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Abstract In this work we concentrate on the ghost dark en-
ergy model within the framework of the Brans-Dicke theory
in an anisotropic Universe. Within this framework we dis-
cuss the behavior of equation of state, deceleration and dark
energy density parameters of the model. We consider the
squared sound speed and quest for signs of stability of the
model. We also probe observational constraints by using the
latest observational data on the ghost dark energy models as
the unification of dark matter and dark energy. In order to do
so, we focus on observational determinations of the Hubble
expansion rate (namely, the expansion history) H(z). Then
we evaluate the evolution of the growth of perturbations in
the linear regime for both ghost DE and Brans-Dicke the-
ory and compare the results with standard FRW and ΛCDM
models. We display the effects of the anisotropy on the evo-
lutionary behavior the ghost DE models where the growth
rate is higher in this models. Eventually the growth factor
for the ΛCDM Universe will always fall behind the ghost
DE models in an anisotropic Universe.
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1 Introductions

Accelerating expansion of the Universe (Reiss et al. 1998;
Perlmutter et al. 1999) can be demonstrated either by a miss-
ing energy component which can be usually called “dark
energy” (DE) with an exotic equation of state (EoS), or by
modifying the underlying theory of gravity on large scales.
The other models of DE have been discussed widely in liter-
ature considering a cosmological constant (Peebles and Ra-
tra 2003), a canonical scalar field (quintessence) (Caldwell
et al. 1998), a phantom field, which is a scalar field with a
negative sign of the kinetic term (Nojiri and Odintsov 2003;
Khodam-Mohammadi et al. 2012), or the combination of
quintessence and phantom in a unified model named quin-
tom (Sadeghi et al. 2008). Ghost dark energy (ghost DE), is
another dynamical DE model suggested in Urban and Zhit-
nitsky (2010), Ohta (2011). It is supposed to exist to solve
the U(1) problem in low-energy effective theory of QCD,
has attracted a lot of interests in recent years (Witten 1979;
Veneziano 1979; Nath and Arnowitt 1981; Kawarabayashi
and Ohta 1980), though it is completely decoupled from
the physical sector (Kawarabayashi and Ohta 1980). There
are some DE models where the ghost plays the role of DE
(see, e.g., Piazza and Tsujikawa 2004) and becomes a real
propagating physical degree of freedom subjected to some
severe constraints. They have explored a DE model with a
ghost scalar field in the context of the runaway dilaton sce-
nario in low-energy effective string theory and addressed
the problem of vacuum stability by implementing higher-
order derivative terms and shown that a cosmologically vi-
able model of “phantomized” DE can be constructed with-
out violating the stability of quantum fluctuations. However,
the Veneziano ghost is not a physical propagating degree of
freedom and the corresponding GDE model does not violate
unitarity causality or gauge invariance and other important
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features of renormalizable quantum field theory, as advo-
cated in Zhitnitsky (2010, 2011), Holdom (2011).

Scalar-tensor theory provide the most natural generaliza-
tions of General Relativity (GR) by presenting additional
fields. In this theory, the field equations are even more com-
plex then in GR. One the simplest of the scalar tensor is the
Brans-Dicke (BD) theory of gravity which was proposed by
Brans and Dicke (1961). BD theory involves a scalar field
and is perhaps the most viable alternative theory to Ein-
stein’s general theory. The BD theory has passed experimen-
tal tests in the solar system (Bertotti et al. 2003). Since the
ghost DE model have a dynamic behavior it is more reason-
able to consider this model in a dynamical framework such
as BD theory. One can find more features of BD cosmol-
ogy in Alavirad and Sheykhi (2014), Ebrahimi and Sheykhi
(2011a), Saaidi et al. (2012).

Recent experimental data as well as theoretical argu-
ments support the existence of anisotropic expansion phase,
which evolves into an isotropic one. It forces one to study
evolution of the Universe with the anisotropic background.
Bianchi type I (BI) model is among the simplest models with
anisotropic spacetime. Many authors (Saha 2006a,b; Prad-
han and Singh 2004; Shamir 2010; Yadav and Saha 2012;
Pradhan and Pandey 2006) explored BI model in different
aspects. In Aluri et al. (2013) it was studied the evolution of
BI Universe containing different types of anisotropic matter
sources. Some exact anisotropy solutions have been also in-
vestigated in this BD theory (Sharif and Waheed 2012; Ram
1983; Farasat Shamir and Ahmad Bhatti 2012). Recently,
Hossienkhani (2016), Fayaz (2016) investigated the holo-
graphic and new agegraphic DE models in a sense of BI
model by considering a Brans-Dicke framework in which
there is a non-minimal coupling between the scalar field.
Consequently, it would be worthwhile to explore anisotropic
DE models in the context of BD theory. In this work we
study the evolution of the Hubble parameter, squared sound
speed and growth of perturbations in ghost DE of BD theory.
The ghost DE model is considered as a dynamical DE model
with varying EoS parameter which can dominate the Hubble
flow and influence the growth of structure in the Universe.
Here we consider the interacting case of ghost DE model in
BI model.

This paper is outlined as follows. In Sect. 2 we give a
full introduction about the BI equations in the context of in-
teracting ghost DE model in an anisotropic Universe and de-
scribe the evolution of background cosmology in this model.
In Sect. 3 we discuss the linear evolution of perturbations
in ghost DE cosmology of BI model. Section 4, we write
down the BI equations in BD theory and the efforts have
been made to constrain this ghost DE model by using cos-
mological observations. Finally we conclude in Sect. 5.

2 Metric and ghost dark energy model

We consider a class of homogeneous and anisotropic models
where the line component is of the Bianchi type I,

ds2 = dt2 − A2(t)dx2 − B2(t)dy2 − C2(t)dz2, (1)

where A(t), B(t) and C(t) are the scale factors which de-
scribe the anisotropy of the model and the average expan-
sion scale factor a(t) = (ABC)1/3. It reduces to the FLRW
case when A(t) = B(t) = C(t) = a(t). Defining the time-
like hypersurface-orthogonal vector u = ∂/∂t , we can define
the average Hubble scalar, H , and the shear, σμν , as follows:

H = 1
3u

μ

;μ, σμν = u(μ;ν) − Hδμν. (2)

The contribution of the interaction with the matter fields is
given by the energy momentum tensor which, in this case, is
defined as

T μ
ν = (ρ + p)uμuν − pgμ

ν , (3)

where ρ and p characterized by the energy density and pres-
sure of cosmic fluid, respectively. We assume that the Uni-
verse is filled with isotropic fluid, and the isotropic fluid is
characterized by the EoS p = ωρ, where ω is not necessarily
constant. The signature used in this article is (+−−−). The
4-velocity of the comoving particles is uμ, uμ = (1,0,0,0)

and uμuμ = 1. This 4-velocity is orthogonal to the surfaces
of spatial homogeneity. Therefore, we can write the follow-
ing Einstein’s field equations for BI model (Hossienkhani
and Pasqua 2014; Saaidi and Hossienkhani 2011):

3H 2 − σ 2 = 1

M2
p

(ρm + ρΛ), (4)

3H 2 + 2Ḣ + σ 2 = − 1

M2
p

(pm + pΛ), (5)

R = −6
(
Ḣ + 2H 2) − 2σ 2, (6)

where dot represents derivative with respect to t . Let us take
the average Hubble parameter and the shear scalar σ 2 as

H = ȧ

a
= 1

3

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
, (7)

2σ 2 = σμνσ
μν =

(
Ȧ

A

)2

+
(

Ḃ

B

)2

+
(

Ċ

C

)2

− 3H 2. (8)

According to the ghost DE model (Ohta 2011; Borges and
Carneiro 2005), the energy density of the DE defined by:

ρΛ = αH = Λ3
QCDH, (9)

where α is a constant and ΛQCD is QCD mass scale. With
ΛQCD ∼ 100 MeV and H ∼ 10−33 eV, Λ3

QCDH gives the
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right order of magnitude ∼ 3 × 10−3 eV for the observed
density of DE (Ohta 2011). The dimensionless energy den-
sity of various components are

Ωm = ρm

ρcr

, ΩΛ = ρΛ

ρcr

= α

3M2
pH

, (10)

where ρcr = 3M2
pH 2, so the first BI equation can be written

as

Ωm + ΩΛ = 1 − σ 2

3H 2
. (11)

We shall take that the shear scalar can be described based on
the average Hubble parameter, σ 2 = σ 2

0 H 2, where σ 2
0 is a

constant. So, Eq. (11) lead to

Ωm + ΩΛ = 1 − Ωσ0, with Ωσ0 = σ 2
0

3
, (12)

where Ωσ0 is the anisotropy parameter. We use Eq. (9) for
the energy density of the DE component and insert it into
(4) in order to obtain the Hubble parameter in ghost DE cos-
mologies

H =
√√√√

(
α

6M2
p(1 − Ωσ0)

)2

+ ρm0a−3

3M2
p(1 − Ωσ0)

+ α

6M2
p(1 − Ωσ0)

. (13)

In terms of the dimensionless energy density Ωm0 = ρm0/

(3H 2
0 M2

p) and redshift parameter z = 1/a − 1, the above
Hubble equation becomes

H = H0

2(1 − Ωσ0)

[
1 − Ωm0 − Ωσ0

+
√

(1 − Ωm0 − Ωσ0)2 + 4Ωm0(1 − Ωσ0)(1 + z)3
]
.

(14)

In the ΛCDM model Hubble’s parameter is H =
H0(

Ωm0(1+z)3+ΩΛ

1−Ωσ0
)

1
2 and the EoS of DE is fixed to be

ωΛ = −1. For model such as wCDM (with the constant

EoS w), it is H = H0(
Ωm0(1+z)3+(1−Ωm0−Ωσ0)(1+z)3(1+w)

1−Ωσ0
)

1
2 .

The Hubble constant H0 in (14) is taken as 72 km/s Mp/c, in
the whole discussion. Another the Hubble constant mea-
surements, H0 = 73.8 ± 2.4 km s−1 Mpc−1 from Riess
et al. (2011), H0 = 73 ± 3 km s−1 Mpc−1 from the com-
bination WMAP (Spergel et al. 2007), and the other with
H0 = 68 ± 4 km s−1 Mpc−1 from a median statistics anal-
ysis of 461 measurements of H0 (Chen et al. 2003; Gott
et al. 2001). Here we assume that a interaction term (Q)
exists between DE and DM components. Hence the energy
conservation equations read as:

ρ̇Λ + 3HρΛ(1 + ωΛ) = −Q, (15)

ρ̇m + 3Hρm = Q, (16)

where ωΛ is the DE EoS parameter. The interaction term is
given by the coupling constant Q = 3b2H(ρm +ρΛ) (Wang
et al. 2005; Sen and Pavón 2008). Differentiating Eq. (4)
with respect to the redshift, we obtain

dH

dz
= 3H

2(1 + z)

ΩΛ(z)

1 − Ωσ0

(
1 + r + ωΛ(z)

)
,

r = 1 − ΩΛ(z) − Ωσ0

ΩΛ(z)
.

(17)

Combining Eqs. (9) and (17) with the continuity equation
given in Eq. (15), the EoS parameter for ghost DE model is

ωΛ(z) = 1 − Ωσ0

−2 + ΩΛ(z) + 2Ωσ0

(
1 + 2b2

ΩΛ(z)
(1 − Ωσ0)

)
.

(18)

We now calculate the equation of motion for the energy den-
sity of DE in ghost DE model. Now we determine the evo-
lution of ΩΛ. Taking the derivative of (10) and using the
definition Ω̇Λ = −H(z)(1 + z)Ω ′

Λ(z), we get

Ω ′
Λ(z) = −3ΩΛ(z)

1 + z

(−1+Ωσ0 +ΩΛ(z)+b2(1−Ωσ0)

−2 + ΩΛ(z) + 2Ωσ0

)
,

(19)

where the prime denotes the derivative with respect to the
redshift z. We can determine the deceleration parameter (q)

as q = −1 + 1+z
H

dH
dz

as follow. Using Eqs. (17), (18) and
in the presence of interaction the deceleration parameter is
obtained by

q(z) = 1

2
+ 3

2

(
ΩΛ(z) + 2b2(1 − Ωσ0)

−2 + ΩΛ(z) + 2Ωσ0

)
, (20)

where ΩΛ(z) is given by Eq. (19). The speed of sound c2
s

is defined as.1 The energy conservation equation T
μν

;μ yields

δρ̈ = c2
s ∇2δρ(t, x) (Peebles and Ratra 2003).

c2
s = ṗΛ

ρ̇Λ

= ρΛ

ρ̇Λ

ω̇Λ + ωΛ. (21)

Now by computing ω̇Λ and using Eqs. (9), (15) and (18)
which reduces to

c2
s = 2(−1 + Ωσ0)

ΩΛ(−2 + 2Ωσ0 + ΩΛ)2

(
ΩΛ(1 − Ωσ0 − ΩΛ)

+ b2(Ωσ0 − 1)(−4 + 4Ωσ0 + 3ΩΛ)
)
. (22)

1In the perturbation theory we presume a small fluctuation in the con-
text of the energy density and we want to observe whether the per-
turbation will grow or collapse. In the linear perturbation factor, the
perturbed energy density is ρ(t, x) = ρ(t) + δρ(t, x), with the unper-
turbed energy density ρ(t).
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Fig. 1 Upper panel: the redshift evolution of the density parameters
ΩΛ(z). Middle panel: the evolution of EoS parameter ωΛ(z). Lower
panel: the deceleration parameter q(z) as a function of cosmic red-
shift z for the different parameter b2. Here we take Ω0

Λ = 0.69 and
Ωσ0 = 0.001

It may be mentioned that for causality and stability under
perturbation it is required to satisfy the inequality condition
0 < c2

s < 1 (Lixin et al. 2012).
In Fig. 1 we show the energy density of DE compo-

nent ΩΛ (upper panel), the evolution of the EoS parameter
ωΛ (middle panel), the deceleration parameter q(z) (lower
panel) while Fig. 2 indicates the squared sound speed c2

s

(upper panel) and Hubble parameter H (middle panel) as
a function of the cosmic redshift z for various choices of
b2 and Ωσ0 parameters, with the best fitting values of the

Fig. 2 Upper panel: the evolution of squared sound speed c2
s as a func-

tion of cosmic redshift z for the different parameter b2 with Ω0
Λ = 0.69

and Ωσ0 = 0.001. Middle panel: evolution of the Hubble parameter
H(z) as a function of cosmic redshift z for the different parameter
Ωσ0 with b2 = 0.1, Ωm0 = 0.277 and H0 = 72 km s−1 Mpc−1. Lower
panel: time evolution of the growth factor as a function of the scale fac-
tor for the different cosmological models and comparing to the ΛCDM
and FRW models. Auxiliary parameters are the same as shown in the
middle panel

model, the FRW ghost DE and ΛCDM models. In the case
of the ghost DE model we have assumed the present values:
Ωσ0 = 0.001, Ω0

Λ = 0.69 and H0 = 72 km/s Mp/c. Also for
the case of ΛCDM model it is Ω0

Λ = 0.7 and Ωm0 = 0.3.
From Fig. 1 we see that for the case of b2 < 0.12, the
EoS parameter for ghost DE model is always bigger than
ωΛ = −1 and remains in the quintessence regime, i.e.,
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ωΛ > −1 while for b2 ≥ 0.12, we see that ωΛ of the ghost
DE can cross the phantom divide. In the limiting case of the
FRW Universe, ωΛ(z) without interaction (b2 = 0) varies
from ωΛ > −1 to ωΛ = −1 which is similar to freez-
ing quintessence model (Wei and Cai 2008) while in the
presence of the interaction the situation is changed. Recent
studies have constructed q(z) taking into account that the
strongest evidence of accelerations happens at redshift of
z ∼ 0.2. In order to do this, they have set q(z) = 1/2(q1z +
q2)/(1 + z)2 to reconstruct it and then they have obtained
q(z) ∼ −0.31 by fitting this model to the observational data
(Gong and Wang 2006). Under these conditions and con-
sidering bottom panel of Fig. 1, we give the present value
of the deceleration parameter for the interacting ghost DE
with b2 = 0.12 is q0 � −0.56, is significantly smaller than
q0 ∼ −0.54 for the ΛCDM cosmological model (Daly et al.
2008), as expected (see also Fig. 1). Also, the accelerating
expansion begins at z = 0.74+0.40+0.78

−0.00−0.28, which is earlier than
what the ΛCDM model predicts. Graphical analysis of c2

s

shows that our theory could be unstable in FRW and BI
models as shown in upper panel of Fig. 2. Furthermore, we
would see that the non interacting ghost DE in FRW is more
stable than the interacting ghost DE in an anisotropic Uni-
verse. It is also interesting to see how our models when com-
pared with recent measurements of the Hubble parameter
performed with the ΛCDM model. This comparison is done
in Fig. 2 (middle panel), where we plot the evolution of H(z)

depends on the value of the Ωσ0 parameter for the ghost DE
and ΛCDM model considered in this work. It was observed
that the Hubble parameter are bigger in these models com-
pared to the ΛCDM model. Also, we can see that for the
biggest value, the Ωσ0 parameter is taken, and the biggest
value of the Hubble expansion rate H(z) is gotten.

3 Linear perturbation theory in ghost DE

The coupling between the dark components could signifi-
cantly affect not only the expansion history of the Universe,
but also the evolutions of the density perturbations, which
would change the growth history of cosmic structure. The
linear growth of perturbations for the large scale structures
is derived from matter era, by calculating the evolution of
the growth factor g(a) in ghost DE models and compare it
with the solution found for the ΛCDM model. The differ-
ential equation for g(a) is given by (Pace et al. 2010, 2014;
Percival 2005)

g′′(a) +
(

3

a
+ E′(a)

E(a)

)
g′(a) − 3

2

Ωm0

a5E2(a)
g(a) = 0, (23)

for the prime denoting the derivative with respect to lna and
E(z) = H/H0 is the evolution of dimensionless Hubble pa-
rameter. For a non interacting DE model, by using Eqs. (14),

(17) and (19), we solve numerically Eq. (23) for studying
the linear growth with ghost DE in an anisotropic Universe.
Then we compare the linear growth in the ghost DE model
with the linear growths in the ΛCDM and FRW models.
To evaluate the initial conditions, since we are in the lin-
ear regime, we take that the linear growth factor has a power
law solution, g(a) ∝ an, with n > 1, then the linear growth
should grow in time. In bottom panel of Fig. 2 we show the
evolution of the linear growth factor g(a) as a function of
the scale factor. In the ghost DE model with Ωσ0 �= 0, the
growth factor evolves proportionally to the scale factor, as
expected. In the FRW model (Ωσ0 = 0), the growth factor
evolves more slowly compared to the BI model because the
FRW model dominates in the late time Universe. In the case
of ΛCDM, g(a) evolves more slowly than in the ghost DE
of FRW model since the expansion of the Universe slows
down the structure formation.

4 Bianchi type I field equations and ghost dark
energy in Brans-Dicke theory

The BD theory with self-interacting potential is described
by the action (Arik and Calik 2006; Cataldo et al. 2001;
Ebrahimi and Sheykhi 2011b)

S =
∫

d4x
√

g

(
− 1

8ω0
φ2R + 1

2
gμν∂μφ∂νφ + V (φ)

+ f (φ)Lm

)
, (24)

where R is the Ricci scalar curvature, φ is the BD scalar
field with a potential V (φ). The chameleon field φ is non-
minimally coupled to gravity, ω0 is the generic dimension-
less parameter of the BD theory. The matter Lagrangian
Lm represents the perfect fluid matter. In the limiting case
f (φ) = 1, we obtain the original BD theory. In the limiting
of BD theory and V (φ) = 0, the gravitational field equations
derived from the action (24) with respect to the metric is

φGμν = −8πT m
μν − ω0

φ

(
φ,μφ,ν − 1

2
gμνφ,γ φ,γ

)

− φ;μ;ν + gμν�φ, (25)

and

�φ = α′T mγ
γ , (26)

respectively, where α′ = 8π
2ω0+3 and T

mγ
γ = gμνT m

μν is the
trace of (3) and � = ∇α∇α in which the operator ∇α repre-
sents covariant derivative. The gravitational field equations
derived from the variation of the action (24) with respect to
BI metric is (Hossienkhani 2016; Fayaz 2016)

φ2

4ω0

(
3H 2 − σ 2) − 1

2
φ̇2 − 3H

2ω0
φφ̇ = ρΛ + ρm, (27)
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−1

4ω0

(
2Ḣ + 3H 2 + σ 2)φ2 − 1

2

(
1 + 1

ω0

)
φ̇2

+ H

ω0
φφ̇ − 1

2ω0
φφ̈ = pΛ, (28)

and the dynamical equation for the scalar field is

φ̈ + 3Hφ̇ − 1

2ω0

(
3Ḣ + 6H 2 + σ 2)φ = 0. (29)

As above, Eqs. (27), (28) and (29), are 3 independent equa-
tion which having unknown parameters such as φ, H and σ .
To solve them we take σ 2 = σ 2

0 H 2 and φ = φ0a
ε (Riazi and

Nasr 2000), where ε is any integer, implies that φ̇ = εHφ.
So, Eq. (27) lead to

1 + 2ε − 2

3
ω0ε

2 − σ 2
0

3
= 4ω0

3H 2φ2
(ρΛ + ρm). (30)

We also define the dimensionless density fractions

Ωm = ρm

ρcr

= 4ω0ρm

3φ2H 2
,

ΩΛ = ρΛ

ρcr

= 4ω0ρΛ

3φ2H 2
= 4ω0α

3φ2H
,

(31)

where ρcr = 3φ2H 2

4ω0
. Therefore, Eq. (30) give

ΩΛ + Ωm = 1 + 2ε − 2

3
ω0ε

2 − Ωσ0. (32)

In the following, we take the time derivative of (30), after
using (32), so

H ′(z)
H

= 3

2(1 + z)

(
1 + 2

3
ε + ΩΛωΛ

1 + 2ε − 2
3ω0ε2 − Ωσ0

)
.

(33)

For the case of ε = 0, the above equation reduce to (17).
Combining (9) with (15) and (33), we obtain the EoS pa-
rameter in BD theory as

ωΛ(z) = 1 + 2ε − 2
3ω0ε

2 − Ωσ0

−2(1 + 2ε − 2
3ω0ε2 − Ωσ0) + ΩΛ(z)

×
(

1 − 2ε

3
+ 2b2(1 + 2ε − 2

3ω0ε
2 − Ωσ0)

ΩΛ(z)

)
.

(34)

The solar-system experiments give the lower bound for
the value of ω0 to be ω0 > 40000 (Ohta 2011). However,
when probing the larger scales, the limit obtained will be
weaker than this result. It was shown (Acquaviva and Verde
2007) that ω0 can be smaller than 40000 on the cosmo-
logical scales. Also, Sheykhi et al. (2013) obtained the re-
sult for the value of ε is ε < 0.01. The ghost DE model in

BD framework has an interesting feature compared to the
ghost DE model in BI Universe. In the case of b2 = 0, the
EoS parameter of in the BD framework, requiring condition
ωΛ < −1 leads to (1 + 2ε − 2

3ω0ε
2 −Ωσ0)(3 + 2ε) < 3ΩΛ.

In the following, we will determine the density parame-
ters of DE. For this purpose by taking the derivative of
(31) as Ω̇Λ = −ΩΛH( Ḣ

H 2 + 2ε) and using relation Ω̇Λ =
−H(z)(1 + z)Ω ′

Λ(z), it follows that

Ω ′
Λ(z) = − 3ΩΛ

1 + z

(
ΩΛ − 1 − 2ε + 2

3ω0ε
2 + Ωσ0

−2(1 + 2ε − 2
3ω0ε2 − Ωσ0) + ΩΛ(z)

)

×
(

1 − 2

3
ε + b2

(
1 + 2ε − 2

3
ω0ε

2 − Ωσ0

))
.

(35)

Now, the deceleration parameter in BD theory is obtained as

q(z) = 1

2
+ ε + 3ΩΛ

−2(1 + 2ε − 2
3ω0ε2 − Ωσ0) + ΩΛ(z)

×
(

1 − 2

3
ε + b2(1 + 2ε − 2

3ω0ε
2 − Ωσ0)

ΩΛ(z)

)
, (36)

where ΩΛ is given by Eq. (35). A same steps as the previous
section can be followed to obtain the squared sound speed c2

s

for BD theories. In this concept, Eq. (21) lead to

c2
s = γ

3ΩΛ(2γ + ΩΛ)2

[
(2γ + ΩΛ)

(
6b2γ + ε′ΩΛ

)

+ (γ (ε′ + 3b2) + ε′ΩΛ)(ε′Ω2
Λ + 12γ b2(γ + ΩΛ))

γ (−3 + 3b2 − 2ε) − 3ΩΛ

]
,

(37)

where γ = −1 − 2ε + 2
3ω0ε

2 + Ωσ0 and ε′ = −3 + 2ε. In
Fig. 3 we have depicted the energy density of DE compo-
nent ΩΛ(z) and the energy density of DM Ωm(z) (upper
panel), the redshift evolution of EoS ωΛ(z) as a function of
both z and ε in middle and lower panel while the parameter
ε versus the anisotropy parameter is plotted in Fig. 4. Fig-
ure 5 indicates that the deceleration parameter (upper panel)
and the squared sound speed (middle panel) as a function
of the cosmic redshift z for various choice of parameter b2

in BD theory. In the case of the ghost DE of BD theory we
choose the model parameter as Ωσ0 = 0.001, Ω0

Λ = 0.69,
ε = 0.003 and ω0 = 104. The upper part of Fig. 3 indi-
cates that at the late time ΩΛ → 0.7 while for the case of
the energy density of DM Ωm → 0.3, which is similar to
the behavior of the original ghost DE in previous section.
From Fig. 3 (middle) we observe that for b2 = Ωσ0 = 0, the
EoS parameter of BD theory translates the Universe from
low quintessence region towards high quintessence region.
But for 0 < b2 < 0.12, ωΛ increases from phantom region
at early times and approaches to quintessence region at late
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Fig. 3 Top panel: DE density parameters ΩΛ and Ωm for the inter-
acting ghost DE of BD theory with different b2. The evolutionary tra-
jectories of ωΛ for the interacting ghost DE with ε = 0.003 for differ-
ent values b2 as a function of cosmic redshift z (middle panel) and in
terms of ε (lower panel). Here we choose ω0 = 104, Ω0

Λ = 0.69 and
Ωσ0 = 0.001

times. Also from Fig. 3 we see that for b2 ≥ 0.12, ωΛ of the
interacting ghost DE in BD theory can cross the phantom
divide and eventually the Universe approaches low phantom
phase of expansion at late time. The lower of Fig. 3 indi-
cates that one can generate a phantom-like behavior pro-
vided −0.01 < ε < 0.01 which this point is completely
compatible with Sheykhi et al. (2013). For a better insight,
we plotted ε against the anisotropy parameter as shown in
Fig. 4. The sweet spot is estimated to be z = 1.

Fig. 4 The best fits of ε with anisotropy parameter for the inter-
acting GDE model. The results given by current only are z = 1,
H0 = 72 km/s/Mpc, b2 = 0.1, and Ωm0 = 0.277

We figure out that the behavior of the deceleration pa-
rameter for the best-fit Universe is quite different from the
ΛCDM cosmology as shown in Fig. 5 (upper panel). We
can also see that the best fit values of transition redshift and
current deceleration parameter with ghost DE of BD theory
are z = 2.13+0.84+1.28

−0.00−0.55 and q0 = −1.32+00+0.10
−0.07−0.17 which is

matchable with the observations (Ishida et al. 2008) while
for the case of ΛCDM, where z ∼ 0.67 and q0 = −0.54. We
can see that increasing b2 decreases the value of q(z). The
evolution of c2

s against z is plotted in Fig. 5 (middle panel)
for different values of the coupling parameter b2. The fig-
ure reveals that c2

s is always negative and thus, as the previ-
ous case, a background filled with the interacting ghost DE
seems to be unstable against the perturbation. This implies
that we cannot obtain a stable ghost DE dominated Universe
in BD theory, which are in agreement with Hossienkhani
(2016), Fayaz (2016), Myung (2007), Kim et al. (2008). One
important point is the sensitivity of the instability to the cou-
pling parameter b2. The larger b2, leads to more instability
against perturbations.

In the following, we study the capability of the H(z)

measurements in constraining DE models in BD theory. The
evolution of Hubble parameter H(z) in ghost DE model
with BD theory is obtained by using Eqs. (9) and (30) as
follows

H = H0

−2γ

(−Ωm0 − γ

+
√

(−γ − Ωm0)2 − 4γΩm0(1 + z)3
)
. (38)
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Fig. 5 Top panel: the evolution of q(z) in terms of z for the interacting
ghost DE of BD theory with different b2. Middle panel: the evolution of
c2
s as a function of cosmic redshift z for the different parameter b2 with

Ω0
Λ = 0.69 and Ωσ0 = 0.001. Lower panel: Hubble expansion param-

eter in terms of redshift for the different parameter Ωσ0 with b2 = 0.1,
Ωm0 = 0.277, H0 = 72 km s−1 Mpc−1, ε = 0.003 and ω0 = 104

The behavior of the Hubble parameter is similar to that of the
matter density parameters (Ωm), which is expected because
DE comes to dominate the evolution of the Hubble param-
eter only at very low redshift. We choose three specific DE
models as representatives of cosmological models in order
to make the analysis. They are the ΛCDM, wCDM, ghost
DE of BD theory in BI (FRW) models. We consider to use
the SGL+CBS (the strong gravitational lensing, the cosmic
microwave background, baryon acoustic oscillations and

Fig. 6 Evolution of growth function g(a) in terms of a for the different
Ωσ0 and comparing to the ΛCDM and FRW models in ghost DE of BD
theory. The rest information is the same as that of mentioned in Fig. 5

type Ia supernova) data to constrain the wCDM and ghost
DE models and we take Ωm0 = 0.2891 and w = −1.0546
(Cui et al. 2015). In fact we can also see the lower panel of
Fig. 5 that in a BI model although ghost DE model performs
a little poorer than ΛCDM model, but it performs better than
the ghost DE in BD theory. Also, from this figure we can un-
derstand the Hubble parameter in ghost DE of BD theory in
BI is bigger than the ghost DE of FRW, ΛCDM and wCDM
models. The larger the Hubble expansion rate H(z) is taken,
the bigger the anisotropy parameter Ωσ0 can reach. There-
fore, from the above analysis, we will figure out that both
the parameters, b2 and Ωσ0, can impact the cosmic expan-
sion history in the interacting ghost DE of BD theory in BI
model.

In Fig. 6 we illustrate the effects of anisotropy on the
growth factor in ghost DE of BD theory for the DE models
considered in this work, as compared to the ΛCDM model.
Generally, the ΛCDM model observe less growth compared
to the ghost DE of BD theory in an anisotropic Universe.
Therefore the growth factor g(a) for the ΛCDM Universe
will always fall behind the ghost DE models.

The theoretical distance modulus μth(z) is defined as
(Wang et al. 2016)

μth(z) = 5 log10
dL(z)

Mpc
+ 25, (39)

where dL(z) = (1 + z)
∫

z
0H

−1(z′)dz′ is the luminosity dis-
tance. The structure of the anisotropies of the CMB radiation
depends on two eras in cosmology, such as last scattering
and today. We can also measure dL(z) through the Hubble
parameter by using the Eq. (14). Figure 7 presents the dis-
tance modulus with the best fit of our model and the best
fit of the ΛCDM model. From Fig. 7 we can observe the
Universe is accelerating expansion. In all, current data are
unable to discriminate between the popular ΛCDM, FRW
and our interaction models.
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Fig. 7 Distance modulus for the best fit model Ωm0 = 0.277,
H0 = 72 km/s/Mpc, b2 = 0.1, and the ΛCDM model, Ωm0 = 0.3,
H0 = 72 km/s/Mpc and Ω0

Λ = 0.7

5 Conclusion

In this work we studied the linear evolution of structure for-
mation in interacting ghost DE models within the frame-
work of Brans-Dicke theory. We start our analysis by study-
ing the effects of anisotropy on the background expan-
sion history of the growth factor. We obtained the evolu-
tion of density parameter ΩΛ, the equation of state pa-
rameter ωΛ, the deceleration parameter q and the squared
sound speed c2

s for both the ghost DE and Brans-Dicke the-
ory with respect to the cosmic redshift function. At first,
the EoS parameter of the ghost DE and BD theory mod-
els in the case of b2 < 0.12, cannot cross the phantom di-
vide while it for b2 ≥ 0.12 can cross the phantom divide
line. Beside, increasing of the anisotropy and the interac-
tion parameter is increased the phantomic. Then, the evo-
lution of the interacting ghost DE density parameter in BD
theory is depend on the anisotropy density parameter Ωσ0

and the coupling constant b2. On the basis of the above con-
siderations, it seems reasonable to investigate an anisotropic
Universe, in which the present cosmic acceleration is fol-
lowed by a decelerated expansion in an early matter dom-
inant phase. In other words, it indicates that the values of
transition scale factor and current deceleration parameter are
z = 0.74+0.40+0.78

−0.00−0.28 and q0 = −0.37+00+0.08
−0.09−0.19 for the case of

ghost DE, z = 2.13+0.84+1.28
−0.00−0.55 and q0 = −1.32+00+0.10

−0.07−0.17 for
the case of ghost DE with BD theory while for the case of
ΛCDM model, z = 0.67 and q0 = −0.54 which is consistent
with observations (Gong and Wang 2006; Myung 2007; Kim
et al. 2008). However, for the interacting ghost DE shows
signs of instability (due to negativity of adiabatic squared
sound speed c2

s ) with (without) BD theory. In this case the
frequency of the oscillations becomes purly imaginary and
the density perturbations will grow with time.

Then, we analyzed H(z) and compare the results with
observational data. We found that, by choosing appropri-

ate values of constant parameters, we figure out our model
has more agreement with observational data than ΛCDM.
Furthermore, we show that in anisotropic Universe with the
ghost DE of BD theory, the Hubble parameter is bigger than
the ghost DE of FRW, ΛCDM and wCDM models. It was
observed that the larger the Hubble expansion rate H(z) is
taken, the bigger the anisotropy parameter Ωσ0 can reach.
Finally the effects of anisotropy on the growth of structures
in linear regime is investigated and we compared the linear
growth in the ghost DE and BD theory with the linear growth
in the FRW and ΛCDM models which in the ΛCDM, the
growth factor evolves more slowly compared to the ghost
DE of FRW in BD theory because the cosmological con-
stant dominates in the late time Universe. Also, in the ghost
DE of FRW in BD theory, the growth factor evolves more
slowly compared to the ghost DE models in an anisotropic
Universe. Therefore due to BD theory the growth factor g(a)

for the ΛCDM Universe will always fall behind the ghost
DE models in an anisotropic Universe.
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