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Abstract The distance from the Sun to the center of the
Galaxy R0 remains a fundamental parameter for Galactic
structure. This study uses 105,275 G, K, and M stars of
all luminosity classes with position, parallax, and proper
motion taken from the Hipparcos catalog and radial ve-
locities from the Wilson and Strasbourg Data Center cata-
logs. The nonlinear kinematical equations of condition are
solved by the Nelder-Mead simplex algorithm and give
R0 = 7.64 ± 0.09 kpc. At a confidence level of 90 % one
can assert the randomness of the residuals and shows that
the kinematical model yields satisfactory results.

Keywords Galaxy: dynamics and kinematics · Methods:
data analysis · Numerical

1 Introduction

The distance to the Galactic center R0 represents the most
fundamental parameter for the study of Galactic structure,
kinematics, and dynamics. I have already determined R0 by
use of the OB stars (Branham 2014) and the AF stars (Bran-
ham 2015). To use the remaining spectral classes seems in-
dicated, but first perhaps an explanation why the stars should
be grouped into OB, AF, and GKM divisions should be
made.

There is a significant difference in the kinematics of the
OBAF stars and the GKM stars manifested in Parenago’s
discontinuity. Table 1 shows this discontinuity for the giant
stars; the jump in magnitude of the axes of the velocity ellip-
soid between F III and G III is striking. Dehnen and Binney
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Table 1 Parenago’s discontinuity for giant stars

Spectral type σx σy σz Reference

O-B5 III 32.44 26.16 18.71 Branham (2006)

B6–B9 III 39.25 10.83 14.07 Branham (2009a)

A III 26.95 23.08 16.46 Branham (2009a)

F III 36.89 24.66 17.97 Branham (2010)

G III 51.78 42.81 28.45 Branham (2011)

K III 50.58 42.42 32.92 Branham (2009b)

M III 57.40 45.86 33.84 Branham (2008)

(1998) have shown the same for the main sequence stars. As
for differences between the OB and the AF stars, the former
show a noticeable concentration towards the Galactic plane,
see Fig. 3 in Branham (2014), whereas the latter do not, see
Fig. 5 in Branham (2015). Nor does the Gould belt make a
significant contribution to the AF stars, whereas Gould belt
stars, with different kinematics, must be removed from the
OB stars before determination of R0.

The methodology used in this current study of the GKM
stars is nearly the same as that of my previous studies of the
OB and the AF stars. Much detail, therefore, will be omitted
and the reader referred to these previous investigations. This
current study, like the previous ones, relies on stellar kine-
matics rather than dynamics, which requires that the results
be supported by solid statistics such as tests of randomness.

2 The observational data

The proper motions and parallaxes up to 1 mas used in this
study were taken from van Leeuwen’s (2007) version of the
Hipparcos catalog (ESA 1997), henceforth called simply
the Hipparcos catalog, the radial velocities from the Wilson
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(Nagy 1991) and Strasbourg Data center (Barbier-Brossat
et al. 2000) catalogs. Any star flagged in the Hipparcos cat-
alog as of substandard quality was omitted from considera-
tion. From these catalogs I extracted 49,227 stars with par-
allaxes and proper motions. 6,821 of the stars have radial
velocities for a total of 105,275 proper motions and radial
velocities. Smith and Eichhorn (1996) have derived a pro-
cedure to correct observed parallaxes for parallax error, and
this procedure was used to transform all of the parallaxes
used in this study.

The GKM stars show only slight concentration towards
the Galactic plane. Figure 1 shows the 3-dimensional distri-
bution of the rectangular coordinates. Calculate a moment
matrix M , a matrix referred to the centroid of the distances,
x̄, ȳ, z̄, from the x, y, z. Let Xi = (xi − x̄), Yi = (yi − ȳ),
Zi = (zi − z̄), . . . . Then

M =
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The matrix is symmetric because
∑

i XiYi =∑
i YiXi, . . . . An eigenvalue–eigenvector decomposition of

this matrix yields the following array:

Direction x Direction y Direction z

l −80.◦04 63.◦33 −0.◦54
b 29.◦96 −54.◦32 17.◦55
λ 1767.74 1420.11 1267.45.

The z eigenvalue is less prominent than the others, but not
strikingly so. The latitude of the z-component shows that the
distribution has little orientation towards the north Galactic
pole. There is also little correlation among the x, y, and z

directions, respectively −2.9 %, −5.0 %, and 9.4 %. The
GKM stars, therefore, constitute a homogeneous sample.

3 The reduction model

The origin of the kinematical equations of condition can be
found in Branham (2014, 2015) as well as the reason why
cylindrical or spherical coordinates are not used. The equa-
tions, given in the previous publications but nevertheless re-
peated here for benefit of the reader, contain 14 unknowns,
shown in Eq. (2). ṙ denotes radial velocity in km s−1, μl

proper motion in Galactic longitude in milli-arc-sec (mas)
per year, μb proper motion in latitude in the same units, κ

a constant with value 4.74047 km s−1 yr, and π the parallax

Fig. 1 Space distribution of GKM stars

in mas.

π2ṙ = πA sin 2l cos2 b

+ cos3 b sin l
(−A/R0 + c1 + 4c2 tan2 b

)
/4

+ cos3 b sin 3l(3A/R0 + c1)/4

+ π2(X cos l cosb + Y sin l cosb + Z sinb)

+ π2K + π2 sin2 b∂W/∂z + sin2 b∂2W/∂z2/2

+ πA1 cos 2l cos2 b + πA2 cos2 b

− C cos3 b sin l cos2 l;
kπμl = πA cos 2l + πB + cosb cos l

(−3A/R0 + 3c1

+ 4c2 tan2 b
)
/4 + cosb cos 3l(3A/R0 + c1)/4

+ π2(−X sin l + Y cos l) − πA1 sin 2l

− C cos2 b cos3 l,

(2)

κπμb = − tanb
[
πA sin 2l cos2 b + cos3 b sin l

(−A/R0

+ c1 + 4c2 tan2 b
)
/4 + cos3 b sin 3l(3A/R0

+ c1)/4
] + π2(−X cos l sinb − Y sin l sinb

+ Z cosb) + cosb sin2 b∂2W/∂z2/2

− π sinb cosb∂W/∂z + C sinb cos2 b sin l cos2 l.

In these equations A and B are the familiar Oort con-
stants, R0 the distance to the Galactic center, c1 = 1/2∂2V0/

∂R2, c2 = 1/2∂2V0/∂z2, where V0 is the circular velocity
of rotation at the Sun’s distance, X,Y,Z the components of
the reflex solar velocity, and K a K term for possible sys-
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tematic effects in the radial velocity, putatively significant
only for the early stars, but this must be demonstrated for
the GKM stars rather than assumed. If W denotes velocity
perpendicular to the Galactic plane, then to allow for cou-
pled motion in the plane and perpendicular to it we add two
more unknowns, ∂W/∂z and ∂2W/∂z2. To allow for a pos-
sible expansion of the Galaxy Smart (1968, pp. 303–305)
introduces the terms e0 = Ṙ0/R0 and ė0 = de0/dR0. These
two terms allow for bulk motion towards or away from the
Galactic center, and affect the equations of condition in ra-
dial velocity and Galactic longitude. Let A1 = R0ė0/2 and
A2 = A1 + e0. A further term, which can also be called an
Oort constant, C may be added that indicates a displacement
of the system of longitudes from the direction to the Galactic
center. With the C term in lieu of A we use

√
A2 + C2, and

the longitude offset l1 from the direction to the center of the
Galaxy becomes l1 = 1/2 tan−1(−C/

√
A2 + C2). Because

the distance enters in the denominator, the equations become
nonlinear. Notice that because of the units of π, ṙ,μl,μb ,
and κ , the dimensions of the residuals from Eq. (2), de-
fined as the right-hand-side minus the left-hand-side, will
be mas2 km s−1. It is convenient, however, for reason ex-
plained in Branham (2014) to multiply Eq. (2) by R0, which
converts the residuals to mas km s−1.

The success of the kinematical model depends on the be-
havior of the post-fit residuals and in particular their ran-
domness. A mean squared successive difference test, also
known as the Durbin-Watson statistic, measures the se-
rial correlation of a residual with its successor (Wonna-
cott and Wonnacott 1972, pp. 411–413). A different test,
based on runs of the residuals, explained in Knuth (1981,
pp. 65–67), and implemented in the IMSL Numerical Li-
braries “DRUNS” routine (www.roguewave.com), calcu-
lates a covariance matrix, and a chi-squared statistic for the
probability of the null hypothesis: the residuals are random.
The test relies on a covariance matrix calculated from a se-
quence of the runs, from the longest to the shortest. Too few
or too many variables will be manifested by lack of random-
ness in the residuals. Good randomness also indicates less
probability of systematic error.

Eichhorn’s efficiency (Eichhorn and Xu 1990) also be-
comes useful. The efficiency varies from 0 for statistically
dependent variables to 1 for complete independence; the
closer to 1 the better.

The randomness of the residuals and Eichhorn’s ef-
ficiency are good indicators whether one can determine
well R0, falls within the range 6.5–9.5 kpc for post-1980 de-
terminations (Francis and Andersen 2014), from a group of
stars whose distances are generally less than 1 kpc. Random-
ness and high efficiency imply that the kinematical model is
reliable and thus the distance determined trustworthy. Accu-
rate data contribute to good randomness and high efficiency.
I have already commented on the high quality of the Hip-
parcos proper motions (Branham 2009b), which allow one

Table 2 First approximation to solution

Unknown Value

A km s−1 kpc−1 14.66

B km s−1 kpc−1 −8.62

R0 kpc 8.00

1/2∂2V0/∂R2
0 km s−1 kpc−2 −90.80

1/2∂2V0/∂z2 km s−1 kpc−2 −412.45

X km s−1 −11.00

Y km s−1 −11.00

Z km s−1 −8.00

K km s−1 0.00

∂W/∂z −15.36

∂2W/∂z2 −479.36

A1 mas km s−1 −0.80

A2 mas km s−1 11.38

C 0.◦00

to calculate the velocity ellipsoid for the K giants without the
need for a K2 correction term (Trumple and Weaver 1962,
pp. 375–377). The parallaxes also have a close to Gaussian
error distribution (ESA 1997) and thus conform to one of
the assumptions for an optimal least squares solution (Bran-
ham 1990, pp. 74–76). One may infer, therefore, that the
data entering into Eq. (2) are of good quality.

4 The solution

Because R0 occurs in the denominator Eq. (2) becomes a
system of nonlinear equations, but permits a direct deter-
mination of the distance under the assumptions used to de-
rive the equation. One should multiply both sides of Eq. (2)
by R0 (see Branham 2014), which changes the dimensions
of the residuals to mas km s−1. The equations still remain
nonlinear. The Nelder-Mead simplex algorithm (Nelder and
Mead 1965) becomes a good nonlinear method because it
reduces the residuals in any vector norm. One of the input
parameters is the initial size of the simplex, λ, which de-
pends on the scale of the variables being used. For use with
stellar kinematics I have found that λ = 0.1 to λ = 0.001
work well.

As with all nonlinear methods one needs a first approx-
imation to the solution. This comes from a potpourri of
sources, primarily my previous studies of the G, K, and M
giant stars; see Table 1. Table 2 shows the first approxima-
tion.

Unlike previous research with the OB and the AF stars
I have eschewed first calculating an L1 solution, using it
to find weights, and then proceeding to a least squares so-
lutions. Rather, I use least squares from the beginning and
recalculate weights from each iteration; for the first iteration

http://www.roguewave.com
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Table 3 Least squares solution with Welsch weighting

Unknown Value Error

σ(1) mas km s−1 797.47 · · ·
A km s−1 kpc−1 14.01 0.60

B km s−1 kpc−1 −8.24 0.47

R0 kpc 7.64 0.09

V0 km s−1 169.90 5.93

1/2∂2V0/∂R2
0 km s−1 kpc−2 −75.09 76.42

1/2∂2V0/∂z2 km s−1 kpc−2 −341.07 6.08

X km s−1 −11.46 0.12

Y km s−1 −11.47 0.12

Z km s−1 −8.47 0.09

S0 km s−1 18.29 0.19

K km s−1 0.48 0.07

∂W/∂z −12.70 1.10

∂2W/∂z2 −396.39 31.94

A1 mas km s−1 −0.66 0.65

A2 mas km s−1 9.42 2.51

C 0.◦000 83.◦79

the weights are taken as unity. Various weighting schemes
are possible, but my work with the OB stars (Branham 2014)
shows that Welsch weighting works well (Branham 1990,
p. 117). Scale the residuals by the median of the absolute
values of the residuals, r = r/median(|r|), then weight an
individual residual ri by a factor wi given by,

wi = exp(−ri/2.985)2. (3)

How to compute a covariance matrix CV , which permits
calculation of the mean errors and the correlations among
the unknowns, and mean errors for quantities not solved for
directly is found in Branham (2014).

5 Results

The solution was calculated after the norms of the iterates
had converged to within 0.1 of one another. Although there
is no guarantee of global convergence, a question discussed
in my previous publications (Branham 2014, 2015), that the
norm of the final solution differs by 17.3 % from that of
the first approximation demonstrates that the former has not
converged to a local minimum close to the latter. Table 3
shows the final, least squares solution, discussed in the next
section. Figure 2 shows the residuals sorted by both longi-
tude and latitude from this solution, and Fig. 3 shows a his-
togram of the weights. 87.8 % of the weights are greater than
the Fortran double-precision machine epsilon of 2.2×10−16

(the language used in this study), 65.3 % greater than 0.5,
and 48.2 % greater than 0.9.

Fig. 2 Residuals from final solution in longitude and latitude

Fig. 3 Histogram of weights

A runs test shows that the residuals in longitude have a
32.8 % chance of being random and in latitude 22.6 %. The
Durbin-Watson statistic does better, 92.9 % in both coordi-
nates. Because the tests measure different properties of the
residuals, tracking of residuals above and below 0 and se-
rial correlation of one residual with another, concordance
should not be expected. The Durbin-Watson test shows that
at a higher than 90 % confidence the residuals can be consid-
ered random. Although random residuals do not guarantee a
good reduction model, a poor model produces poor residu-
als. Eichhorn’s efficiency of 0.17, although not close to 1, is
far above 0 and implies no redundant unknowns in Eq. (2).

Given the randomness of the residuals and Eichhorn’s ef-
ficiency one may infer that the determination of R0 is sound
even if the bulk of the stars have distances less than 1 kpc.

Although the residuals do not represent temporal series,
we can nevertheless apply spectral analysis to the residuals
sorted first by longitude, see Fig. 4, and then by latitude, see
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Fig. 4 Spectral analysis applied to longitude

Fig. 5 Spectral analysis applied to latitude

Fig. 5. There is no indication of periodicity in either longi-
tude or latitude; the noise is almost pure white noise.

Given this statistical evidence there is little reason, there-
fore, to question the kinematical model represented by
Eq. (2).

6 Discussion

Certain questions arise from a study of Table 3. Mean er-
rors for two of the unknowns, 1/2∂V0/∂R0 and C exceed
the values themselves; this also occurred with the AF stars,
but for three unknowns, and for one unknown for the OB
stars. Should these unknowns be suppressed? The answer
is no. The singular values of the equations of condition,
given in Fig. 6, show that none of them are null; the small-
est is 5 × 1016 larger than the machine ε of 5.4 × 10−20

for the Pentium processor used in the calculations. (This ε

represents the computed value from a Pentium processor us-
ing the floating point unit. The Fortran function epsilon for

Fig. 6 The singular values

many compilers gives the higher value of 2.2 × 10−16 be-
cause these compilers do not take advantage of the extra two
bytes offered by extended precision of the unit.) We can say
that although some of the calculated values lack significance
because of their mean errors, all of the unknowns are nec-
essary for a good solution that exhibits random residuals.
Some of the mean errors may seem on the low side, but this
is a consequence of Eq. (3), which downweights large resid-
uals. If one were to merely use trimmed residuals, an idea
going back to the 19th century (Pierce 1852) and almost uni-
versally used until the mid-20th century, the mean error for
V0 would be 31.7 km s−1. The more modern, robust schemes
such as Eq. (3), however can be defended. Huber (1981) is
a good reference because he has worked with ancient obser-
vations such as Babylonian solar and eclipse observations
with numerous and serious errors that cannot be handled by
merely trimming the residuals.

Table 4 duplicates some of the values for various entities
found in my previous studies of the OB and AF stars plus
this study. The distance to the Galactic center of 7.64 kpc for
the GKM stars falls within the range that Francis and Ander-
sen (2014) list, 135 determinations made between 1918 and
2013 that vary from 5.5 to 16.5 kpc. Notice that all of the
distances, for the OB, the AF, and the GKM stars, fall below
8 kpc. The solar velocity is higher than that found from the
OB and the AF stars, consistent with Table 4 in Branham
(2010) that yields higher solar velocities for the later stars.
(A − B) becomes 22.24 ± 0.82 km s−1 kpc−1, consistent
with values given in Table 5 of Branham (2010). −(A + B)

becomes −5.77 ± 0.71 km s−1 kpc−1, also in the range of
the values given in the same Table 5. The K term is low, al-
though not zero, and diminishes as we go from the early to
the late stars, consistent with what others have found. The
value for C, admittedly with its high mean error, implies
that there is no significant offset in the system of longitudes.
All of this leads me to conclude that the kinematic model
embodied by Eq. (2) remains adequate.
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Table 4 Comparison of
solutions for various spectral
types

Entity OB stars AF stars GKM stars

σ(1) mas km s−1 335.84 2927.35 797.47

A km s−1 kpc−1 16.00 ± 0.36 18.04 ± 1.89 14.01 ± 0.46

B km s−1 kpc−1 −14.17 ± 0.28 −17.85 ± 1.55 −8.24 ± 0.47

R0 kpc 6.72 ± 0.39 7.67 ± 0.07 7.64 ± 0.09

V0 km s−1 203.35 ± 12.00 275.50 ± 18.86 169.90 ± 5.93

K km s−1 3.39 ± 0.20 1.78 ± 0.04 0.48 ± 0.08

S0 km s−1 11.00 ± 0.10 11.00 ± 0.11 18.29 ± 0.19

The calculated values for A1 and A2 give Ṙ0 = 77.00 ±
19.30 km s−1. This implies that the system of GKM stars ex-
pands 1 kpc in ≈1.27 × 107 yr. Such a rapid expansion be-
comes unrealistic and shows the limitations of kinematics;
matters such as an overall expansion of the Galaxy require
dynamics. Although we find, at this moment in time, a sec-
ular trend for R0, we cannot extrapolate this trend to cover
millions of years.

6.1 Conclusion

The distance to the Galactic center determined by 105,275
GKM stars of all luminosity classes is 7.64 ± 0.09 kpc.
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