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Abstract Making use of the Finch and Skea ansatz (Class.
Quantum Gravity 6:467, 1989), we present a new class of
solutions for a compact stellar object whose exterior space-
time is described by the Riessner-Nordström metric. We
generate the solution by assuming a specific charge distri-
bution and show its relevance in the context of relativistic
spherical objects possessing a net charge. In particular, we
analyze the impact of charge on the mass-radius (M − R)
relationship of compact stellar objects.

Keywords Compact stars · Field equations · Exact
solutions · Classical general relativity

1 Introduction

In relativistic astrophysics, the impact of charge on the gross
physical properties of stellar bodies has been a major area of
research for many decades. In GR, it is well known that the
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collapse of a star to a point singularity can be avoided by
incorporating a charge distribution since the gravitational
attraction will then be counter-balanced by the Coulomb
repulsion. Even though stellar systems are expected to be
charge neutral, presence of a net charge at certain evolution-
ary stages of an astrophysical body cannot be ruled out. For
example, in a binary pulsar system, a star may acquire a net
charge by accretion from the surrounding medium to form a
charged sphere (Treves and Turolla 1999; Mak et al. 2001).
Analysis of the effect of charge is also relevant for ultra-
compact stars like ‘strange stars’ composed of u, d and s

quarks. Investigations reveal that on the surface of a strange
star, a thin electron layer may exist. Consequently, one as-
sociates a strong radially directed electric field at the inte-
rior of such stars which can be as high as ∼ 1019 eV/cm at
the surface as pointed out by Usov (2004). Effects of elec-
tric field on the gross physical behavior of such systems can
be studied by solving the relevant Einstein-Maxwell system.
The exterior gravitational field of a static charged spheri-
cally symmetric distribution of matter is uniquely described
by the Riessner-Nordström metric. The interior solution to a
relativistic charged fluid sphere is, however, not unique and
a large class of analytic solutions are available in the litera-
ture (Ivanov 2002).

Realistic models of charged fluid spheres have been de-
veloped and analyzed by many researchers in the past. Phys-
ical behavior and stability of charged dust have been car-
ried out by Papapetrou (1947), Majumdar (1947), Bonner
(1960, 1965), to name a few. Stettner (1973) has shown
that a homogeneous fluid sphere with a considerable amount
of net surface charge is more stable than that of an un-
charged sphere. Bekenstein (1971) studied the dynamics
and stability of spherically symmetric systems by gener-
alizing the Oppenheimer-Volkoff equations of hydrostatic
equilibrium (Oppenheimer and Volkoff 1939) and obtained
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a maximum limit on the electric field that a charged sphere
might sustain. Cooperstock and de la Cruz (1978) found new
class of solutions for uniformly distributed charged dust in
equilibrium. Bonner and Wickramasuriya (1975) proposed
a charged stellar model which shows a radially increasing
matter density. Analytic solutions to Einstein-Maxwell sys-
tems for spherically symmetric objects with a variety of
charge distributions have been studied by Wyman (1949),
Adler (1974), Kuchowicz (1975) and Adams and Cohen
(1975). Relativistic compact stars in equilibrium in the pres-
ence of charge have been studied by Ray et al. (2003),
Ghezzi (2005), Ghezzi and Letelier (2007). By proposing
specific analytic solutions to charged fluid objects, Whit-
man and Burch (1981) have discussed the stability of such
objects. Pant and Sah (1971) obtained exact solutions to
the Einstein-Maxwell system for a charged fluid distribu-
tion which allowed them to regain the Tolman IV solution
as a particular case by switching off the charge contribu-
tion. Later, Pant and Sah (1971) solution was generalized
by Tikekar (1984) who analyzed the physical viability of
the new class of solutions. By assuming a particular charge
distribution, Patel and Mehta (1995) proposed new exact so-
lutions for charged fluid spheres. Rao and Trivedi (1998)
developed a formalism to generate solutions to the Einstein-
Maxwell system. Maartens and Maharaj (1990) have pro-
vided the necessary conditions for a solution of the Einstein-
Maxwell system to be regular at the interior of a star. Chang
(1983) generated new class of conformally flat solutions
for charged fluid as well as dust distributions. In the re-
cent past, analytic solutions to the Einstein-Maxwell sys-
tem have been developed and analyzed by many researchers
which include the works of Maharaj and Thirukkanesh
(2009), Thirukkanesh and Maharaj (2009), Komathiraj and
Maharaj (2007a), Maharaj and Komathiraj (2007), Han-
sraj and Maharaj (2006), Patel and Koppar (1987), Tikekar
and Singh (1998), Sharma et al. (2001), Gupta and Ku-
mar (2005), Komathiraj and Maharaj (2007b), Maurya and
Gupta (2011a,b,c), Pant and Maurya (2012), Maurya et al.
(2015), Murad and Fatema (2015a,b), Murad (2013), Murad
and Fatema (2013), Fatema and Murad (2013), Pant et al.
(2013), Ratanpal et al. (2015), Thomas and Pandya (2015),
Durgapal (1982), Mak and Fung (1995), Mak et al. (1996),
Lake (2003), Pant and Rajasekhara (2011), Pant and Negi
(2012), among many others.

The aim of the current investigation is to provide new
class of exact solutions to the Einstein-Maxwell system
which are well behaved and can be used as viable mod-
els for stellar objects. Note that, in the absence of any re-
liable information about the equation of state (EOS) at ex-
treme densities, the assumption of one of the metric poten-
tials has been found to be a reasonable technique to con-
struct both charged and uncharged spherical stellar models.
A large class of solutions (Sharma et al. 2006; Sharma and

Mukherjee 2001, 2002; Tikekar 1990; Tikekar and Thomas
1998, 1999, 2005; Thomas et al. 2005; Thomas and Ratan-
pal 2007; Paul et al. 2011; Chattopadhyay and Paul 2010;
Chattopadhyay et al. 2012) for charged as well as uncharged
fluid spheres have been developed making use of the ansatz
put forward by Vaidya and Tikekar (1982). Similarly, the
Finch and Skea (1989) ansatz has also been utilized by
many authors (see, for example, Tikekar and Thomas 2005,
Sharma and Ratanpal 2013, Pandya et al. 2015) to develop
realistic stellar models. In this work, making use of the Finch
and Skea (1989) ansatz, we present a new class solutions
to the Einstein-Maxwell system for a spherically symmetric
charged fluid distribution. In addition to studying the plau-
sibility of the new class of solutions for the description of
realistic compact stars, we intend to analyze the influence of
electromagnetic field on the M −R relationship of relativis-
tic compact stars.

The paper has been organized as follows: In Sect. 2 the
field equations governing the spherically symmetric static
charged fluid distribution have been laid down. By assum-
ing a particular electric field intensity profile, the field equa-
tions have been solved. The exterior region of the charged
fluid distribution is described by the Riessner-Nordström
metric and consequently, the junction conditions have been
laid down in Sect. 3. In Sect. 4, by imposing necessary reg-
ularity conditions, we have studied physical features of the
system and analyzed the impact of the electromagnetic field
on the gross features of the star. Finally, we have concluded
by discussing our results in Sect. 5.

2 The Einstein-Maxwell system and its solution

We assume that the interior spacetime of a static spherically
symmetric star is described by the metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2). (1)

The physical behavior of the star can be understood by solv-
ing the Einstein-Maxwell field equations

R
j
i − 1

2
Rδ

j
i = 8πG

(
T

j
i + E

j
i

)
, (2)

where, the energy-momentum tensor corresponding to mat-
ter and electromagnetic fields are respectively given by

T
j
i = (ρ + p)uiu

j − pδ
j
i , (3)

and

E
j
i = 1

4π

(
−FikF

jk + 1

4
FmnF

mnδ
j
i

)
. (4)

In Eqs. (3) and (4), ρ and p denote the energy-density and
pressure, respectively and ui is the 4-velocity of the fluid.
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The electromagnetic field strength tensor can be derived
from the 4-potential Ai = (φ(r),0,0,0) so that

Fij = ∂Aj

∂xi

− ∂Ai

∂xj

. (5)

The EM field strength tensor satisfies the Maxwell equations

Fij,k + Fjk,i + Fki,j = 0, (6)

and

∂

∂xk

(
F ik√−g

) = 4π
√−gJ i. (7)

The 4-current vector can be obtained in terms of the charge
density σ using the relation

J i = σui. (8)

Due to spherical symmetry, the only non-vanishing compo-
nents of Fij are

F01 = −F10 = −e
ν+λ

2

r2

∫ r

0
4πr2σeλ/2dr. (9)

The total charge inside a radius r is given by

q(r) = 4π

∫ r

0
σr2eλ/2dr. (10)

Note that E2 = −F01F
01 so that the electric field intensity

E is given by

E = q(r)

r2
. (11)

The field equations given by (2) for the spacetime described
by the metric (1) are then equivalent to the following set of
non-linear ODE’s

8πG

(
ρ + E2

2

)
= 1

r2
− e−λ

(
1

r2
− λ′

r

)
, (12)

8πG

(
p − E2

2

)
= e−λ

(
1

r2
+ ν′

r

)
− 1

r2
, (13)

8πG

(
p + E2

2

)

= e−λ

4

[
2ν′′ + (

ν′ − λ′)
(

ν′ + 2

r

)]
, (14)

4πσ = e−λ/2

r2

d

dr

(
r2E

)
, (15)

where, we have set c = 1. Note that a prime (′) denote dif-
ferentiation with respect to r . We, therefore, have a system

of five unknowns, namely ρ, p, E, ν and λ. To solve the
system, we use the Finch and Skea (1989) ansatz

eλ = 1 + r2

L2
, (16)

where L is the curvature parameter having dimension of
length. The Finch and Skea (1989) ansatz is physically well
motivated and has been used by many in the past to construct
viable stellar models. Substituting (16) in (12), we get

8πG

(
ρ + E2

2

)
= 3 + r2

L2

L2(1 + r2

L2 )2
. (17)

Combining (13) and (14) and using (16) we get,

−
r2

L2

L2(1 + r2

L2 )2
− 1

(1 + r2

L2 )

(
ν′′

2
+ ν′2

4
− ν′

2r

)

+ r

L2(1 + r2

L2 )2

ν′

2
+ 8πGE2 = 0. (18)

By making a coordinate transformation z =
√

1 + r2

L2 and

introducing X = eν/2, equation (18) takes the form

d2X

dz2
− 2

z

dX

dz
+

[
(z2 − 1) − E2L2z4

z2 − 1

]
X = 0. (19)

To solve Eq. (19), we choose the electric field intensity as

E2 = α2(z2 − 1)

L2z6
, (20)

so that Eq. (19) reduces to

z2 d2X

dz2
− 2z

dX

dz
+ (

z2 − α2)X = 0. (21)

Our choice (20) ensures that E = 0 at r = 0. This particu-
lar choice also makes Eq. (21) tractable and its solutions is
obtained as

X = z3/2[C1Jβ(z) + C2Yβ(z)
]
, (22)

where β =
√

9+4α2

2 , C1, C2 are constants of integration, and
J and Y are Bessel’s functions of first and second kind, re-
spectively. The interior spacetime of the spherically sym-
metric charged fluid sphere finally takes the form

ds2 = z3[C1Jβ(z) + C2Yβ(z)
]2

dt2 −
(

1 + r2

L2

)
dr2

− r2(dθ2 + sin2 θdφ2). (23)
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Subsequently, the energy density, pressure and charge den-
sity are obtained in the form

8πGρ = 2z2(2 + z2) − α2(z2 − 1)

2L2z6
, (24)

8πGp = {[
3Jβ(z) − z2Jβ(z) + 2zJ̇β(z)

]
C1

+ [
3Yβ(z) − z2Yβ(z) + 2zẎβ(z)

]
C2

}

× {
L2z4[C1Jβ(z) + C2Yβ(z)

]}−1

+ α2(z2 − 1)

2L2z6
, (25)

4πσ = 3α

L2z6
, (26)

where an overhead dot (.) denotes differentiation with re-
spect to z. We note that for α = 0, charge density vanishes.

3 Junction conditions

The spacetime metric (23) must be matched to the exterior
Riessner-Nordström metric

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2

− r2(dθ2 + sin2 θdφ2), (27)

at the boundary of the star r = R. The radius of the star can
be obtained by utilizing the condition p(r = R) = 0. The
boundary conditions determine the constants as

C1 = 1

B

{
6z2

RYβ(zR) − 2z4
RYβ(zR) + 4z3

RẎβ(zR)

+ α2(z2
R − 1

)
Yβ(zR)

}
, (28)

C2 = − 1

B

{
6z2

RJβ(zR) − 2z4
RJβ(zR) + 4z3

RJ̇β(zR)

+ α2(z2
R − 1

)
Jβ(zR)

}
, (29)

where,

B = z
5/2
R

{
Jβ(zR)

[
6z2

RYβ(zR) − 2z4
RYβ(zR) + 4z3

RẎβ(zR)

+ α2(z2
R − 1

)
Yβ(zR)

]

− Yβ(zR)
[
6z2

RJβ(zR) − 2z4
RJβ(zR) + 4z3

RJ̇β(zR)

+ α2(z2
R − 1

)
Jβ(zR)

]}
. (30)

The total mass M is obtained as

M = L(z2
R − 1)3/2[z4

R + α2(z2
R − 1)]

2z6
R

, (31)

where zR =
√

1 + R2

L2 .

Fig. 1 Radial variation of density

4 Physical analysis

A physically viable stellar model should satisfy the follow-
ing conditions throughout the stellar configuration:

(i) ρ ≥ 0, p ≥ 0;
(ii) ρ − 3p ≥ 0;

(iii) dρ
dr

< 0, dp
dr

< 0;

(iv) 0 ≤ dp
dρ

≤ 1.

To examine the physical plausibility of the model, we
have considered the data available from of the pulsar
4U1820−30 whose mass and radius have been estimated to
be M = 1.58 M� and R = 9.1 km, respectively (Gangopad-
hyay et al. 2013). Using these values as input parameters,
we have determined the values of the other model parame-
ters C1, C2 and L. The values (C1 = 0.3910 for α = 0 and
0.3715 for α = 0.6; C2 = −0.3633 for α = 0 and −0.4079
for α = 0.6) have been used to show graphically that all the
requirements of a realistic star are satisfied in our model both
for charged as well as uncharged cases (Figs. 1, 2, 3 and 4).
From the figures, it is interesting to note that both density
and pressure take lower values in the presence of an elec-
tric field. Figure 5 shows the thermodynamic relationship
between the energy-density and pressure (p = p(ρ)) which
indicates that the equation of state (EOS) of the relevant
matter distribution remains almost linear in the presence or
absence of the electric field.

We have also calculated the adiabatic index in our model
by using the relation

Γ = ρ + p

p

dp

dρ
. (32)

Note that for the developed stellar configuration to be stable
it is expected that Γ should be greater than 4/3 (Heintz-
mann and Hillebrandt 1975). In our model, this condition
puts a restriction on α such that 0 ≤ α ≤ 0.62. Variation of
the adiabatic index for charged as well as uncharged cases



Charged compact stellar model in Finch-Skea spacetime Page 5 of 8 82

Fig. 2 Radial variation of pressure

Fig. 3 Variation of sound speed at the stellar interior

Fig. 4 Fulfillment of the strong energy condition within the stellar
interior

has been shown in Fig. 6. We observe a marginal decrease
in the values of Γ near the center of a charged sphere as
compared to its neutral counterpart.

Fig. 5 Behavior of pressure against density (EOS)

Fig. 6 Radial variation of adiabatic index

The surface redshift

z =
(

1 − 2M

R

)− 1
2 − 1, (33)

also decreases when charge is incorporated into the system
as shown in Fig. 7. Radial variation of charge Q has been
shown in Fig. 8 which shows that the maximum deposition
of charge occurs near the boundary of the star. Radial vari-
ation of the corresponding electric field has been shown in
Fig. 9. We have also shown radial variation of the charge
density for a given value of α = 0.6 in Fig. 10.

To show that the model can accommodate highly com-
pact stars, we have also analyzed the viability of our model
for some well known pulsars such as RX J 1856-37 (Pons
et al. 2002), SAX J1808.4-3658 (Elebert et al. 2009), EXO
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1785-248 (Ozel et al. 2009) and Her X-1 (Abubekerov et al.
2008). For the estimated masses and radii of these pulsars,
we have determined the corresponding model parameters as
given in Table 1. Making use of these values, in Table 2, we
have evaluated values of the physically interesting quanti-
ties which have been shown to satisfy the requirements of a
physically realistic star. Note that we have used ()|0 and ()|R
to denote the evaluated values of the physical parameters at
the center and surface of the star, respectively.

Fig. 7 Radial variation of gravitational redshift

Fig. 8 Distribution of charge at the stellar interior

For a given value of the surface density (ρ(r = R) =
1.5×1015 gm cm−3), we have also obtained the mass-radius
(M − R) relationship in our model for α = 0 and α �= 0 in
Fig. 11 which clearly shows the significance of charge on the
compactness of a star. It is interesting to note that inclusion
of charge can accommodate more mass within a stellar con-
figuration. In other words, compactness of a star increases
in the presence of charge.

Fig. 9 Radial variation of the electric field

Fig. 10 Radial variation of the charge density

Table 1 Values of model
parameters Pulsar Mass (M�) Radius (Km) α L C1 C2

RX J 1856-37 0.9 ± 0.2 6−1
+2 0 6.7346 0.3752 −0.4473

0.6 7.2405 0.3632 −0.4699

SAX J1808.4-3658 0.9 ± 0.3 7.951 ± 1.0 0 11.2271 0.3398 −0.5659

0.6 11.8585 0.35013 −0.5562

EXO 1785-248 1.3 ± 0.2 8.849 ± 0.4 0 10.1182 0.3727 −0.4578

0.6 10.8616 0.3621 −0.4776

Her X-1 0.85 ± 0.15 8.1 ± 0.41 0 12.0967 0.3305 −0.5907

0.6 12.7273 0.3474 −0.5742
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Table 2 Values of physical
quantities Pulsar α ρ|0 ρ|R dp

dρ
|0 dp

dρ
|R (ρ − 3p)|0 (ρ − 3p)|R z|R

RX J 1856-37 0 2005 788 0.27 0.29 957 788 0.29

0.6 1735 734 0.20 0.26 914 705 0.32

SAX J1808.4-3658 0 721 373 0.22 0.24 478 373 0.24

0.6 647 348 0.17 0.22 413 317 0.25

EXO 1785-248 0 888 358 0.26 0.288 440 358 0.28

0.6 770 333 0.19 0.258 414 318 0.32

Her X-1 0 621 341 0.21 0.23 433 340 0.23

0.6 561 318 0.17 0.21 370 287 0.24

Fig. 11 Mass-radius relationship for assumed surface density
ρR = 1.5 × 1015 gm cm−3

5 Discussion

Making use of the Finch and Skea (1989) ansatz, together
with a particular choice of electric field intensity, we have
found a non-singular solution of the Einstein-Maxwell sys-
tem satisfying all regularity conditions. In the context of
models of gravitationally collapsing systems, a similar class
of solutions have earlier been found by Sharma and Das
(2013) who utilized the Finch and Skea ansatz to describe
the initial static stage of a gravitationally collapsing object
which is anisotropic in nature but possesses zero charges.
Earlier, Hansraj and Maharaj (2006) developed a charged
analogue of the Finch-Skea stellar model for the charge
parameter α within some specified range of values. The
work was further extended by Maharaj et al. (2017) who
provided a more general class of solutions by incorporat-
ing anisotropy into the charged stellar system. The assumed
forms of the electric field in the above formulations are such
that in both cases the electric field attains a maximum value
at a particular radial distance and gradually decreases to-
wards the surface. Even though our class of solutions are
obtained in terms of Bessel’s functions as in the previous

studies, the choice of the electric field in our model is differ-
ent which is evident from the fall-off behavior of the electric
field shown in Fig. 9. Another distinguishing feature of our
construction is that the class of solutions have been gener-
ated without specifying any restriction on α. However, phys-
ical requirements (stability condition) puts a bound on the
electric field intensity parameter so that α = [0,0.62]. Most
interestingly, the electric field can be switched off simply
by setting α = 0. Another noticeable feature of our model is
that in the presence of charge, both density ρ and pressure p

take lower values as compared to uncharged configurations.
The surface redshift in the charged case appears to be less
than that of the uncharged case.

In our study, we have analyzed of the mass-radius
(M − R) relationship of the model which, in general, is ob-
tained by integrating the TOV equations for a given EOS.
In the present study, even though we have not specified any
EOS of the matter composition, we have successfully gener-
ated the M − R relationship for a given surface density. We
note that, in the presence of an electric field, stellar config-
urations can accommodate more mass. It should be stressed
here that even though most of the observed pulsar masses are
clustered around 1.4 M�, a wide range of values of masses
and radii for a large class of pulsars have been predicted for
which we still do not have any clue about their internal com-
positions. The current study shows that in classical gravity,
the electromagnetic field can be used as a tool to fine-tune
the mass vis-a-vis compactness of observed pulsars.
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Chattopadhyay, P.K., Deb, R., Paul, B.C.: Int. J. Mod. Phys. D 21,

1250071 (2012)
Cooperstock, F.I., de la Cruz, V.: Gen. Relativ. Gravit. 9, 835 (1978)
Durgapal, M.C.: J. Phys. A, Math. Gen. 15, 2637 (1982)
Elebert, P., Reynolds, M.T., Callanan, P.J., et al.: Mon. Not. R. Astron.

Soc. 395, 884 (2009)
Fatema, S., Murad, M.H.: Int. J. Theor. Phys. 52, 4342 (2013)
Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989)
Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Mon. Not. R.

Astron. Soc. 431, 3216 (2013)
Ghezzi, C., Letelier, P.S.: Phys. Rev. D 75, 024020 (2007)
Ghezzi, C.R.: Phys. Rev. D 72, 104017 (2005)
Gupta, Y.K., Kumar, N.: Gen. Relativ. Gravit. 37, 575 (2005)
Hansraj, S., Maharaj, S.D.: Int. J. Mod. Phys. D 15, 1311 (2006)
Heintzmann, H., Hillebrandt, W.: Astron. Astrophys. 38, 51 (1975)
Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002)
Komathiraj, K., Maharaj, S.D.: Gen. Relativ. Gravit. 39, 2079 (2007a)
Komathiraj, K., Maharaj, S.D.: Int. J. Mod. Phys. D 16, 1803 (2007b)
Kuchowicz, B.: Astrophys. Space Sci. 33, 13 (1975)
Lake, K.: Phys. Rev. D 67, 104015 (2003)
Maartens, R., Maharaj, S.D.: J. Math. Phys. 31, 151 (1990)
Maharaj, S.D., Komathiraj, K.: Class. Quantum Gravity 24, 4513

(2007)
Maharaj, S.D., Thirukkanesh, S.: Nonlinear Anal., Real World Appl.

10, 3396 (2009)
Maharaj, S.D., Matondo, D.K., Takisa, P.M.: Int. J. Mod. Phys. D 26,

1750014 (2017)
Majumdar, S.D.: Phys. Rev. 72, 390 (1947)
Mak, M.K., Fung, P.C.: Nuovo Cimento B 110, 897 (1995)
Mak, M.K., Dobson, J.P.N., Harko, T.: Europhys. Lett. 55, 067301

(2001)
Mak, M.K., Fung, P.C., Harko, T.: Il Nuovo Cimento B 111, 1461

(1996)
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 331, 135 (2011a)
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 331, 155 (2011b)
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 331, 415 (2011c)
Maurya, S.K., Gupta, Y.K., Ray, S.: arXiv:1502.01915 [gr-qc] (2015)
Murad, M.H.: Astrophys. Space Sci. 344, 69 (2013)
Murad, M.H., Fatema, S.: Int. J. Theor. Phys. 52, 2508 (2013)
Murad, M.H., Fatema, S.: Eur. Phys. J. C 75, 533 (2015a)

Murad, M.H., Fatema, S.: Eur. Phys. J. C 75, 533 (2015b)
Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)
Ozel, F., Guver, T., Psaltis, D.: J. Astrophys. 693, 1775 (2009)
Pandya, D.M., Thomas, V.O., Sharma, R.: Astrophys. Space Sci. 356,

285 (2015)
Pant, D.N., Sah, A.: J. Math. Phys. 20, 2537 (1971)
Pant, N., Maurya, S.K.: Appl. Math. Comput. 218, 8260 (2012)
Pant, N., Negi, P.S.: Astrophys. Space Sci. 338, 163169 (2012)
Pant, N., Rajasekhara, S.: Astrophys. Space Sci. 333, 161168 (2011)
Pant, N., Pradhan, N., Murad, M.H.: Astrophys. Space Sci. 352, 135

(2013)
Papapetrou, A.: Proc. R. Ir. Acad. 51, 191 (1947)
Patel, L.K., Koppar, S.S.: Gen. Relativ. Gravit. 40, 441 (1987)
Patel, L.K., Mehta, N.P.: Aust. J. Phys. 48, 635 (1995)
Paul, B.C., Chattopadhyay, P.K., Karmakar, S., Tikekar, R.: Mod. Phys.

Lett. A 26, 575 (2011)
Pons, J.A., Walter, F.M., Lattimer, J.M., Prakash, M., Neuhauser, R.,

An, P.: J. Astrophys. 564, 981 (2002)
Rao, J.K., Trivedi, M.M.: Pramāna 51, 663 (1998)
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