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Abstract This paper studies local and global motion in the
vicinity of a rotating homogeneous dumbbell-shaped body
through the polyhedron model. First, a geometric model of
dumbbell-shaped bodies is established. The equilibria points
and stabilities thereof are analyzed under different param-
eters. Then, local motion around equilibrium points is in-
vestigated. Based on the continuation method and bifurca-
tion theory, several families of periodic orbits are found
around these equilibria. Finally, to better understand the
global orbital dynamics of particles around a dumbbell-
shaped body, the invariant manifolds associated with pe-
riodic orbits are discussed. Four heteroclinic connections
are found between equilibria. Using Poincaré sections, tra-
jectories are designed for transfers between different peri-
odic orbits. Those trajectories allow for low-energy global
transfer around a dumbbell-shaped body and can be refer-
ences for designing reconnaissance orbits in future asteroid-
exploration missions.
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1 Introduction

Asteroids, considered to be remnant material from the early
solar system, have become desirable destinations for deep
space exploration in recent years. Valuable information from
asteroids about the evolution of the solar system, the forma-
tion of planets and the source of life, as well as their poten-
tial for human exploration missions, attracts both scientists
and engineers. However, missions to asteroids face signif-
icant dynamical problems. One of the major challenges to
probes is the strong gravitational perturbations caused by
the irregular shapes of asteroids. Lack of familiarity with
the dynamics of the environment in the vicinity of an aster-
oid makes it difficult to keep a spacecraft safe around a small
body.

To overcome this difficulty, several studies have been
conducted in the past. Different asteroid models have been
proposed to approximate the gravity field caused by the
irregular shape of an asteroid, including but not limited
to a tri-axial ellipsoid (Scheeres 1994), a homogeneous
cube (Liu et al. 2011a,b), an annular disk (Alberti and
Vidal 2007), an elongated segment (Riaguas et al. 2001),
a dumbbell-shaped body (Li et al. 2013), a combination of
a sphere and an ellipsoid (Feng et al. 2015, 2016), a rotat-
ing mass dipole (Zeng et al. 2015) and a polyhedron model
(Hudson and Ostro 1994; Yu and Baoyin 2012b; Wang
et al. 2015). Of these, the dumbbell-shaped body is an ideal
model, consisting of two incomplete spheres and one op-
tional cylinder. By varying the relative position and the size
of spheres, this model has the ability to simulate an elon-
gated asteroid, a contact binary or more complicated aster-
oids, which are suitable approximations for a number of real
celestial bodies in the solar system.

Based on the above gravitational models, the motion
of a particle in the vicinity of an asteroid has been in-
vestigated. The equilibrium points and stability, periodic
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orbits (Scheeres et al. 1996; Yu and Baoyin 2013; Wang
et al. 2014) and topological structure of motion (Lara and
Scheeres 2002; Jiang and Baoyin 2014; Jiang et al. 2014;
Feng et al. 2016) around the asteroid have been studied.
In particular, based on the dumbbell-shaped model, Li ana-
lyzed the equilibrium points and their linear stability for dif-
ferent length-diameter ratios. Additionally, planar periodic
orbits around equilibrium points were found.

In this paper, we further investigate the motion around
dumbbell-shaped bodies. In particular, we extend the re-
search from local motion around equilibrium points to
global motion in the vicinity of a dumbbell-shaped body.
The local motion in space is discussed, and additional fam-
ilies of periodic orbits around equilibria are generated by
bifurcation theory. Moreover, the invariant manifold associ-
ated with orbits is analyzed, which may help to study the
low-energy connections between equilibria. With the help
of manifolds and Poincaré sections, potential global transfer
trajectories around a dumbbell-shaped body are designed.
The study of local and global motion can provide a ref-
erence to select proper transfer and reconnaissance orbits
around small celestial bodies, which is essential to future
exploration mission design.

This paper is organized as follows. In Sect. 2, the
dumbbell-shaped model is established, the equilibria are
calculated, and the critical angular speed is investigated. In
Sect. 3, we treat the local motion around equilibria. With the
continuation method and bifurcation theory, several fam-
ilies of periodic orbits are generated. The global motion
in the vicinity of a dumbbell-shaped body is discussed in
Sect. 4. The invariant manifolds associated with periodic
orbits are calculated for different extended length-diameter
ratios and orbit amplitudes. By introducing the Poincaré sec-
tion, the heteroclinic connections around dumbbell-shaped
bodies are analyzed. Finally, several global transfer trajecto-
ries are designed to demonstrate the potential application to
small-body exploration.

2 Dynamic equation in dumbbell-shaped model

2.1 The dumbbell-shaped model

In this paper, a dumbbell-shaped body is employed for dy-
namic research. The model is the combination of two incom-
plete spheres and an optional cylinder, as shown in Fig. 1.

For simplicity, the radii of the two spheres are the same,
denoted as R. The radius of the cylinder is half that of the
sphere, Rc = R/2. There is one additional important pa-
rameter that describes the shape of the model: the length-
diameter ratio m = L/2R, where L is distance between the
centers of the two spheres. It is easy to show that m ≤ √

3/2
describes two spheres in contact, which is analogous to a

Fig. 1 The dumbbell-shaped model

contact binary asteroid. The cylinder is used when m >√
3/2; the height of cylinder is H = L − 2

√
R2 − R2

c . The
special case of m = 0 represents a single sphere.

2.2 Gravitational potential

We assume that the dumbbell-shaped body is homoge-
neous. The gravitational potential of a dumbbell-shaped
body can be calculated by the polyhedron method (Werner
and Scheeres 1996). The incomplete spheres and cylinder
are meshed into a set of tetrahedrons. The gravitational po-
tential at an external point P due to each part can be calcu-
lated by Eq. (1).

U = 1

2
Gσ

∑

e∈edges

re ·Ee ·re ·Le − 1

2
Gσ

∑

f ∈faces

rf ·Ff ·rf ·ωf

(1)

where Le and ωf represent the line factor and the face fac-
tor, respectively. re is a vector from a point on edge e to P .
Ee and Ff are the direction matrices of edge e and the em-
bodied face f . The potential of the dumbbell-shaped body
at point P can be obtained by summing the potentials of the
three parts. The attraction and gravity gradient of the poly-
hedron can also be obtained by Eqs. (2) and (3), which are
applied in the following sections.

∇U = −Gσ
∑

e∈edges

Ee · re · Le + Gσ
∑

f ∈faces

Ff · rf · ωf

(2)

∇∇U = Gσ
∑

e∈edges

Ee · Le − Gσ
∑

f ∈faces

Ff · ωf (3)

2.3 The equilibria and their stability

The dumbbell-shaped body is assumed to be rotating uni-
formly around its maximum moment-of-inertia axis with an-
gular velocity ω. Normally, the motion of a third particle is
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Table 1 Location, existence
and stabilities of periodic orbits
for the equilibrium points

*Note: U = unstable LS =
Linearly stable

Model Equilibrium x y Linear stability*

I Ex ±2.51577234 0 U

Ey 0 ±2.42416646 LS

II Ex ±2.93537532 0 U

Ey 0 ±2.59233070 U

III Ex ±3.81066268 0 U

Ey 0 ±2.35860180 U

IV Ey ±5.59691038 0 U

Ey 0 ±5.41947608 LS

established in the body-fixed frame whose Z-axis is aligned
with the rotation axis, and whose X- and Y -axes coincide
with two other symmetrical axes of the body. The centers of
the two spheres are located at the X-axis.

In the rotating frame, the equation of motion of a particle
is given as,

ẍ − 2ωẏ = ω2x + Ux

ÿ + 2ωẋ = ω2y + Uy

z̈ = Uz

(4)

where Ux,Uy,Uz are components of Eq. (1) along the re-
spective axes. The results of Eq. (4) are related only to the
ratio between the square of the rotational speed and the den-
sity of the body: τ = ω2/ρ. Therefore, we define a nor-
malized angular speed ω′ = √

ω2/Gρ. In the new system,
the gravity constant G′ and the density ρ′ of the model
are equal to 1. That is, any property of motion in the sys-
tem S′ = {ω′,G′, ρ′,R} is equivalent to the original sys-
tem S = {ω,G,ρ,R}. The radii of sphere R is taken as the
length unit. The normalized equation can be written as,

ẍ − 2ω′ẏ = ω′2x + Ux

ÿ + 2ω′ẋ = ω′2y + Uy

z̈ = Uz

(5)

Setting ẋ = ẍ = ÿ = ẏ = ż = z̈ = 0, the equilibrium
points of the dumbbell-shaped body can be obtained. Their
stability can be determined by the eigenvalues of the char-
acteristic equation. The equilibrium is stable if no eigen-
value has a positive real part; otherwise, the equilibrium is
unstable. According to a previous study (Li et al. 2013),
an equilibrium along the X-axis is always unstable, while
equilibrium points along the Y -axis are conditionally sta-
ble. The stability at a certain angular speed has been inves-
tigated and the corresponding critical length-diameter ratio
mcr was found. Here, we focus on determining the critical
length-diameter ratio mcr with different angular velocities.

The normalized angular velocity ω′ is allowed to change
from 0.1 to 1. For each ω′, the critical length-diameter ra-

Fig. 2 The relation between normalized angular velocity ω′ and criti-
cal length-diameter ratio mcr

tio is calculated that satisfies the multiple eigenvalues in the
characteristic equation. The result is shown in Fig. 2.

As shown in Fig. 2, the curve divides the region into two
parts. In the upper region, the equilibria along the Y -axis are
unstable, while the lower region is the stable area. It is clear
that the critical length-diameter ratio decreases as the nor-
malized angular speed increases. Considering the definition
of normalized angular speed, it is concluded that an equilib-
rium with a high spin speed or low-density body is usually
unstable unless the body is close to a sphere.

To systematically discuss the motion in the vicinity of
a dumbbell-shaped model, four models are analyzed be-
low: I. ω′ = 0.63,m = 0.3, II. ω′ = 0.63,m = 0.8, III. ω′ =
0.63,m = 2, IV. ω′ = 0.22,m = 0.8. From Fig. 2, models
II and III are larger than the corresponding critical length-
diameter ratio mcr , while I and IV are smaller than mcr .
Hence, the equilibrium points along the Y -axis are unsta-
ble for II and III and stable for I and IV. The position and
linear stability of equilibrium for each situation are listed in
Table 1.

3 Local motion around the equilibria of a
dumbbell-shaped body

If we put the center of a frame at any equilibrium and per-
form a small perturbation (ξ, η, ζ ), the linear perturbation



85 Page 4 of 13 X. Li et al.

equation can be written as:

ξ̈ − 2ω′η̇ = UE
xxξ + UE

xyη + UE
xzζ

η̈ + 2ω′ξ̇ = UE
yxξ + UE

yyη + UE
yzζ

ζ̈ = UE
zxξ + UE

zyη + UE
zzζ

(6)

The characteristic equation of Eq. (6) can be written in
the following form:

∣∣∣∣∣∣∣

λ2 − UE
xx −2ω′λ − UE

xy UE
xz

2ω′λ − UE
xy λ2 − UE

yy UE
yz

UE
xz UE

yz λ2 − UE
zz

∣∣∣∣∣∣∣
= 0 (7)

Due to the symmetry of the model, UE
xy = UE

yx = 0,

UE
yz = UE

zy = 0, andUE
xz = UE

zx = 0. Equation (7) can be
simplified as:
(
λ2 − UE

zz

)[
λ4 + (

4ω′2 − UE
xx − UE

yy

)
λ2 + UE

xxU
E
yy

] = 0

(8)

where λ denotes the eigenvalues of Eq. (6). The value of λ

not only defines the stability of equilibrium points but also
determines the mode of perturbation motion around equilib-
ria. Planar periodic orbits around equilibria have been inves-
tigated previously (Li et al. 2013). Here, we extend them to
the spatial situation.

3.1 Local motion around an equilibrium

Case 1. Local motion around an equilibrium along the
X-axis

The eigenvalues for Ex in a dumbbell-shaped body have
the form ±α,±iβj (j = 1,2). Hence, the general solution
of the linearized equation can be expressed as (Wang et al.
2014):

ξ = d1e
αt + d2e

−αt + d3 cosβ1t + d4 sinβ1t

η = κ1
(
d1e

αt − d2e
−αt

) − κ2(d3 sinβ1t − d4 cosβ1t)

ζ = d5 cosβ2t + d6 sinβ2t

(9)

where κ1 = 1
2ω′ (α− UE

xx

α1
), κ2 = 1

2ω′ (β1 + UE
xx

β1
). Motion along

the z-axis is decoupled from motion in the xy-plane. There-
fore, two types of periodic orbits can be found near Ex .
One is in the xy-plane with period T1 = 2π/β1 as discussed
previously; the other is the out-of-plane motion with period
T2 = 2π/β2. Equation (9) provides a proper initial guess for
periodic orbits. Based on a differential correction, the accu-
rate result can be obtained as shown in Fig. 3.

The perturbation motion around equilibria can also be de-
scribed in matrix form,

X(t) = Φ(t, t0)X(t0) (10)

Fig. 3 Periodic orbits around Ex in model II

Table 2 Stabilities and periods of orbits around Ex

Model Type Period Stability index

I Planar 9.399 6.771

Spatial 9.653 7.282

II Planar 8.099 34.356

Spatial 8.529 43.194

III Planar 6.816 230.744

Spatial 7.226 336.088

IV Planar 27.049 6.193

Spatial 27.701 6.578

where X(t0) and X(t) are the perturbations at the initial time
t0 and time t , respectively. Φ(t, t0) is the state transition ma-
trix. In particular, the periodic orbit satisfies X(T ) = X(t0).
The state transition matrix for a periodic orbit is called Mon-
odromy matrix M = Φ(T , t0). Normally, the stability of an
orbit is defined by a stability index,

υ = 1

2

(
|λmax| + 1

|λmax|
)

(11)

where λmax is the maximum eigenvalue of the monodromy
matrix. If υ > 1, the period orbit is unstable. The larger the
value of υ , the more easily the orbit diverges. Periodic or-
bits were investigated for the dumbbell-shape models with
different parameters. Table 2 lists the stabilities and periods
of orbits with the same amplitude (�ξ(ζ ) = 0.1).

As shown in Table 2, the periods and stabilities of pe-
riodic orbits around Ex are influenced by both the angular
speed ω′ and length-diameter ratio m. Two types of periodic
orbits are unstable under all circumstances. On one hand,
when increasing the length-diameter m, the orbital periods
of planar and spatial orbits decrease slowly but the stability
indexes increase rapidly. On the other hand, the orbital pe-
riods and stability of an orbit increase with the decrease of
the angular velocity. Additionally, the spatial orbit is more
unstable than the planar orbit in the same model.
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Fig. 4 Periodic orbits around Ey in model IV

Case 2. Local motion around an equilibrium along the
Y-axis

The local motion around equilibrium Ey of a dumb-bell-
shaped body depends on the stability of Ey . If the length-
diameter ratio m is smaller than mcr , the equilibrium is
stable. The eigenvalues for Ey have the form ±iβj (j =
1,2,3). Hence, the general solution of the linearized equa-
tion can be written as

ξ = d1 sin(β1t + ϕ1) + d2 sin(β2t + ϕ2)

η = κ1d1 cos(β1t + ϕ1) + κ2d2 cos(β2t + ϕ2)

ζ = d3 cos(β3t + ϕ3)

(12)

where κ1 = 1
2ω′ (β1 + UE

xx

β1
), κ2 = 1

2ω′ (β2 + UE
xx

β2
). Three types

of periodic orbits can be found near equilibria. Two are in
the xy-plane and the other is out-of-plane. Their periods
are Tj = 2π/βj (j = 1,2,3), respectively. The numerical re-
sults of periodic orbits are shown in Fig. 4.

For a dumbbell-shaped body with a length-diameter ra-
tio larger than mcr , Ey becomes unstable. The forms of the
eigenvalues are ±α± iβ1 and ±β2. The linearized equations
of motion near equilibria are

ξ = eαt (C1 cosβ1t + C2 sinβ1t)

+ e−αt (C3 cosβ1t + C4 sinβ1t)

η = eαt (D1 cosβ1t + D2 sinβ1t)

+ e−αt (D3 cosβ1t + D4 sinβ1t)

ζ = C5 cosβ2t + C6 sinβ2t

(13)

where Di are functions of Ci (i = 1,2,3,4). Only one type of
periodic orbit exists, as shown in Fig. 5.

The periods and stabilities of periodic orbits in different models
are listed in Table 3 (�ξ(ζ ) = 0.1).

As shown in Table 3, the stable equilibria have stable periodic
orbits in both the planar and spatial dimensions. Similar to orbits
around Ex , the stability indices of spatial orbits increase as m in-
creases, but the periods remain nearly unchanged.

Fig. 5 Periodic orbits around Ey in model II

Table 3 Stabilities and periods of orbits around Ey

Model Type Period Stability index

I Planar I 12.678 1

Planar II 16.177 1

Spatial 9.981 1

II Planar 9.528 7.775

III Planar 9.978 32.984

IV Planar I 33.241 1

Planar II 55.825 1

Spatial 28.566 1

3.2 Continuation method for orbit families

The linearized equation can provide initial guesses for orbits close
to the equilibria. However, it fails when the perturbation is large. In
that case, the continuation method is adopted to generate a family
of orbits. In this paper, the pseudo-arc-length continuation is em-
ployed (Doedel et al. 2007). A new member of the family Xi is
generated from the previous converged solution Xi−1 with a step
along the characteristic direction �X.

Taking the periodic orbit along the X-axis as an example, ac-
cording to symmetry, the converged solution satisfies

X
η
i−1

(
T

2

)
= 0, X

ξ̇
i−1

(
T

2

)
= 0, X

ζ̇
i−1

(
T

2

)
= 0 (14)

The characteristic direction �Xi should satisfy

X
η
i

(
T

2
+ �ti

)
= 0, X

ξ̇
i

(
T

2
+ �ti

)
= 0,

X
ζ̇
i

(
T

2
+ �ti

)
= 0

(15)

where �ti is the half value of the period, and

�Xi = [�ξ 0 �ζ 0 �η̇ 0].
Equation (15) can be written in matrix form as

∂X

∂X0

∣∣∣∣
T/2

�Xi + ∂X

∂t

∣∣∣∣
T/2

�ti = 0 (16)
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Fig. 6 Orbit Families around
equilibria in Model IV (a) Ex

planar orbits (b) Ex vertical
orbits (c) Ey short-period orbits
(d) Ey long-period orbits (e) Ey

vertical orbits

An additional constraint, |�Xi |2 +|�ti |2 = 1, is added to keep
the solution unique. A step size �s is chosen to generate a new
guess for a differential correction:

Xi = Xi−1 + �Xi�s (17)

The pseudo-arc-length continuation provides a better initial
guess than the traditional continuation method and increases the
convergence. Based on the continuation, a family of periodic or-
bits are produced as shown in Fig. 6.

All orbits can extend to the surface of the dumbbell-shaped
body except the long-period orbit around stable Ey , where the or-
bit suddenly disappears in space. Figure 6(d) shows the terminal
orbit.

3.3 Periodic orbits via bifurcation

Based on the linear perturbation equations above, several types of
periodic orbits can be found and orbit families generated. However,
more complex periodic orbits such as the “Halo” type orbit in the

Circular Restricted Three Body Problem (CRTBP) cannot be found
by such methods. Three methods have been used to search for peri-
odic orbits. One is the grid search, in which six-dimensional states
(x, y, z, ẋ, ẏ, ż) and the period T are regarded as searching param-
eters in a meshed grid to find a periodic solution. Yu has used this
to find 29 families of periodic orbits around 216 Kleopatra (Yu and
Baoyin 2012a). This method can search for orbits systematically,
but it is time-consuming, especially for polyhedron models. The
second method requires a high-order analytical solution as in the
CRTBP. However, it is difficult to obtain a high-order derivate by
the polyhedron method. Therefore, the third method, bifurcation,
is employed to find additional periodic orbits in the vicinity of a
dumbbell-shaped model.

Bifurcation is a common phenomenon in nonlinear dynamic
systems. In the context of periodic orbits, bifurcation means a
change in stability of orbits or the location of eigenvalues in the
complex plane (Chappaz 2015). One of the characteristics of bifur-
cation is the existence of a new family of orbits that intersects the
known family at the bifurcation point; this facilitates the search for
periodic orbit families. Bifurcation has been studied analytically
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for asteroids by Yu and applied to asteroid 216 Kleopatra (Jiang
et al. 2015). Here, we extend it to search for periodic orbits for a
singular polyhedron body.

Based on continuation, the motion of an eigenvalue for planar
orbits around Ex is shown in Fig. 7.

As shown in Fig. 7, initially, the original orbit has two eigen-
values equal to 1, and two of the eigenvalues lie on the unit circle.
Two other eigenvalues are located on the real axis. As the orbit am-
plitude increases, two complex eigenvalues converge at 1 and split
on the real axis into a real reciprocal pair, which indicates a tan-
gent bifurcation (Campbell 1999). By bisection and the continua-
tion method, the accuracy of the bifurcation orbit can be calculated
numerically. If we denote the bifurcation eigenvalue λbi = −1 and
the corresponding eigenvector as V (λbi) and V (λ∗

bi
), the average

eigenvector is defined as

V = [
V (λbi) + V

(
λ∗
bi

)]
/2 (18)

The initial guess of a new orbit family can be obtained as
Xnew = Xbi +�s ·V , where Xbi is the initial state of the periodic
orbit at bifurcation points, and �s is an arbitrary step size. Once
the first orbit of a new type is generated, the continuation method
is used to fill up the whole family. By bifurcation, two types of
periodic orbits are found around Ex , as shown in Fig. 8.

Figure 9 marks the bifurcation orbits from the original orbit
family. Those two types of orbits are analogous to axial orbits and
Halo orbits in the CRTBP.

The eigenvalues of vertical orbits in Ex have also been investi-
gated. The location of eigenvalues is the same as for a planar orbit.
However, no bifurcation occurs when we increase the Z-axis am-
plitude.

Fig. 7 Motion of characteristic value for planar orbits around Ex

(model II)

The same process is applied to periodic orbits around Ey . The
eigenvalues of a vertical periodic orbit around stable and unstable
equilibria are shown in Fig. 10. The vertical orbits around stable
equilibria have 2 pairs of complex eigenvalues lying on the unit
circle and one pair of unity, while orbits around unstable equilibria
have two pairs of eigenvalues in the complex plane. For both types
of orbits, no bifurcation occurs even if the amplitude ζ is as large
as 3. Therefore, no new orbit family is generated from vertical or-
bits.

For stable Ey , the bifurcation in two types of planar orbits is
discussed further. The long-period orbits occur in secondary Hopf-
bifurcation, in which two pairs of complex eigenvalues converge
on the unit circle and split into the complex plane, as shown in
Fig. 11. The secondary Hopf-bifurcation changes the stability of
motion, which results in the disappearance of the long-period orbit
(Fig. 6(d)).

The bifurcation for a short-period orbit is complicated. With
increasing amplitude, the eigenvalue successively incurs period-
doubling bifurcation (the eigenvalue converges to −1) and tangent
bifurcation (the eigenvalue converges to 1). The motion of charac-
teristic value for model IV is shown in Fig. 12.

According to bifurcation theory, the doubling bifurcation will
generate a new orbit family possessing a period double that of
the original family (Iooss and Joseph 1977). Based on new ini-
tial guesses, multiple-cycle orbits are found near Ey , as shown in
Fig. 13(a) and (b). Additionally, the tangent bifurcation for a short-
period orbit produces a new kind of asymmetrical period orbit.
Asymmetrical correction schemes are adopted to find the numer-
ical result (Grebow 2006), as shown in Fig. 13(c). For both long-
and short-period orbits around Ey , no spatial orbits are generated
from planar orbits as in Ex .

Fig. 9 Bifurcation orbits in the original orbit family

Fig. 8 Two types of periodic
orbits around Ex from the
bifurcation (model II)
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Fig. 10 Characteristic values for vertical orbits around Ey (a) Stable
equilibrium point (model IV) (b) Unstable equilibrium point (model II)

Fig. 11 Hopf-bifurcation for long period orbits (model IV)

4 Global motion in the vicinity of a
dumbbell-shaped body

4.1 Invariant manifolds associated with periodic orbits
for a dumbbell-shaped body

The invariant manifold is an important property for periodic or-
bits around equilibria, especially for unstable periodic orbits. An

Fig. 12 Motion of characteristic value for short orbits around Ey

(model IV)

invariant manifold can be defined as an m -dimensional surface
embedded in R

n (m < n). From nonlinear dynamics theory, there
are two types of invariant manifolds: unstable manifolds and stable
manifolds. The unstable manifold includes the set of all possible
trajectories that diverge from a nominal orbit if it was perturbed in
an unstable direction of orbits, while the stable manifold is the set
of all possible trajectories that asymptotically approach the orbit
along a stable direction. The stable and unstable directions can be
determined by the Monodromy matrix of a periodic orbit.

Here, we analyze the manifold of an unstable orbit around Ex

in the vicinity of a dumbbell-shaped body. The manifold picks up
100 points uniformly from a periodic orbit and generates stable
and unstable manifolds forward or backward to the plane X = 0.
The invariant manifold associated with planar and spatial orbits is
shown in Fig. 14.

As illustrated in Fig. 14, there are two branches of stable man-
ifolds (red) and two branches of unstable manifolds (blue). One
branch of the stable (unstable) manifolds extends along the posi-
tive y-direction and the other stretches to the negative y-direction.
The stable and unstable manifolds are symmetric with respect to
the X-axis. Moreover, manifolds from E−x are anti-symmetric to
manifolds from Ex . In that case, the stable and unstable mani-
folds are calculated for one quadrant, and the other part can be
obtained by symmetry and anti-symmetry. For convenience, the
closer branch is called the inner manifold and the branch away
from the body is called the outer manifold. The impacts of the orbit
amplitude and the length-diameter ratio are investigated as follows.

4.2 Parametric analysis for invariant manifolds

To systematically understand the global motion near the equilibria,
the influence of orbit amplitude ξ and length-diameter ratio m on
invariant manifolds is investigated. Here, we take a planar orbit as
example. Relevant results are shown in Fig. 15.

As shown in Fig. 15, the orbit amplitude ξ has a great impact
on the size and direction of the manifold. With the increase of am-
plitude, the size of the manifold tube increases. Inner and outer
manifolds may overlap with each other. Unlike in the CRTBP, the
manifold near a dumbbell-shaped body system has nearly the same
size as the center body (seen in Fig. 14 and 15). Therefore, the
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Fig. 13 Three types of periodic
orbits around Ey from
bifurcation (model IV)
(a) Multiple-cycle orbit
(b) Multiple-cycle orbit
(c) Asymmetrical period orbit

Fig. 14 Invariant manifold associated with periodic orbit for dumbbel-
l-shaped body (a) Planar orbit in model I (b) Vertical orbit in model II

inner manifold may touch the surface of a dumbbell-shaped body
when the amplitude is large.

Increasing the length-diameter ratio m has the same effect as the
amplitude, as shown in Fig. 16, where models II and III are shown

with particular cases ξ = 0.2. The inner manifold comes close to
the center body as the relative distance between the two spheres
increases. In particular, only the outer manifold exists for model
III; the inner manifold totally intersects with the model before it
crosses the plane x = 0.

4.3 Heteroclinic connection between Ex and E−x

As discussed above, there are two branches of stable and unstable
manifolds for each orbit around equilibria Ex . That is, at most four
heteroclinic connections exist between two equilibria. Each direc-
tion has two channels. Spacecraft in periodic orbits can transfer
from one equilibrium to the other with limited energy and achieve
global exploration of the small body.

To study the low-energy transfer, two Poincaré sections are set
as:
{

U1 : x = 0, y > 0, ẋ > 0
U2 : x = 0, y > 0, ẋ < 0

(19)

The black lines in Fig. 15(a) show the sections. The projections
for stable and unstable manifolds in these sections are shown in
Figs. 17 and 18 for models I and II. The manifolds for different
amplitudes are investigated separately.

It is clear that the projection of some stable manifolds overlap
with the projection of unstable manifolds on the Poincaré section,
which means there are heteroclinic connections between two equi-
libria points. In particular, if the point of intersection corresponds
to an equal-amplitude orbit with the same orbital energy, the con-
nection is a zero-energy transfer. Otherwise, a small energy incre-
ment is needed at the intersection point to accommodate the change
in velocity.

Comparing models I and II, with the increase of m, the projec-
tions of the stable and unstable manifolds in the Poincaré section
gradually separate, which means a velocity increment is needed
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Fig. 15 Invariant manifold with
different orbit amplitudes
(model I) (a) ξ = 0.2
(b) ξ = 0.4 (c) ξ = 0.6
(d) ξ = 0.8

Fig. 16 Invariant manifold with different length-diameter ratios
(a) Model II (b) Model III

Fig. 17 Poincaré section for model I

to complete the transfer. Low-energy transfers exist only in large-
amplitude manifolds.

Based on the Poincaré section, heteroclinic transfers between
two equilibria along the X-axis are shown in Fig. 19. In Fig. 19(a),
the transfer is between equal-amplitude orbits. The outer hetero-

Fig. 18 Poincaré section for model II

clinic connection is applied from E−x to Ex . No extra velocity is
needed at the intersection point (x = 0). In Fig. 19(b), the space-
craft transfers from a large-amplitude orbit around Ex to a small
one around E−x . The velocity increment is only 0.02 on a normal-
ized scale.

Moreover, through two heteroclinic connections, it is possible
to transfer the spacecraft between different amplitude orbits around
the same equilibria, as shown in Fig. 20. The spacecraft transfers
from a small-amplitude orbit to a large-amplitude large-amplitude
orbit around E−x . At least one impulse is required during the trans-
fer.

4.4 Heteroclinic connection between Ex and Ey

The above connections focus on the transfer between equilibria
along the X-axis. Here, we discuss the transfer between Ex and
Ey . Due to the stability of Ey , the invariant manifold cannot be
employed to heteroclinic connections for stable periodic orbits. In
that case, one-impulse transfers are investigated between a periodic
orbit around Ey and a stable or unstable manifold from a periodic
orbit around Ex . The Poincaré map for a periodic orbit and invari-
ant manifold is shown in Fig. 21.
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Fig. 19 Heteroclinic connection between Ex (a) Equal-amplitude
transfer in model I (b) Transfer between different amplitudes in
model II

Fig. 20 Transfer between different amplitude orbits (model II)

As shown in Fig. 21, the projection of a periodic orbit in the
Poincaré section Y − Vy is a line that coincides with the X-axis.
Therefore, the invariant manifold that satisfies Vy = 0 is selected
as a candidate. The spacecraft will execute one impulse when it
crosses the X = 0 plane to complete the transfer. Figure 22 shows
one of the examples in model I. Generally, the heteroclinic con-
nection between Ex and Ey costs a larger velocity increment than
the heteroclinic connection between Ex . However, velocity is not
the key factor for a small celestial body. The transfer in Fig. 22
requires a normalized velocity maneuver change of 0.17, which is
small on a real scale.

The periodic orbit around Ey can connect with two periodic or-
bits simultaneously. In that case, the spacecraft can also achieve
transfer between different amplitudes by the path of unstable

Fig. 21 Poincaré section for Ey periodic orbit

Fig. 22 Heteroclinic connection between Ex and Ey

Fig. 23 Transfer between different amplitude orbits by the Ey peri-
odic orbit

manifold-periodic orbit to stable manifold. Figure 23 shows an ex-
ample.

4.5 Global transfer around a dumbbell-shaped body

Taking advantage of heteroclinic transfer between Ex and Ey ,
it is possible to complete the global transfer around a dumbbell-
shaped body. Here, we design a series of reference transfer trajec-
tories that can achieve transfers between different equilibria, and
make a global observation about dumbbell-shaped bodies. The ref-
erence trajectories are shown in Fig. 24. Such trajectories consist
of two periodic orbits around Ex and E−x , denoted as P1 and
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Fig. 24 Reference global transfer trajectory around a dumbbel-
l-shaped body

P2, their associated invariant manifolds, denoted S1, S2, S3, S4 and
U1,U2,U3,U4, and four periodic orbits around Ey and E−y , de-
noted Q1,Q2,Q3,Q4. The stable and unstable manifolds connect
with Q1,Q2,Q3,Q4 in the plane X = 0, respectively.

Based on a reference transfer trajectory, several types of sce-
narios can be designed, including global mapping, a heteroclinic
connection between E−y and Ey , and a homoclinic connection for
Ex , as shown in Fig. 25.

Figure 25(a) shows the transfer between Q1 and Q2; the trans-
fer sequence is Q1–S3–P2–U3–Q2. The reverse transfer is also
available, but the transfer sequence becomes Q2–S1–P1–U1–Q1.
Figure 25(b) shows the transfer from Q3 to Q1; the spacecraft trav-
els along Q3–S2–P1–U1–Q1. Two impulses are required at the
intersections of Q3 and S2 and U1 and Q1.

Figure 25(c) and (d) show two types of global mapping trajec-
tories. The first uses the inner heteroclinic connection. The transfer
sequence is P1–U1–Q1–S3–P2–U4–Q3–S2–P1. The second uses
the outer heteroclinic connection with sequence P1–U2–Q4–S4–
P2–U3–Q2–S1–P1. Both need four impulses at the intersections.

Figure 25(e) demonstrates the homoclinic connection for P1,
P1–U1–S3–P2–U3–S1–P1. It can in fact be considered as two
heteroclinic connections between Ex and E−x . Taking advantage
of the invariant manifolds, almost no energy is required during
the transfer. Table 4 shows the velocity increment for each sce-
nario. The parameter of the dumbbell-shaped body is assumed to
be R = 10 km, the spin period is 6 h and the asteroid density is
3200 kg/m3.

As shown in Table 4, due to the property of invariant manifolds,
the total velocity increment for transfer is less than 5 m/s. These
trajectories can be applied to future small-body exploration and
provide references for design of reconnaissance orbits.

5 Conclusions

This paper investigates local and global motion in the vicinity of a
rotating dumbbell-shaped body. Based on the polyhedron method,

Fig. 25 Different transfer scenarios: (a) Transfer between orbits
around Ey with different amplitudes; (b) Heteroclinic connection for
Ey ; (c) Global mapping by inner heteroclinic connection; (d) Global
mapping by outer heteroclinic connection; (e) Homoclinic connection
for Ex

a geometrical model of a dumbbell-shaped body is established, and
the stability of equilibria are investigated with different parame-
ters. The critical length-diameter ratios mcr are calculated. Local
motion around equilibria is analyzed. Based on linear perturbation
equations, two, one and three types of periodic orbits are found
around X-axis equilibria, unstable Y -axis equilibria and stable Y -
axis equilibria, respectively. Using pseudo-arc-length continuation,
a family of periodic orbits is generated. By introducing the bifurca-
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Table 4 Transfer sequence and
velocity increment for each
scenario

Scenario Transfer sequence Velocity increment (m/s)

Transfer between orbits with
different amplitudes

Q1–S3–P2–U3–Q2 1.579

Heteroclinic connection for Ey Q3–S2–P1–U1–Q1 1.557

Global Mapping 1 P1–U1–Q1–S3–P2–U4–Q3–S2–P1 3.114

Global Mapping 2 P1–U2–Q4–S4–P2–U3–Q2–S1–P1 3.201

Homoclinic connection for Ex P1–U1–S3–P2–U3–S1–P1 /

tion method, more types of orbits are found around equilibria, such
as ‘Halo’ orbits, ‘Axial’ orbits and multi-revolution orbits. Then,
on the basis of invariant manifolds and Poincaré sections, global
motion around the dumbbell-shaped body is studied. Four hetero-
clinic connections are found for equilibria along the X-axis. Low-
energy transfers between different periodic orbits are constructed.
Finally, several applications of global transfer trajectories are dis-
cussed that offer good options for reconnaissance orbits for future
small-body exploration missions.
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