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Abstract In this paper, a time- and space-coordinate trans-
formation, commonly known as the Kustaanheimo–Stiefel
(KS)-transformation, is applied to reduce the order of sin-
gularities arising due to the motion of an infinitesimal body
in the vicinity of a smaller primary in the three-body sys-
tem. In this work, the Sun–Earth system is considered as-
suming the Sun to be a radiating body and the Earth as an
oblate spheroid. The study covers motion around collinear
Lagrangian L1 and L2 points. Numerical computations are
performed for both regularized and non-regularized equa-
tions of motion and results are compared for non-periodic
as well as periodic motion. In the transformed space, time
is also computed as a function of solar radiation pressure
(q) and oblateness of the Earth (A2). The two parameters
(q,A2) have a significant impact on time in the transformed
space. It is found that KS-regularization reduces the order of
the pole from five to three at the point of singularity of the
governing equations of motion.
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1 Introduction

In recent years, regularization has become popular for long
term studies of motion of celestial bodies. At collision the
equations of motion possess singularities. Indeed, a collision
between any two objects is marked by the fact that their dis-
tance becomes zero. The problem of singularities plays an
important role under conceptual, computational and physi-
cal aspects. The singularities occurring at collisions can be
eliminated by using proper choice of the independent vari-
able. The basic idea of the regularization theory is to com-
pensate for the infinite increase of the velocity at collision.
For this purpose, a new independent fictitious time variable
is chosen to slow the motion near the singularities.

In 1913, Sundman (Szebehely 1967) proposed regular-
ization of the two-body problem using a transformation
of the independent variable, time. Levi–Civita, in 1903,
demonstrated a coordinate transformation in addition to the
independent variable transformation for the 2-dimensional
equation of motion. This coordinate transformation was
from one 2-dimensional vector to another more effective
2-dimensional vector using complex variables. In 1933,
Hurwitz described that direct generalization of Levi–Civita
transformation to a 3-dimensional vector was impossible;
however, he advised that the transformation may be per-
formed by transforming the original 3-dimensional vector
to a 4-dimensional vector. Kustaanheimo and Stiefel (1965)
generalized the Levi–Civita transformation to 3-dimensional
motion and this generalized transformation is commonly
known as a KS-transformation. Both Levi–Civita and KS
regularizations are local transformations in the sense that
their application allows one to regularize collisions with
only one of the two primaries. A suitable extension of
such transformations allows for obtaining a simultaneous
regularization with both primaries, thus obtaining a global
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Fig. 1 Schematic of the
physical problem

transformation known as Birkhoff’s method (Stiefel and
Scheifele 1971; Szebehely 1967).

A good amount of literature exists which covers the
KS-transformation in detail (Marchal 1990; Bruno 1994;
Celletti 2002). Bettis and Szebehely (1971) were the first
who applied a KS-transformation to the restricted three-
body problem (R3BP) in the inertial frame and described
a numerical treatment of the regularized equations of mo-
tion. Howell and Breakwell (1984) adopted the same trans-
formation to regularize the classical circular restricted
three-body problem (CR3BP) in the barycentric frame for
the Earth-Moon system for finding stable periodic orbits
around the collinear Lagrangian points. Prado (1996) stud-
ied minimum energy trajectories to transfer a spacecraft be-
tween the five Lagrangian points and the Earth and used
Lemaître regularization to avoid singularities. Aarseth and
Zare (1974) proposed a new transformation based on KS-
regularization of a single binary where equations of mo-
tion numerically well behaved for close triple encounters.
Numerical comparisons with standard KS-regularization
showed that the new method gives improved accuracy per
integration step at no extra computing time for a vari-
ety of examples. In addition, time reversal tests indicated
that critical triple encounters may be studied with confi-
dence.

In this paper, our aim is to study the KS-transformation
to reduce the order of singularities arising when the space-
craft moves near the Earth in the three-body problem. In
Sect. 2, we provide a mathematical formulation of the gov-
erning equations of motion in the photogravitational Sun–
Earth system considering the oblateness of the Earth and
radiation pressure of the Sun. Section 3 describes the reg-
ularization of the photogravitational CR3BP using the KS-
transformation. Section 4 provides results and discussion,
while Sect. 5 concludes our study.

2 Mathematical formulation

Let m�, m⊕, and m be the masses of the Sun, the Earth,
and an infinitesimal body (spacecraft), respectively, in the
restricted three-body problem. We assume that the infinites-
imal body is moving in the gravitational field of the Sun and
the Earth (refer to Fig. 1) called primaries, which revolve
around their common center of mass on circular orbits. The
Sun is taken as a radiating body and the Earth as an oblate
spheroid.

2.1 Mass reduction factor

In this study, the Sun is assumed as a radiating body and the
radiation force always acts on the spacecraft away from the
Sun in the Sun and spacecraft line, which effectively causes
the reduction in the gravitational force due to the Sun on the
spacecraft (if radiation force is merged with the gravitational
force). This causes a reduction in the mass of the Sun.

Let Fp denote the radiation force and Fg denote the grav-
itational force due to the Sun, then the resultant force, F , on
the infinitesimal body is given by

F = Fg − Fp = Fg

(
1 − Fp

Fg

)
= qFg (1)

Here q = 1 − Fp

Fg
is the mass reduction factor (Tiwary and

Kushvah 2015).

2.2 Potential field due to an oblate body

The gravitation potential per unit mass at an exterior point
at a distance ρ from the center of an oblate body having
mean radius Rm and mass distributed symmetrically about
its equator can be expressed as (McCueskey 1963; Peter and
Lissauer 2001; Fitzpatrick 2012; Singh and Taura 2014)

Vr = −G

ρ

[
1 −

∞∑
l=1

J2l

(
Rm

ρ

)2l

P2l (cos θ)

]
(2)
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In Eq. (2) G is the universal gravitational constant, θ is the
angle between the body’s symmetry axis and the vector to an
infinitesimal body from the center at a distance ρ, P2l (cos θ)

are the Legendre polynomials of first kind, and J2l are the
zonal harmonic coefficients. We assume that primaries have
their equatorial planes coinciding with the plane of motion.
Then Eq. (2) reduces to

Vr = −G

[
1

ρ
+ J2R

2
e

2ρ3
− 3J4R

4
e

8ρ5
+ · · ·

]
(3)

where Re is the equatorial radius of the Earth.
Let A2i = J2iR

2i
e , i = 1,2, . . . be the oblateness coeffi-

cients for the Earth, then Eq. (3) becomes

Vr = −G

[
1

ρ
+ A2

2ρ3
− 3A4

8ρ5
+ · · ·

]
(4)

Since J2 accounts for most of the Earth’s gravitational de-
parture from a perfect sphere (Vallado 2013), hence, we ac-
count for oblateness up to the J2 term only. Thus, in the
barycentric frame, the gravitational potential per unit mass
of the infinitesimal body accounting the radiation pressure
of the Sun and considering oblateness of the Earth up to J2

is given by

V = −G

[
m�q

d
+ m⊕

(
1

r
+ A2

2r3

)]
(5)

where

d = √
(x − x1)2 + y2 + z2

r = √
(x − x2)2 + y2 + z2

}
(6)

In Eq. (6) ‖x1‖ and ‖x2‖ are the distance of the Sun and the
Earth from the barycenter, respectively.

2.3 Kinetic energy

The kinetic energy per unit mass of the infinitesimal body in
the barycentric frame rotating about the z-axis, with uniform
angular velocity n, is expressed as

K = 1

2

(
ẋ2 + ẏ2 + ż2) + n(xẏ − ẋy) + 1

2
n2(x2 + y2) (7)

where ẋ, ẏ, and ż are the time derivatives of x, y, and z,
respectively.

2.4 Equations of motion

The Lagrangian function of the system, in the barycentric
reference frame, is then given by

L = K − V (8)

Equation (8) can be expressed as

L = 1

2

(
ẋ2 + ẏ2 + ż2) + n(xẏ − ẋy) − W (9)

where W = V − 1
2n2(x2 + y2). Now using the Euler–

Lagrange equation, the equations of motion of the infinites-
imal body are given by

ẍ − 2nẏ = − ∂W
∂x

ÿ + 2nẋ = − ∂W
∂y

z̈ = − ∂W
∂z

⎫⎪⎪⎬
⎪⎪⎭

(10)

It can be noted that the variables in Eq. (10) are in the di-
mensional form. To give them a non-dimensional form, we
chose the total sum of the mass of the Sun–Earth system to
be one, and the distance between the Sun and the Earth to be
one. Subsequently, we get m� = 1 − μ, m⊕ = μ, x1 = −μ,
x2 = 1 − μ where μ = m⊕

(m�+m⊕)
is the mass ratio param-

eter. The unit of time is chosen so as to make the unper-
turbed mean motion, n0, and gravitational constant, G, unity
(Sharma and Rao 1976). Hence, the equations of motion
(10), in non-dimensional form, in the barycentric coordinate
system, becomes (Srivastava et al. 2016)

ẍ − 2nẏ = ∂U
∂x

ÿ + 2nẋ = ∂U
∂y

z̈ = ∂U
∂z

⎫⎪⎪⎬
⎪⎪⎭

(11)

where

U = n2

2 (x2 + y2) + (1−μ)q
d

+ μ
r

+ A2μ

2r3

d = √
(x + μ)2 + y2 + z2

r = √
(x + μ − 1)2 + y2 + z2

⎫⎪⎪⎬
⎪⎪⎭

(12)

The partial derivatives of U in Eq. (11) are given by

∂U

∂x
= n2x − q(1 − μ)(x + μ)

d3
− μ(x + μ − 1)

r3

− 3

2

μA2(x + μ − 1)

r5
(13)

∂U

∂y
= n2y − q(1 − μ)y

d3
− μy

r3
− 3

2

μA2y

r5
(14)

∂U

∂z
= −q(1 − μ)z

d3
− μz

r3
− 3

2

μA2z

r5
(15)

It can be observed that the governing equations of motion
(11) contain a pole of order five at r = 0 whereas the clas-
sical CR3BP contains a pole of order three at r = 0. Hence,
the inclusion of oblateness leads to an increase of the order
of the singularity from three to five.
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2.5 Oblateness coefficient

The oblateness coefficient A2 is given by

A2 = J2R
2
e (16)

However, J2 is expressed as (Fitzpatrick 2012)

J2 = (Ie − Ir )

m⊕R2
e

(17)

where Ie (= 1
5m⊕R2

e ) is the moment of inertia of the Earth
about any axis in the equatorial plane, and Ir (= 1

5m⊕R2
p ,

Rp is the polar radius of the Earth) is the moment of inertia
of the Earth about its axis of rotation. Consequently, Eq. (16)
reduces to

A2 = (R2
e − R2

p)

5
(18)

In non-dimensional form, Eq. (18) is expressed by

A2 = (R2
e − R2

p)

5d2⊕�
(19)

where d⊕� is the distance between the Sun and the Earth.

2.6 Perturbed mean motion

The perturbed mean motion, n, is expressed as (Vallado
2013)

n = n0

[
1 +

3J2(

√
1 − e2

0)R
2
e

4p2

(
2 − 3 sin2(i0)

)]
(20)

In Eq. (20), p = d�⊕(1 − e2
0), e0 and i0 are the unperturbed

eccentricity and inclination angle, respectively, of the orbit.
Hence in the barycentric frame, the non-dimensional form of
the perturbed mean motion for the circular motion reduces
to

n =
[

1 + 3

2
A2

]
(21)

It can be noted that for q = 1 and A2 = 0 the governing
equations of motion (11) reduce to the classical CR3BP.

3 Regularization of photogravitational CR3BP

In this section, the 3-dimensional system given in Eqs. (11)
is converted into 4-dimensional system using KS-transfor-
mation. The purpose of this transformation into 4-dimen-
sional space is to reduce the order of the singularities due to
the motion of the spacecraft in a close vicinity of the Earth
in the restricted three-body problem. The KS-transformation

in 3-dimensional space consists of two stages, namely, the
transformation of the independent variable, t , and the trans-
formation of the space coordinates x, y, z of the governing
equations of motion (11). The time transformation trans-
forms the independent variable t to a new independent vari-
able τ through the relationship dt = rdτ . In the rest of the
work, we represent ()′ = d()

dτ
.

The governing equations of motion (11) in terms of the
new independent variable τ become

x′′ − 2nry′ = x′

r2

(�r.�r ′) − μ(x + μ − 1)

r

− 3

2

μA2(x + μ − 1)

r3
+ r2F1 (22)

y′′ + 2rnx′ = y′

r2

(�r.�r ′) − μy

r
− 3

2

μA2y

r3
+ r2F2 (23)

z′′ = z′

r2

(�r.�r ′) − μz

r
− 3

2

μA2z

r3
+ r2F3 (24)

where (�r.�r ′) is the scalar product of two vectors �r and �r ′.
The terms F1, F2, and F3 are given by

F1 = n2x − q(1 − μ)(x + μ)

d3
(25)

F2 = n2y − q(1 − μ)y

d3
(26)

F3 = −q(1 − μ)z

d3
(27)

Let �R = (x+μ−1, y, z,0)T and �u = (u1, u2, u3, u4)
T , then

Eqs. (22)–(24) can be expressed in the following form:

�R′′ = �R. �R′
�R. �R

�R′ + RB �R′ − μ �R
R

− 3

2

μA2 �R
R3

+ R2 �F (28)

where R = ‖ �R‖, �F = (F1,F2,F3,0)T , and

B =
(

0 2n 0 0
−2n 0 0 0

0 0 0 0
0 0 0 0

)
.

The coordinate transformation from 3-dimensional space
to 4-dimensional space is given by

�R = L(�u)�u (29)

where the operator L(�u) is expressed by the KS-matrix,

L(�u) =

⎛
⎜⎜⎝

u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

⎞
⎟⎟⎠ (30)

From Eq. (29), 3-dimensional space coordinates x, y, z are
related with 4-dimensional space coordinates u1, u2, u3, u4

via the expressions

x = u2
1 − u2

2 − u2
3 + u2

4 + 1 − μ (31)
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y = 2(u1u2 − u3u4) (32)

z = 2(u1u3 + u2u4) (33)

Equations (31)–(33) provide a transformation from 3-dimen-
sional position to 4-dimensional counterpart and vice versa.
It can be observed that, for μ = 1, Eqs. (31)–(33) are the
KS-transformation. It can easily be found that

r = �u.�u (34)

The operator L(�u) has the following significant properties:

(I) LT (�u)L(�u) = rI4, where I4 is an 4×4 identity matrix.
(II) L′(�u) = L(�u′).

(III) L(�u)�u′ = L(�u′)�u = 1
2

�R′, provided u4u
′
1 − u3u

′
2 +

u2u
′
3 −u1u

′
4 = 0. This relation is known as the bilinear

relation.
(IV) If two vectors �u, �u′ satisfy the bilinear relation, then

(�u.�u)L
(�u′)�u′ − 2

(�u.�u′)L(�u)�u′ + (�u′.�u′)L(�u)�u = 0.

From Eq. (29), we have

�R′′ = 2L(�u)�u′′ + 2L
(�u′)�u′ (35)

Combining Eqs. (28), (29), (35), and property (III), we get

L(�u)�u′′ − (�u′.�u′)
(�u.�u)

L(�u)�u

= (�u.�u)BL(�u)�u′ − μ

2

L(�u)�u
(�u.�u)

− μA2
3L(�u)�u
4(�u.�u)3

+ (�u.�u)2

2
�F (36)

Further, by property (I) of L(�u), we have

L−1(�u) = LT (�u)

(�u.�u)
(37)

Operating by L−1(�u) on both sides of Eq. (36), we get

�u′′ +
[

3μA2 + 2μ(�u.�u)2 − 4(�u′.�u′)(�u.�u)2

4(�u.�u)3

]
�u

= LT (�u)BL(�u)�u′ + (�u.�u)

2
LT (�u) �F (38)

Now, define

h = �̇R. �̇R
2

− μ

R
− 3

2

μA2

R3
(39)

Also, we have

�̇R. �̇R
2

= 2L(�u)�u′.L(�u)�u′

r2
(40)

From Eqs. (39) and (40), and using the linear algebra prop-
erty, we get

h = −
[

3μA2 + 2μ(�u.�u)2 − 4(�u′.�u′)(�u.�u)2

2(�u.�u)3

]
(41)

From Eqs. (38) and (41), we get

�u′′ − h

2
�u = LT (�u)BL(�u)�u′ + (�u.�u)

2
LT (�u) �F (42)

Further, the Jacobi constant, C, can be given by the relation-
ship

�̇R. �̇R
2

= n2 (x2 + y2)

2
+ q(1 − μ)

d
+ μ

R
+ μA2

2R3
− C

2
(43)

It is computed at the initial time (Howell and Breakwell
1984). Therefore, from Eqs. (39) and (43), we get

h = n2

2

(
x2 + y2) + q(1 − μ)

d
− μA2

r3
− C

2
(44)

It can be noted that after applying KS-transformation to
3-dimensional system, order of the pole at r = 0 reduces
from three to one for the classical CR3BP and from five to
three for the considered problem. For the classical CR3BP,
only equation dτ = 1

r
dt contains a simple pole (i.e., a pole

of order one) whereas for the CR3BP+SRP+Oblateness,
Eqs. (43) and (44) contain a pole of order three. We no-
tice that when q = 1 and A2 = 0, Eq. (42) reduces to
the KS-regularization of the classical CR3BP (Howell and
Breakwell 1984). However, a KS-regularization of the clas-
sical CR3BP provides a relatively less accurate solution
for any Sun-planet system due to not accounting the ef-
fects of perturbing forces such as radiation pressure of the
Sun, oblateness of the planet etc. Hence, considering these
perturbations in the classical CR3BP and then finding KS-
regularization of the modeled equations of motion improves
the accuracy for finding stable periodic orbits in the Sun-
planet system.

The expressions for d,F1, F2, F3, and h in terms of new
four variables are given by

d = {[(
1 + u2

1 − u2
2 − u2

3 + u2
4

)2 + 4(u1u2 − u3u4)
2

+ 4(u1u3 + u2u4)
2]} 1

2 (45)

F1 = n2(u2
1 − u2

2 − u2
3 + u2

4 + 1 − μ
)

− q(1 − μ)(1 + u2
1 − u2

2 − u2
3 + u2

4)

d3
(46)

F2 = 2n2(u1u2 − u3u4) − 2q(1 − μ)(u1u2 − u3u4)

d3
(47)

F3 = −2q(1 − μ)(u1u3 + u2u4)

d3
(48)
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h = n2

2

[(
u2

1 − u2
2 − u2

3 + u2
4 + 1 − μ

)2 + 4(u1u2 − u3u4)
2]

+ q(1 − μ)

d
− μA2

r3
− C

2
(49)

The scalar form of Eq. (42) can be written as

u′′
1 = h

2
u1 + 2

(
u2

1 + u2
2

)
u′

2 + 2(−u1u4 + u2u3)u
′
3

− 2(u1u3 + u2u4)u
′
4 + (u2

1 + u2
2 + u2

3 + u2
4)

2
× (u1F1 + u2F2 + u3F3) (50)

u′′
2 = h

2
u2 − 2

(
u2

1 + u2
2

)
u′

1 + 2(u2u4 + u1u3)u
′
3

+ 2(u2u3 − u1u4)u
′
4 + (u2

1 + u2
2 + u2

3 + u2
4)

2
× (−u2F1 + u1F2 + u4F3) (51)

u′′
3 = h

2
u3 − 2(u2u3 − u1u4)u

′
1 − 2(u1u3 + u2u4)u

′
2

+ 2
(
u2

3 + u2
4

)
u′

4 + (u2
1 + u2

2 + u2
3 + u2

4)

2
× (−u3F1 − u4F2 + u1F3) (52)

u′′
4 = h

2
u4 + 2(u2u4 + u1u3)u

′
1 + 2(u1u4 − u2u3)u

′
2

− 2
(
u2

3 + u2
4

)
u′

3 + (u2
1 + u2

2 + u2
3 + u2

4)

2
× (u4F1 − u3F2 + u2F3) (53)

The set of Eqs. (50)–(53) are solved by using the Runge–
Kutta method for a different set of initial conditions. The
conversion of initial conditions from 3-dimensional space to
4-dimensional one is explained below.

Equations (31)–(34) give

1

2
(x + R + μ − 1) = u2

1 + u2
4 (54)

u2 = yu1 + zu4

2(u2
1 + u2

4)
, u3 = zu1 − yu4

2(u2
1 + u2

4)
(55)

where

R = u2
1 + u2

2 + u2
3 + u2

4 (56)

Keeping the arbitrariness of one of the components of �u, we
select u1 and u4 in such a way that Eq. (54) is satisfied. For
simplicity, choose either u1 or u4 identically equal to zero
or u1 equals u4. When x +μ− 1 ≥ 0, Eqs. (54) and (55) are
used to determine the initial values of the components of �u.
When x +μ−1 < 0, the following relations are used (Bettis

and Szebehely 1971):

R − x + μ − 1 = 2(u2
2 + u2

3)

u1 = yu2+zu3
R−(x+μ−1)

u4 = zu2−yu3
R−(x+μ−1)

⎫⎪⎪⎬
⎪⎪⎭

(57)

and choosing either u2 or u3 arbitrarily. Once the initial
components of �u are computed, their derivatives with re-
spect to τ , �u′, is computed by using the property (III) of
the operator L(�u) and is expressed as

�u′ = 1

2
LT (�u) �̇R (58)

where �̇R = (ẋ, ẏ, ż,0) is known.

4 Results and discussion

In this study, we mainly focused on modeling of the 4-
dimensional regularized equations of motion using a KS-
transformation on the 3-dimensional equations, which cor-
responds to photogravitational CR3BP accounting for radi-
ation pressure of the Sun and oblateness of the Earth, and
we addressed a comparison of the numerical solution for
regularized and non-regularized motion. A numerical com-
putation of regularized equations of motion is carried out
when the infinitesimal body, rotating around L1 and L2 La-
grangian points, comes close to the Earth, and the obtained
results are compared with the solution of non-regularized
equations of motion. Initial conditions corresponding to pe-
riodic as well as non-periodic orbits are chosen and govern-
ing equations are propagated using RK-7(8) scheme with the
corresponding initial conditions. In the considered model ra-
diation pressure due to the Sun and oblateness of the Earth
are included over and above the classical model. Results
are computed for different values of the mass reduction fac-
tor (q) with and without considering the oblateness of the
Earth. The oblateness coefficient, A2 (= 2.43 × 10−12) is
computed from Eq. (19). The out-of-plane amplitude, Az =
110 000 km (Srivastava et al. 2016) is considered through-
out the study unless otherwise mentioned. The time period
is chosen as one orbit period. In this work, two different
choices of initial conditions are considered, namely initial
conditions without and with differential correction applied
on the third-order analytic solution of the governing equa-
tions of motion (11). The results of these two choices are
discussed in Sect. 4.1. In Sect. 4.2, we have studied the vari-
ation of transformed time, τ of 4-dimensional space with
respect to Az while in Sect. 4.3 we mention the potential
applications of the KS-regularized equations of motion.
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Fig. 2 Three-dimensional position (non-dimensional) and velocity (non-dimensional) comparisons around L1 and L2 points using a third order
periodic analytic approximation without and with differential correction for q = 0.999334, A2 = 2.43 × 10−12

4.1 Initial condition obtained without and with
differential correction

Figure 2 shows a comparison between the 3-dimensional
(3D) position and velocity profiles (the velocity profile is
shown only for the first choice of q and A2) obtained from
non-regularized and regularized equations of motion con-
sidering initial conditions without and with differential cor-
rection applied on the third-order analytic solution for q =
0.999334, A2 = 2.43 × 10−12. Similarly, Figs. 3, 4 and 5
show a 3D position profile comparison for (q = 1,A2 =
2.43 × 10−12), (q = 0.999334,A2 = 2.43 × 10−12), and
(q = 1,A2 = 0), respectively. It can be seen that for the con-
sidered set of parameters the results obtained by both sets of
governing equations overlap each other in 3D space, which
ensures the correctness of the regularization modeling of the
problem.

4.2 Variation of τ

Figure 6 depicts a typical variation of new independent
transformed time, τ of 4-dimensional space with respect to
time t of 3-dimensional space around L1 and L2 Lagrangian
points and their comparisons with a classical CR3BP as well
as CR3BP+SRP+Oblateness assuming both the cases with
and without differential correction applied on the third-order
analytic solution as the initial condition. From the figure, an
almost nonlinear relation between t and τ is observed.

A quantitative variation of τ as a function of t and for dif-
ferent initial conditions around L1 corresponding to q and
A2 values is given in Table 1. Table 1 contains initial condi-
tions without and with differential correction. The variations
of τ and t with respect to the out-of-plane amplitude, Az are
shown in Table 2 around the L1 and L2 points. It can be
observed that as Az increases, τ and t decrease for all con-
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Fig. 2 (Continued)

Fig. 3 Three-dimensional position (non-dimensional) comparison around L1 and L2 points using third order periodic analytic approximation
without and with differential correction for q = 1 and A2 = 2.43 × 10−12
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Fig. 3 (Continued)

Fig. 4 Three-dimensional position (non-dimensional) comparison around L1 and L2 points using a third-order periodic analytic approximation
without and with differential correction for q = 0.999334 and A2 = 0
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Fig. 5 Three-dimensional position (non-dimensional) comparison around L1 and L2 points using a third-order periodic analytic approximation
without and with differential correction for q = 1 and A2 = 0

Fig. 6 Variation of τ versus t around (i) L1 point and (ii) L2 point
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Table 1 Third-order analytic
solution without (with)
differential correction taken as
initial condition around L1 point

Parameters q = 0.999334,
A2 = 2.43 × 10−12

q = 1,
A2 = 2.43 × 10−12

q = 0.999334,
A2 = 0

q = 1,
A2 = 0

x 0.9915202
(0.9915795)

0.9915794
(0.9916252)

0.9915198
(0.9915198)

0.9915794
(0.9915794)

y 0 (0) 0 (0) 0 (0) 0 (0)

z −0.00067028
(−0.00067028)

−0.00067063
(−0.00067063)

−0.00067028
(−0.00067028)

−0.00067063
(−0.00067063)

ẋ 0 (0) 0 (0) 0 (0) 0 (0)

ẏ −0.00959229
(−0.00984497)

−0.00961724
(0.00979540)

−0.00959209
(−0.00959209)

−0.00961724
(−0.00961724)

ż 0 (0) 0 (0) 0 (0) 0 (0)

T 3.08283808
(3.08559430)

3.05704228
(3.05964337)

3.08302864
(3.08302864)

3.05704228
(3.05704228)

τ 263.371911
(305.564135)

261.948366
(305.372021)

262.661527
(262.661527)

261.948319
(261.948319)

Table 2 Variation of τ and t

with respect to Az around L1
and L2 Lagrangian points

Parameters Az = 110 000 km Az = 700 000 km

τ(t)

Differential correction

No Yes No Yes

q = 0.999334,
A2 = 2.43 × 10−12

L1 222.58 (3.06388) 302.65 (3.05499) 264.03 (3.08332) 305.62 (3.08605)

L2 209.12 (3.12485) 307.50 (3.07652) 209.42 (3.09924) 304.96 (3.04096)

q = 1,
A2 = 2.43×10−12

L1 217.49 (3.03640) 302.46 (3.02586) 262.93 (3.05757) 305.42 (3.06016)

L2 455.67 (3.09884) 307.69 (3.10197) 279.07 (3.07173) 305.16 (3.06906)

q = 0.999334,
A2 = 0

L1 222.45 (3.06408) 302.65 (3.05499) 263.31 (3.08351) 305.61 (3.08605)

L2 208.96 (3.12503) 307.50 (3.07652) 209.29 (3.09944) 304.96 (3.04096)

q = 1,
A2 = 0

L1 217.49 (3.036399) 302.46 (3.02585) 262.93 (3.05756) 305.42 (3.06015)

L2 455.67 (3.09884) 307.69 (3.10197) 279.07 (3.07173) 305.16 (3.06906)

sidered cases around the L1 point. A similar behavior is ob-
served around the L2 point except the case (q = 0.999334,
A2 = 2.43 × 10−12) where τ increases as Az increases.

4.3 Applications of KS-regularized motion

Stable or nearly stable periodic orbits are very important
from mission design prospectives. The fuel expenditure for
maintaining the stable or nearly stable halo orbits is very
nominal. The stable orbit is found to be near the smaller pri-
mary. After a threshold value of the out-of-plane amplitude
without regularization of the 3-dimensional governing equa-
tions, the stable periodic orbits cannot be obtained due to
non-convergence of the numerical continuation method (Sri-
vastava et al. 2016). Hence, the obtained regularized system
of motion can be used for finding stable periodic orbits and
also for the transfer trajectory from the Earth parking orbit
to a periodic orbit near the collinear Lagrangian points in the
photogravitational CR3BP accounting radiation pressure of
the Sun and oblateness of the Earth.

5 Conclusions

In this study, the well-known KS-transformation is de-
scribed to reduce the order of singularities arising when the
spacecraft moves closer toward the smaller primary in the
Sun–Earth system accounting radiation pressure of the Sun
and oblateness of the Earth. The obtained regularized mo-
tion of the modeled equations are solved numerically and
compared with numerical solution of the original govern-
ing equation of motion in 3-dimensional space to establish
agreement between the two systems of equations and very
satisfactory results are achieved by computing both com-
ponents of motion i.e., position and velocity. The new in-
dependent transformed time τ is also computed as a func-
tion of time t of 3-dimensional space and the initial condi-
tions. A nonlinear relationship is found between τ and t . It
is noticed that the KS-transformation reduces the order of
the pole from five to three at the point of singularity of the
governing equations of motion, whereas it reduces a pole of
order three to a simple pole for the classical CR3BP.
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