fridman and Polyachenko
1984). Therefore, the numerical analysis here deals only
with small viscosity scenarios of the H II clouds (infrared
clouds) including heterogeneous cloud complexes (Spitzer
1978).

Figure 1 shows the profiles of normalized electrostatic
(a) Sagdeev potential [VE(Φ,Ψ )], (b) physical (real) po-
tential (Φ), and (c) potential inhomogeneity scale length
[LΦ = Φ(∂Φ/∂ξ)−1] on the ξ -space for the different μ-
values. Various lines correspond to (A): μ = 2.90 (blue
solid line), (B): μ = 2.94 (red dashed line), and (C): μ =
2.98 (black dotted line), respectively. Different input val-
ues used are (ξ)i = 1.00 × 10−2 with �ξ = 1.00 × 10−2,
(Φ)i = 2.00 × 10−9, (Φξ )i = 1.00 × 10−11, (Ψ )i = 1.00 ×
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Fig. 2 Same as Fig. 1, but for
the self-gravitational wave
dynamics

Fig. 3 Same as Fig. 1, but for
the effective
gravito-electrostatic wave
dynamics

10−4, and (Ψξ )i = 1.00 × 10−3. The other parameters kept
fixed are ne0 = 5.00 × 103 m−3, ni0 = 5.00 × 103 m−3,
n−0 = 7.00 × 10−1 m−3, n+0 = 1.00 × 10−1 m−3, nn0 =
9.00 × 10−1 m−3, Z− = 1.50 × 102, Z+ = 1.00 × 102,
m− = 2.80 × 10−8 kg, m+ = 1.00 × 10−8 kg, mn = 1.00 ×

10−11 kg, α1 = 1.10 × 10−2, α2 = 1.20 × 10−2, α3 =
1.00×10−2, κ− = 2.00×10−2, κ+ = 2.00×10−2, and κn =
1.00×10−2 (Spitzer 1978; Fridman and Polyachenko 1984;
Bliokh et al. 1995). It is seen that VE(Φ,Ψ ) satisfies all
the approximate analytic conditions, Eqs. (22a)–(22d), men-
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tioned before, with minor deviations, in the context of Eq.
(27) for the evolution of compressive shock-like fluctuation
structures. The corresponding Φ (Fig. 1b) evolves as quasi-
monotonic compressive dispersive shock-like structure for
μ = 2.90. The Φ-amplitude decreases with increase in μ,
and vice versa. It is interestingly noted that, when μ ≥ 2.94,
there exists a unique transition from the quasi-monotonic
type to non-monotonic oscillatory compressive shock-like
patterns at ξ = 2.50. The physics behind such transition is
attributable to the Doppler-shifting mechanism enhancing
the resonant mode-mode coupling and anti-resonant mode-
mode decoupling mechanisms, producing thereby conso-
nances (crests) and dissonances (troughs) via adiabatic en-
ergy exchange processes among the background spectral
wave components, respectively. Likewise, Fig. 1c depicts
the corresponding locative poles for LΦ specifying the con-
sonances and dissonances thus formed. It is interesting to
see that the different μ-values pertain to the different LΦ -
singular behaviors reflecting the said potential resonances
and anti-resonances rhythmically.

Figure 2 depicts the normalized self-gravitational (a)
Sagdeev (pseudo) potential [VG(Φ,Ψ )], (b) physical (real)
potential (Ψ ), and (c) potential inhomogeneity scale length
[LΨ = Ψ (∂Ψ/∂ξ)−1] under the same conditions as Fig. 1.
Here, VG(Φ,Ψ ) satisfies all the analytic conditions,
Eqs. (30a)–(30d), thereby fulfilling the germination of com-
pressive shock-like structures. Analogously, the correspond-
ing Ψ -fluctuations evolve as non-monotonic compressive
oscillatory shock-like structures (Fig. 2b). Here, we see
that the Ψ -amplitude increases with increase in μ, and
vice versa. Figure 2c shows the same physics of pole-
characterization as Fig. 1c.

Figure 3 portrays the normalized effective gravito-
electrostatic (a) Sagdeev potential [VG−E(θ) = VE(Φ,Ψ )−
VG(Φ,Ψ )], (b) physical (real) potential [θ = (Ψ − 2Φ)],
and (c) potential inhomogeneity scale length [Lθ =
θ(∂θ/∂ξ)−1] under the same conditions as Fig. 1. It self-
consistently shows the profile features of potential structural
evolution analogous to Fig. 2.

Finally, Fig. 4 shows the phase diagram (in 3-D) of the
effective gravito-electrostatic potential (θ ) mapped as an ex-
plicit function of electrostatic real potential (Φ) and self-
gravitational real potential (Ψ ). It simply depicts the repro-
duced θ -evolution in the defined potential phase plane con-
structed from the above results (Figs. 1b–3b). Different in-
put and initial values here are the same as Fig. 1, but with
μ = 2.90 only. Here, we see that θ decreases with increase
in Φ , but increases with increase in Ψ . This further con-
firms that the formation of bounded structures is possible if
and only if the gravitational attraction is at least comparable
with the effective strength of electrostatic repulsion among
the diverse dust grains in the astroclouds prevailing in the
galaxies.

Fig. 4 Phase diagram of the effective gravito-electrostatic potential
(θ ) evolving as a function of electrostatic real potential (Φ) and self-
gravitational real potential (Ψ ). Different input and initial values here
are the same as Fig. 1, but with μ = 2.90 only

While comparing with the existing like works, the sta-
bility analysis presented here deals strategically with the
modeled massive viscous bi-polar dust clouds in dynamic
neutral dusty background in the modified Sagdeev frame-
work evolving as diverse shock-like patterns. In the for-
mation mechanism of such eigen-structures, the nonlin-
ear steepening effects are attributable to fluid convection;
whereas, dissipative effects, to fluid viscosity, as widely
seen in the literature (Shukla and Mamun 2003; Haloi
and Karmakar 2015). A quantitative glimpse on the basis
of existing normal cloud parameters (Bliokh et al. 1995;
Verheest 2000) may be drawn as the following. In our analy-
sis, the physical strength of the Φ-fluctuations is comes out
as ∼2 V for Tp ∼ 104 K; while, that of the Ψ -fluctuations
is ∼10−10 J kg−1 for m− = 10−8 kg and Tp ∼ 104 K. The
smallness in the strength is a subject to the chosen set of
diverse plasma properties considered herein. Our investi-
gation, however, differs from the other reports depicting
weakly nonlinear fluctuations with self-gravity (Mamun and
Schlickeiser 2015) and strongly nonlinear analyses without
self-gravity (Mamun and Shukla 2002; Ahmad et al. 2013).
Nevertheless, the obtained findings are quite similar with the
Vela 3 observations (Gosling et al. 1968) and in-situ mea-
surements (Lee et al. 2009).

5 Conclusions

In summary, a theoretical model analysis is presented to ex-
plore the strongly nonlinear waves supported in inhomoge-
neous complex viscous astroclouds in the Sagdeev pseudo-
potential framework. It reveals the excitation of electrostatic
compressive dispersive shock-like structures undergoing a
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unique transitory behavior from quasi-monotonic to non-
monotonic oscillatory compressive shock-like patterns. The
self-gravitational and effective gravito-electrostatic fluctu-
ations evolve as non-monotonic compressive oscillatory
shock-like patterns. The gradient scale behavior, aboard in-
tensive numerical illustrations, confirms that the perturba-
tion extrema are indeed irregular in nature due to the gravito-
electrostatic aperiodic counter-action. A few more conclud-
ing remarks drawn from the study are highlighted as fol-
lows.

1. A theoretical strategic model to study the excitation
physics of strongly nonlinear waves in complex viscous
astroclouds with active neutral gas dynamics taken into
account is methodologically constructed in the amended
Sagdeev-framework.

2. The fluctuations are sourced by the atypical redistribution
of massive (Newtonian) positively-negatively charged
(Columbic) dust grains amid active neutrals (Newtonian)
on the relevant astrophysical fluid scales of space and
time.

3. It supports electrostatic compressive dispersive shock-
like structures undergoing a unique transitory feature
from quasi-monotonic to non-monotonic oscillatory
compressive shock-like patterns; and self-gravitational
and effective gravito-electrostatic non-monotonic com-
pressive shock-like structures.

4. Different frame velocities (μ-values) pertain to the differ-
ent scale length (LΦ ) singular behaviors showing the res-
onant (on-phase) and non-resonant (off-phase) extrema
of the fluctuations in a correlative coordination with the
noisy spectral background.

5. The fluctuations investigated here are quite similar with
the multi-space satellite-based observations reported be-
fore (Gosling et al. 1968; Lee et al. 2009).

6. Finally, the results, despite the simplicity, can be useful to
see diverse wave-instabilities and eigen-modes leading to
large-scale bounded structures via the transfer of energy,
momentum and mass in a re-distributed form in space
and cosmic plasma environments.

It is finally admitted that the proposed investigation high-
lights a fully nonlinear wave spectrum excitable merely in
a pure (external field-free) gravito-electrostatic fluid form.
The nonlocal effects, stemming in the secular instabilities
due to diversified dissipative mechanisms, are also ignored.
The eigen-spectral purity would likely be bewildered re-
sulting in additional spectral plethora (Bliokh et al. 1995;
Verheest 2000), if we consider other intrinsically influen-
tial factors, like grain magnetizations, grain distributions,
rotational (Coriolis) effects, temperature distribution, col-
lective correlative dynamics, and so forth. Despite the ana-
lytic model simplification, a base for experimental reliability
checking in the domain of practical validity of the proposed

shock theory via scale-invariant shock physics in laboratory
plasma devices, apart from triggering astronomical bounded
structure formation via self-gravitational collapse dynamics,
in sensible microgravity conditions (Samsonov et al. 2003)
may also be established.
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Appendix A: Coefficients of the electrostatic
f -KdVB equation

The involved coefficients in the electrostatic f -KdVB equa-
tion (Eq. (23)) are defined as follows

A1 = [
(ne0 − ni0) + {

4(3α2)
1/2Z3−n−0

}
μ−5

− {
4
(
3α1δ

5−,+
)1/2

Z3+n+0
}
μ−5]

×
[
(ne0 + ni0) + Z2−n−0(3α2)

1/2

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ Z2+n+0(3α1δ−,+)1/2

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

A2 =
[

1

2

(
Z2−n−0κ−

)
μ−3{2 − 3α2μ

−2}

− 1

2

(
Z2+n0+κ+

)
μ−3

× {−2 − 6α1δ
2−,+μ−2 + 9α1δ−,+μ−2}]

×
[
(ne0 + ni0) + Z2−n−0(3α2)

1/2

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ Z2+n+0(3α1δ−,+)1/2

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

A3 = −(ρ0Gm−)e−2
[
(ne0 + ni0) + Z2−n−0(3α2)

1/2

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}
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+ Z2+n+0(3α1δ−,+)1/2

×
{
(3α1)

−1μ−1 − 3

2
δ−,+μ−3 − 6α1δ

2−,+μ−5
}]−1

,

A4 =
[
Z−n−0(3α2)

1/2
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ Z+n+0(3α1δ−,+)1/2

×
{
(3α1δ−,+)−1μ−1 + 3

2
μ−3 − 6α1δ−,+μ−5

}]

×
[
(ne0 + ni0) + Z2−n−0(3α2)

1/2

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ Z2+n+0(3α1δ−,+)1/2

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

A5 = [
4(3α2)

1/2Z2−n−0μ
−5 + 4

(
3α1δ

3−,+
)1/2

Z2+n+0μ
−5]

×
[
(ne0 + ni0) + (3α2)

1/2Z2−n−0

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ (3α1δ−,+)1/2Z2+n+0

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

A6 = [
4(3α2)

1/2Z2−n−0μ
−5 + 4

(
3α1δ

3−,+
)1/2

Z2+n+0μ
−5]

×
[
(ne0 + ni0) + Z2−n−0(3α2)

1/2

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ (3α1δ−,+)1/2Z2+n+0

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

A7 = [−4(3α2)
1/2Z−n−0μ

−5 + 4(3α1δ−,+)1/2Z+n+0μ
−5]

×
[
(ne0 + ni0) + (3α2)

1/2Z2−n−0

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + 6α2μ

−5
}

+ (3α1δ−,+)1/2Z2+n+0

×
{
(3α1)

−1μ−1 + 3

2
δ−,+μ−3 + 6α1δ

2−,+μ−5
}]−1

,

and

FE(Φ,Ψ ) = A4
∂Ψ

∂ξ
+ A5Φ

∂Ψ

∂ξ
+ A6Ψ

∂Φ

∂ξ
+ A7Ψ

∂Ψ

∂ξ
.

Appendix B: Coefficients of the self-gravitational
f -KdVB equation

The involved coefficients in the self-gravitational f -KdVB
equation (Eq. (31)) are given as

B1 = [−4m+n+0(3α1δ−,+)1/2μ−5 + 4m−n−0(3α2)
1/2μ−5

+ 4mnnn0(3α3δ−,n)
1/2μ−5]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B2 =
[

1

2
(m+n+0κ+)μ−3{−2 − 21(α1δ−,+)μ−2}

+ 1

2
(m−n−0κ−)μ−3{−2 + 3α2μ

−2}

× 1

2
(mnnn0κn)μ

−3{−2 + 3(α3δ−,n)μ
−2}]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B3 = −ρ0

[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}
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− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B4 =
[
m+n+0(3α1δ−,+)1/2Z+

×
{
(3α1)

−1μ−1 − 5

2
δ−,+μ−3 − 6

(
α1δ

2−,+
)
μ−5

}

− m−n−0(3α2)
1/2Z−

×
{
(3α2)

−1μ−1 + 3

2
μ−3 + (6α2)μ

−5
}]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B5 = [
4m+n+0

(
3α1δ

5−,+
)1/2

Z2+μ−5

− 4m−n−0(3α2)
1/2Z2−μ−5]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B6 = [
4m+n+0

(
3α1δ

3−,+
)1/2

Z+μ−5

+ 4m−n−0(3α2)
1/2Z−μ−5]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

B7 = [
4m+n+0

(
3α1δ

3−,+
)1/2

Z+μ−5

+ 4m−n−0(3α2)
1/2Z−μ−5]

×
[
m+n+0(3α1δ−,+)1/2

×
{
−(3α1δ−,+)−1μ−1 + 5

2
μ−3 + (6α1δ−,+)μ−5

}

− m−n−0(3α2)
1/2

×
{
(3α2)

1/2μ−1 + 3

2
μ−3 + (6α2)μ

−5
}

− mnnn0(3α3δ−,n)
1/2

×
{
(3α3δ−,n)

−1μ−1 + 3

2
μ−3 + (

6α3δ−,nμ
−5)}]−1

,

and

FG(Φ,Ψ ) = B4
∂Φ

∂ξ
+ B5Φ

∂Φ

∂ξ
+ B6Ψ

∂Φ

∂ξ
+ B7Φ

∂Ψ

∂ξ
.
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