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Abstract A variety of nonthermal characteristics like ki-
netic, e.g., temperature, anisotropies and suprathermal pop-
ulations (enhancing the high energy tails of the velocity dis-
tributions) are revealed by the in-situ observations in the so-
lar wind indicating quasistationary states of plasma particles
out of thermal equilibrium. Large deviations from isotropy
generate kinetic instabilities and growing fluctuating fields
which should be more efficient than collisions in limiting the
anisotropy (below the instability threshold) and explain the
anisotropy limits reported by the observations. The present
paper aims to decode the principal instabilities driven by the
temperature anisotropy of electrons and protons in the solar
wind, and contrast the instability thresholds with the bounds
observed at 1 AU for the temperature anisotropy. The in-
stabilities are characterized using linear kinetic theory to
identify the appropriate (fastest) instability in the relaxation
of temperature anisotropies Ae,p = Te,p,⊥/Te,p,‖ �= 1. The
analysis focuses on the electromagnetic instabilities driven
by the anisotropic protons (Ap ≶ 1) and invokes for the first
time a dynamical model to capture the interplay with the
anisotropic electrons by correlating the effects of these two
species of plasma particles, dominant in the solar wind.
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1 Introduction

Due to a continuous presence of observational missions in
space, the solar wind is currently exploited as a natural lab-
oratory for studying the plasma mechanisms and effects in-
cluding kinetic instabilities driven locally by the tempera-
ture anisotropy of plasma particles. The existence and via-
bility of these mechanisms of instability are confirmed by
a recent combined analysis of the plasma particle distribu-
tions and the enhanced wave fluctuations observed in the
solar wind, see Gary et al. (2016). Instead, the back effects
of the growing fluctuating fields scattering the plasma par-
ticles and limiting their anisotropy remain controversial, es-
pecially the role played in the relaxation process by the cy-
clotron electromagnetic fluctuations usually dominating the
direction parallel to the stationary magnetic field (Kasper
et al. 2003; Hellinger et al. 2006; Bale et al. 2009).

Driven by an excess of perpendicular temperature
T⊥ > T‖ cyclotron modes grow faster than other instabili-
ties like mirror instability which may develop in the same
conditions. Resonant interactions, i.e., cyclotron resonance
with plasma particles, are therefore expected to be effective
in the relaxation of temperature anisotropy in this case. The
interest to explain these effects and their consequences in the
solar wind has been boosted after the simulations suggested
that the mirror instability is not an effective pitch angle scat-
terer of protons (McKean et al. 1992, 1994; Gary et al. 1993)
and the cyclotron anisotropy instability may be assumed
the primary mechanism to constrain the proton anisotropy
(Gary and Lee 1994). Further confirmation of this constraint
can also be obtained in a straightforward way, namely, by
fitting the instability thresholds predicted by the linear the-
ory with the anisotropy limits reported by the observations
(see explanatory arguments and references in Gary et al.
(1994)). However, the instability thresholds derived from
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simplified models assuming plasma particles bi-Maxwellian
distributed and minimizing the effects of electrons consider-
ing them isotropic, do not provide a good agreement with the
observations. Thus, thresholds of the electromagnetic ion
(proton) cyclotron (EMIC) instability simply do not align
to the limits of the proton temperature anisotropy in the so-
lar wind, but are markedly lower than these limits, which
instead appear to be better described by the thresholds of
the mirror (aperiodic) modes instability (Hellinger et al.
2006). In the opposite case, an excess of parallel temper-
ature T⊥ < T‖ may ignite two branches of firehose instabil-
ity, one destabilizing the electromagnetic cyclotron modes
propagating mainly in the parallel direction but with an op-
posite polarization, i.e., right-handed (RH) if driven by pro-
tons and left-handed (LH) if driven by electrons, and the
other one destabilizing highly oblique and aperiodic modes.
Again, when the firehose thresholds are derived with sim-
plified models the temperature anisotropy in the solar wind
is better constrained by the aperiodic instability (Hellinger
et al. 2006), which, however, cannot undergo cyclotron res-
onant interactions with plasma particles. In both these two
cases, the anisotropy thresholds derived for the instabilities
of cyclotron modes lie below the anisotropy limits reported
by the observations in the solar wind, seeming that the insta-
bility thresholds may be overestimated by using simplified
models for the velocity distributions of plasma particles and
neglecting their interplay. Two distinct classes of mecha-
nisms may be at work in the solar wind generating temper-
ature anisotropies of plasma particles. These are either the
large scale mechanisms like adiabatic expansion (leading
to A = T⊥/T‖ < 1) and magnetic compression (leading to
A > 1), or the small scale heating and acceleration of plasma
particles by their resonant interactions with electromagnetic
fields fluctuations. Large scale mechanisms act in the same
manner on both species, electrons and protons (subscripts e

and p, respectively), expecting to provide a direct correla-
tion between their anisotropies measured in the solar wind,
i.e., both species with Ae,p > 1, or both with Ae,p < 1.
Binary collisions are not efficient enough to reduce the
anisotropy and affect this correlation of the electron and
proton anisotropies, but the small scale mechanisms like the
wave-particle interactions, usually conditioned by the pres-
ence of different wave fluctuations may accelerate plasma
particles preferentially, e.g., in direction perpendicular to
the magnetic field by the cyclotron resonance (leading to
A > 1), or in parallel direction by the Landau (transit-time)
damping (leading to A < 1). Moreover, the electrons mainly
resonate with the high-frequency waves while the protons
react to the low-frequency modes. An anti-correlation be-
tween the electron and proton anisotropies, i.e., Ae ≷ 1 and
Ap ≶ 1, can therefore result from local mechanisms involv-
ing either microinstabilities or damping of small scale fluc-
tuations.

A quantitative analysis with systematic evidences and
estimations of these correlations between the electron and
proton anisotropies in space plasmas is not reported yet,
at least to our knowledge, but some qualitative elements
can however be extracted. Thus, an implication of the large
scale mechanisms in generating temperature anisotropy of
plasma particles seems to be confirmed by the observa-
tions, which show a radial evolution of the temperature
anisotropy from an exclusive A = T⊥/T‖ > 1 at low he-
liocentric distances ∼ 0.3 AU (Matteini et al. 2007), where
the interplanetary magnetic field is more intense, to a dom-
inant A < 1 after the expansion at large radial distances
∼ 1 AU (Kasper et al. 2003; Štverák et al. 2008). On the
other hand, the anisotropy-driven instabilities enhance the
small-scale fluctuations, which may play two distinct roles,
either to maintain the anisotropy correlation of the elec-
trons and protons, e.g., by cyclotron electromagnetic in-
stabilities, or to transfer the free energy between plasma
species, e.g., by firehose instability, and eventually induce
an anti-correlation of their anisotropies. Indeed, radial pro-
file of the temperature anisotropy departs from CGL predic-
tions (Matteini et al. 2007) suggesting perpendicular heat-
ing by wave turbulence, while a parallel cooling may likely
be related to microinstabilities connected with the structure
of the proton velocity distribution function (Hellinger et al.
2013).

The present paper presents an advanced description of
these instabilities on the basis of a refined and, tentatively,
more realistic model, which takes into account the effects
of suprathermal electrons, ubiquitous in the solar wind, as
well as different couplings between the electron and pro-
ton anisotropies. The dispersion formalism is provided in
Sect. 2 on the basis of a Vlasov kinetic approach for a plasma
of electrons and protons described by (bi-)Kappa distribu-
tion functions. Kappa power-laws are generalized models
empirically introduced to describe with accuracy the ve-
locity distributions measured in space plasmas (Vasyliunas
1968; Maksimovic et al. 1997; Christon et al. 1989). Stan-
dard (bi-)Maxwellian models can reproduce only the low-
energy core of the measured distributions, while (bi-)Kappa
can also incorporate the high-energy tails of the distribu-
tions, which are markedly enhanced by the suprathermal
populations. The unstable solutions are discussed in Sect. 3
for different situations mainly conditioned by the interplay
of anisotropic electrons and protons. We focus on the elec-
tromagnetic instabilities driven by the anisotropic protons
and invoke for the first time a dynamical model to in-
clude the effects of anisotropic electrons. In Sect. 4 we con-
trast the instability thresholds with the observations, and
perform a comparative analysis with the previous results
from simplified approaches. Conclusions are presented in
Sect. 5.
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2 Dispersion-stability formalism: transverse
modes

For a collisionless and homogeneous electron-proton
plasma, the electromagnetic modes in a direction parallel
to the stationary magnetic field (k ‖ B) decouple from the
electrostatic oscillations, and their instabilities may display
maximum growth rates, e.g., cyclotron instabilities (Kennel
and Petschek 1966). Provided by a linear Vlasov-Maxwell
dispersion formalism (Krall and Trivelpiece 1973), the dis-
persion relations for these electromagnetic modes read

1 +
∑

α=e,p

ω2
p,α

ω2

[
ω

k uα,‖
Zα,η

(
ξ±
α,η

)

+ (Aα − 1)
{
1 + ξ±

α,η Zα,η

(
ξ±
α,η

)}] = c2k2

ω2
, (1)

where ω is the wave-frequency, k is the wave-number, c

is the speed of light, ω2
p,α = 4πnαe2/mα are the plasma

frequencies for protons (subscript α = p) and electrons
(subscript α = e), Aα = Tα,⊥/Tα,‖ are the temperature
anisotropies, ± denote the circular polarizations, right-
handed (RH) and left-handed (LH), respectively. Zα,η(ξ

±
α,η)

may denote either the plasma dispersion function for (bi)-
Maxwellian (subscript η = M) distributed plasmas (Fried
and Conte 1961), or the modified dispersion function for
Kappa (subscript η = κ) distributed plasmas as derived in
Lazar et al. (2008), and uα,‖ are the corresponding thermal
velocities (Lazar et al. 2015). See Appendix A for the ex-
plicit definitions of these quantities.

Since the presence of anisotropic (Ae �= 1) electrons
can change the dispersive properties of the electromag-
netic modes, including those destabilized by the proton
anisotropy Ap �= 1 (Kennel and Scarf 1968; Lazar et al.
2011; Michno et al. 2014; Shaaban et al. 2015, 2016),
here we propose a dynamical model for the interplay of
the electrons and protons by correlating their temperature
anisotropies Ae,p �= 1, as well as their plasma parallel be-
tas βe,p,‖. Previous studies carried out by Kennel and Scarf
(1968), Lazar et al. (2011), Michno et al. (2014), Shaaban
et al. (2015, 2016) have assumed constant values of the elec-
tron anisotropy Ae and plasma beta βe,‖, independent of
proton properties. On the other hand, our present analysis
includes the effects of the suprathermal populations of elec-
trons, which are ubiquitous in the solar wind.

In order to proceed and make the analysis more transpar-
ent, we rewrite the linear dispersion relation (1) in terms of
normalized quantities
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Ae(ω̃ ∓ μ) ± μ
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√
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k̃
√
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(
ω̃ ± 1

k̃
√

βp,‖

)
(2)

where ω̃ = ω/Ωp , k̃ = kc/ωp,p , μ = mp/me is the pro-
ton/electron mass ratio, βα,‖ = 8πnekBTα,‖/B2 are the par-
allel plasma betas for protons (subscript α = p) or electrons
(subscript α = e). Now we assume that the electron and pro-
ton temperature anisotropies are correlated

Ae = Aδ
p (3)

with a correlation index δ, eventually indicated by the obser-
vations. The correlation index may be either positive δ > 0
when both species have the same type of anisotropy with re-
spect to the stationary magnetic field B, i.e., if Ap ≷ 1 then
Ae ≷ 1, or negative δ < 0, when electrons and protons have
opposite anisotropies, i.e., if Ap ≷ 1 then Ae ≶ 1. In the fol-
lowing calculations our reference is the classical case with
isotropic electrons, i.e., Ae = 1, that here is obtained for a
correlation index δ = 0.0.

3 Unstable solutions: interplay of protons and
electrons

In this section we examine the electromagnetic instabili-
ties driven by proton anisotropies Ap �= 1 under the influ-
ence of anisotropic electrons by means of the correlation-
index δ. For the electrons the velocity distributions mea-
sured in space plasmas may be considerably enhanced by
the suprathermal populations and we therefore consider
them (bi-)Kappa distributed. The proton data invoked in
our analysis is measured by SWE/WIND (Ogilvie et al.
1995) with velocities corresponding to a kinetic energy
in the range of 150 eV to 8 keV excluding suprathermal
populations. In general, the presence of suprathermal pro-
tons is indeed less significant and we can assume the
protons to be more thermalized and bi-Maxwellian dis-
tributed.

We divide our analysis into two distinct classes of insta-
bilities according to the proton anisotropy. First we consider
the instabilities developed by an excess of parallel tempera-
ture, i.e., Ap > 1. Among these, the firehose instability is
the fastest growing mode and is RH circularly polarized
when is propagating in direction parallel to the magnetic
field. In the opposite situation, when protons exhibit an ex-
cess of perpendicular temperature, i.e., Ap < 1, the fastest
developing instability is that of the electromagnetic ion cy-
clotron (EMIC) instability propagating in direction paral-
lel to the magnetic field and with a LH circular polariza-
tion.

3.1 Solar wind protons with Tp,‖ > Tp,⊥

The effects of the new correlation-index δ on the growth
rates of the PFHI are displayed in Fig. 1(a). The unstable
solutions are computed, for Ap = 0.4, βe,‖ = βp,‖ = 3, and
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Fig. 1 Effects of δ-index = −0.37,0.0,1.0 (top), and the
κ-index = 2,3,6,∞ with δ = −0.3 (bottom) on the growth
rates of PFHI instability. The plasma parameters are explicitly given
in each panel

for different values of δ = 1.0,0.0,−0.37 (implying differ-
ent electron anisotropies, respectively, Ae = 0.4,1.0,1.4).
The growth rates display two distinct peaks when the elec-
trons are anisotropic, i.e., δ = 1.0,−0.37. The first peak at
low wavenumbers corresponds to the PFHI, while the sec-
ond peak may represent either the electron FHI (EFHI), see
the solid (red) line, when the correlation-index δ = 1, or the
whistler instability (WI), see the dotted (blue) line, when
the correlation-index δ = −0.37. Driven by an electron
anisotropy Ae < 1 the EFHI propagating parallel to the mag-
netic field is LH circularly polarized and has a frequency in
the range of ωp < ωr � |Ωe|, while the WI is a RH cir-
cularly polarized mode destabilized by the anisotropic elec-
trons with Ae > 1 and with the frequency ωp < ωr < |Ωe|.
Results in Fig. 1(a) show that the growth rates of the PFHI
are inhibited by anisotropic electrons described by a neg-
ative δ-index (implying Ae > 1), while the same growth
rates are stimulated by a positive δ-index (implying Ae < 1).

Fig. 2 Wave-frequencies of the unstable modes in Fig. 1. The plasma
parameters are mentioned in each panel

Physically, under the inhibiting effect of a negative δ < 0
on the PFHI, the instability needs higher values of the
anisotropy Ap or higher values of the parallel plasma beta
βp,‖ to achieve the same growth rate. We should therefore
expect that the PFHI thresholds will move towards higher
values of plasma beta βp,‖, and shape better the anisotropy
limits observed in the solar wind (see Sect. 4). For the op-
posite case, when δ > 0, the instability is stimulated and
threshold conditions should diminish towards lower values
of plasma beta βp,‖.

Based on these premises, the effect of the suprather-
mal electrons is shown in Fig. 1(b) only for a negative
correlation-index δ = −0.3. The growth rates are computed
for Ap = 0.47, βe,‖ = βp,‖ = 2, and for different values of
the power-index κe = 2,3,6,∞. The PFHI growth rates are
suppressed by increasing the suprathermal population, i.e.,
lowering κ , see the subplot (zoomed) in Fig. 1(b), while the
WI growth rates are enhanced. In other words, the inhibit-
ing effect of the anisotropic electrons described by a neg-
ative δ < 0 on the PFHI is enhanced by the suprathermal
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electrons. Moreover, this instability may be completely sup-
pressed with decreasing the power-index, e.g., for κe = 2,
only the WI develops (blue dotted line) at electron scales.
Note that the growth rate of the WI obtained for Ap = 0.47
cannot distinguish from that obtained with isotropic protons
Ap = 1 (not shown here). These new results apparently con-
tradict those obtained by Lazar et al. (2011) in a study of the
PFHI cumulatively driven by the anisotropic protons Ap < 1
and electrons Ae > 1 (see Fig. 5 in Lazar et al. 2011). In their
study the WI growth rates were found to decrease with in-
creasing the electron suprathermal population as a result of
a different Kappa approach with a κ-independent tempera-
ture that recently was proven inappropriate for such an anal-
ysis (Lazar et al. 2015). More results on the kinetic insta-
bilities using approaches with a κ-dependent temperature,
as used in the present paper, can be found in Leubner and
Schupfer (2000, 2001), Lazar et al. (2015), and Shaaban
et al. (2016).

For a complete picture, Fig. 2 displays the real fre-
quencies corresponding to the unstable solutions in Fig. 1.
When the anisotropies of protons and electrons are corre-
lated by a positive δ = 1, i.e., Ae < 1, the wave-frequencies
in panel (a) confirm a conversion of the RH-polarized PFH
modes to the LH-polarized EFH modes (solid red line) by
changing the sign in between the PFHI and EFHI peaks.
At these low frequencies, the LH and Rh branches are rela-
tively close to each other making possible a conversion, de-
termined in this case by the interplay of the PFH and EFH in-
stabilities. Otherwise, the RH branch (which is destabilized
at low frequencies by the PFHI) extends smoothly (mono-
tonically increasing dispersion) to electron scales (dashed
and dotted lines), where the anisotropic electrons with an
anti-correlated anisotropy Ae > 1, as given by a negative
δ = −0.37, may drive the instability of whistler modes
(WI with dotted line). In panel (b) we show that wave-
frequencies corresponding to the growth rates in Fig. 1(b)
are not markedly influenced by the presence of suprather-
mal electrons.

3.2 Solar wind protons with Tp,⊥ > Tp,‖

The electromagnetic ion cyclotron (EMIC) instability is
triggered by the anisotropic protons with Ap > 1 (i.e.,
Tp,⊥ > Tp,‖). This instability develops first in direction par-
allel to the magnetic field, where the EMIC modes are LH
circularly polarized. In Fig. 3(a) we display the growth
rates of this instability driven by a temperature anisotropy
Ap = 1.4 for βe,‖ = βp,‖ = 6, and different values of the
δ = 1.0,0.0,−1.0, with mention that first value δ = 1 is
carefully chosen to produce the same anisotropy of the elec-
trons Ae = 1.4 as in Fig. 1(a). In this case the growth rates
display two peaks only for a negative correlation-index,
e.g., for δ = −1.0 (implying Ae = 0.714) the EMIC peak

Fig. 3 Effect of δ = 1,0.0,−1 (top) and the κ-index = 1.8,2,3,∞
with δ = 0.8 (bottom) on the growth rates of EMIC instability. The
plasma parameters are explicitly given in each panel

obtained at low wavenumbers is followed by the peak of
the EFHI, see solid (red) line. For a positive δ > 0, im-
plying Ae > 1, the WI is absent, as it belongs to another
branch with opposite (RH) polarization and much higher
frequency (ωr 	 Ωp). The EMIC instability is inhibited
by increasing δ from negative values, implying protons and
electrons with anti-correlated anisotropies (Ap > 1, Ae < 1)
to positive values when these anisotropies are correlated
(Ap,e > 1). Therefore, in Fig. 3(b) we describe the influ-
ence of suprathermal electrons only for a direct correlation
of the proton and electron anisotropies by a positive δ = 0.8.
Growth-rates are plotted for a proton anisotropy Ap = 2.7,
the same plasma beta parameter for protons and electrons
βe,‖ = βp,‖ = 0.1, and different values κ = 1.8,2,3,∞. In
the vicinity of the instability threshold level γm/Ωp = 10−2

the instability inhibits by increasing the suprathermal popu-
lation of electrons.

Figure 4 presents the real frequencies corresponding to
the unstable solutions in Fig. 3. Unlike the growth rates,
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Fig. 4 Wave-frequencies of the unstable modes in Fig. 3. The plasma
parameters are mentioned in each panel

the wave-frequencies of the EMIC modes are enhanced by
increasing the correlation index δ, see panel (a). However,
the anisotropy of protons is modest (not very large) and
after the EMIC saturation the wave-frequency changes the
sign, converting to the RH branch under the influence of
electrons, which are expected to manifest important kinetic
effects in this case, due to their high βe,‖ = 6. The same
high value of βe,‖ may stimulate a LH EFHI to develop
(at larger wave-numbers) when the electron anisotropy is
anti-correlated, i.e., δ = −1 (red solid line), and this is con-
firmed by the wave-frequency which becomes again posi-
tive, i.e., LH-polarized. In panel (b) we show that wave-
frequency of the EMIC modes are slightly enhanced by
the presence of suprathermal electrons, but in this case
the effects of electrons are minimal due to their small
βe,‖ = 0.1.

The results in Sects. 3.1 and 3.2 already suggest that in-
stabilities thresholds can be enhanced, namely, by a negative
correlation-index δ < 0 for the PFHI and a positive δ > 0 for

the EMIC instability. An analysis of these thresholds is pre-
sented in Sect. 4.

3.3 Insights from resonance conditions

In these section we will try to identify the physical mecha-
nisms behind these effects. Basic explanations for the elec-
tron anisotropy effects on the PFHI are offered by Ken-
nel and Scarf (1968) and later by Michno et al. (2014),
namely, that for isotropic electrons the protons are weakly
resonant, while for anisotropic electrons with Ae > 1 the
phase velocity is increased and, consequently, the pro-
tons become less resonant leading to lower growth rates
of PFHI. This explanation is confirmed here by study-
ing the resonance conditions |ξ+

p | = | (ω̃ + 1)/(k̃
√

βp,‖)|
given by the arguments of plasma dispersion function in
Appendix A, Eq. (7). We call these quantities resonant
factors, and Figs. 5(a) and (b) display them for protons
and electrons, respectively, for the same plasma param-
eters as in Fig. 1(a). The zoomed plot in Fig. 5(a) pro-
vides details on the proton resonant factor |ξ+

p | for dif-

ferent values of δ-index at wavenumbers k̃ corresponding
to the peaks of the PFHI growth rates as (δ, k̃, |ξ+

p |) =
(−0.37,0.42,2.15), (0.0,0.41,1.98), (1.0,0.5,1.6). It be-
comes now clear that in the presence of anisotropic electrons
with Ae > 1, the resonant factor increases (|ξ+

p | = 2.15 > 1)

and the protons become less resonant with the resulting
PFHI. With increasing the wave-number the resonant fac-
tors |ξ+

p | drops down to a minimum value, and then, for large

enough k̃ > 1 their values rise again since the real frequency
(not shown here) is rapidly increased. For δ = 0.0,−0.37
these minimum values remain above unity. Comparison can
be made to a simplified approach with isotropic electrons,
i.e., δ = 0.0. For a negative correlation-index δ = −0.37
the protons become less resonant (|ξ+

p | > 1) due to a sig-
nificant increase of the real frequency by coupling to the
high-frequency WI with the same RH polarization, see
also Fig. 1(a). As normalized quantities, both the wave-
frequency and the resonant factor remain much larger than
unity with increasing the wave-number. In the opposite case,
namely, for a positive correlation-index δ = 1.0, the EFHI
arises at (slightly) higher wavenumbers, Fig. 3(a), with an
opposite (LH) polarization, i.e., the wave-frequency changes
the sign (Michno et al. 2014). The turning point (singu-
larity given by the cold-plasma resonance 
(ξ+

p ) = 0),
where the resonant factor takes a minimum value |ξ+

p |min =
|γ̃ /(k̃

√
βp,‖)| � 1, is followed by the resonance of protons

with the EFHI, i.e., |ξ+
p | ∼ 1, and with increasing the wave-

number the resonant factor increases again.
Figure 5(b) shows the electron resonant factor |ξ+

e | at
wave-numbers corresponding to the peaks of the EFHI and
WI as (δ, k̃, |ξ+

e |) = (1.0,6.85,3.6), (−0.37,18.5,1.06).
The electrons are clearly non-resonant with the EFHI since
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Fig. 5 The resonant conditions for protons |ξ+
p | (top) and electrons

|ξ+
e | (bottom) for the same plasma parameters in Fig. 1(a)

|ξ+
e | > 1, and strongly non-resonant near the peak of the

PFHI where |ξ+
e | 	 1. However, the electrons become res-

onant with the WI when |ξ+
e |� 1.

Additional insights can be provided for the EMIC in-
stability in order to understand the recent results which
show that anisotropic electrons with Ae > 1 may increase
the wave-frequency of these modes but inhibit the growth
rates of the instability (Shaaban et al. 2015), while these
effects are stimulated by the suprathermal electrons (Shaa-
ban et al. 2016). Our dynamical model which correlates
the main kinetic properties of protons and electrons re-
confirms these effects, e.g., in Fig. 3. The resonant fac-
tors for protons (|ξ−

p |) and electrons (|ξ−
e |) are plotted

in Fig. 6, panels (a) and (b), respectively. These factors
are computed for the same parameters as in Fig. 3(b) to
show the influence of suprathermal electrons quantified by
the power-index κ = 1.8,2,3,∞. For protons, four values
of the resonant factor are explicitly given corresponding
to the peaks of the EMIC growth rates as (κe, k̃, |ξ−

p |) =

Fig. 6 The resonant conditions for protons |ξ−
p | (top) and electrons

|ξ−
e | (bottom) for the same plasma parameters in Fig. 3(b)

(1.8,1.705), (0.78,1.675), (0.81,1.62), (0.825,1.598). Ac-
cording to the zoomed plot in Fig. 6(a), the protons become
less resonant (|ξ−

p | = 1.705) with increasing the suprather-
mal population of electrons (κe = 1.8), which explains the
inhibiting effect of the EMIC instability. Note that max-
imum growth rate for κe = 3 is near the threshold level
γm/Ωp = 10−2, and the corresponding value of the pro-
ton resonant factor |ξ−

p | = 1.62 is in a good agreement with
the results obtained by Gary and Lee (1994). The proton
resonant factor |ξ−

p | = | (ω̃ − 1)/(k̃
√

βp,‖)| decreases with
increasing the wave-number until is drops abruptly down
reaching a minimum value |ξ−

p |min = |γ̃ /(k̃
√

βp,‖)| � 1
at the turning point (singularity of cold-plasma resonance

(ξ−

p ) = 0). Beyond this point the real frequencies are satu-
rated and the modes are strongly damped with an increasing
damping rate −γ̃ , making the proton resonant factor (as ab-
solute value) to increase.

Figure 6(b) shows that the electrons are highly non-
resonant near the peaks of the EMIC instability, with
|ξ−

e | 	 1, and remain non-resonant |ξ−
e | � 10, even for
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Fig. 7 The influence of the correlation-index δ = 0.0,−0.5,−0.8
(top), and the power-index κ = 3,6,∞ with δ = −0.5 (bottom) on
the PFHI thresholds (γm = 10−3Ωp). Thresholds are compared with
the proton (core) anisotropy at 1 AU in the solar wind and the plasma
parameters are explicitly given in each panel

the wave-numbers corresponding to the electron scales. It
becomes also clear that the EMIC branch cannot connect
to the high-frequency whistler (electron cyclotron) modes,
which have a different (RH) polarization and which is res-
onantly destabilized by the (anisotropic) electrons, e.g., the
whistler instability (WI) discussed above, also known as the
electron-cyclotron instability.

4 Instabilities thresholds vs. observations

The anisotropy thresholds may provide a straightforward
confirmation for the constraining role played by the kinetic
instability in collision-poor plasmas from space, namely,
when these thresholds fit the limits of the temperature
anisotropy reported by the observations. Derived for differ-
ent levels of maximum growth-rates γm/Ωp = 10−3,10−2,

10−1 and for an extended range of the plasma beta parame-
ter 0.005 � βp,‖ � 100, the instability thresholds may also

Fig. 8 Thresholds conditions (γm = 10−3Ωp) for the EMIC instability
compared with the proton (core) anisotropy at 1 AU in the solar wind.
The plasma parameters are explicitly given in each panel

provide a general picture of the instability and the new ef-
fects triggered by the interplay of electrons and protons. In
the present work we analyze the isocontours of anisotropy
thresholds (Ap) derived for γm = 10−3Ωp (a sufficiently
low level also adopted in similar investigations), and rep-
resented as an inverse correlation law of the proton plasma
beta βp,‖ (Hellinger et al. 2006)

Ap = 1 + a

(βp,‖ − β0)b
. (4)

For the instability thresholds derived in Figs. 7–9 fitting pa-
rameters a, b, and β0 are tabulated in Tables 1 and 2 in
Appendix B. The standard inverse correlation introduced by
Gary and Lee (1994) may be recovered for β0 = 0. Thresh-
olds are compared with the observations in the slow solar
wind (vsw � 600 km/s), i.e., protons measured by SWE
(Ogilvie et al. 1995) and MFI (Lepping et al. 1995) on the
WIND spacecraft at 1 AU (Kasper et al. 2002; Hellinger
et al. 2006; Michno et al. 2014).

The PFHI thresholds are displayed in Fig. 7, in panel (a)
for different correlation-indices δ = 0.0,−0.5,−0.8 (im-
plying different electron anisotropy Ae = Aδ

p), and in
panel (b) for different power-indices κe = 3,6,∞ and same
δ = −0.5. Simplified approaches usually adopt δ = 0.0
when the electrons are assumed isotropic Ae = 1 (blue dot-
ted line in Fig. 5(a)). The inhibiting effect obtained for a
negative correlation index δ < 0 (i.e., Ae > 1), see Fig. 1(a),
is confirmed by the thresholds with δ = −0.5,−0.8 moving
towards higher values of the proton plasma beta βp,‖. By in-
creasing this anti-correlation between protons and electrons,
i.e., decreasing negative values of δ, the instability thresh-
olds are enhanced and can markedly improve their fit with
the limits of the temperature anisotropy observed in the so-
lar wind. In the second panel (b) we can observe that these
thresholds are further boosted by the suprathermal electrons:
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for lower values of κe the PFHI thresholds are moved to
higher plasma beta exceeding the limits observed for the
proton anisotropy confirming the results in Fig. 1(b).

Figure 8 shows the influence of the anisotropic elec-
trons with Ae > 1 on the EMIC instability, and compares
to the idealized case with isotropic electrons (Ae = 1, dot-
ted blue line). For βe,‖ = βp,‖ the instability thresholds do
not change much to improve fitting to the observations, even
for δ = 1 (i.e., Ap = Ae), see the short-dashed (orange)
line. However, Shaaban et al. (2015, 2016) have recently
shown that inhibiting effect induced by the anisotropic elec-
trons is stimulated by increasing βe,‖. Thus, for an aver-
age value βe,‖ = 1 indicated by the observations (Štverák
et al. 2008), also commonly invoked in similar investiga-
tions (Hellinger et al. 2006; Matteini et al. 2013), the EMIC
threshold can increase considerably constraining more ob-
servational data, see dashed (green) line. On the other hand,
the fit with the observations is considerably improved in
the presence of suprathermal electrons, i.e., the instabil-
ity thresholds enhance with decreasing the power-index κe

confirming the results in Fig. 3. In this case, the EMIC
thresholds are plotted for Ae = Ap (i.e., δ = 1), βe,‖ = 1,
κe = 2 (long-dashed brown line), and κe = 1.8 (solid red
line).

For the sake of completeness, Fig. 9 compares the best of
our results with the those obtained by Michno et al. (2014)
for parallel PFHI (Ce = 2), and Hellinger et al. (2006) for
the aperiodic (ωr = 0) instabilities, namely, the aperiodic
proton firehose (APFH) and mirror instabilities. Most inter-
esting appear to be the new instability thresholds obtained
in panel (a) for the EMIC instability in the presence of
suprathermal electrons and with a direct (positive) corre-
lation δ = 1 between the proton and electron anisotropies
(Ae = Ap). These isocontours show a good alignment to
the observations, similar to the mirror instability. The pres-
ence of suprathermal electrons, which are ubiquitous in the
solar wind, is critical and may considerably enhance the
role played by the EMIC instability in the low-beta regimes
(e.g., for κe = 1.8). Moreover, these results are obtained for
a common (average) value of the electron beta parameter,
namely, βe,‖ = 1 indicated by the observational data cu-
mulation (Štverák et al. 2008), and for a direct correlation
of the electron and proton anisotropies given by a positive
δ = 1 > 0. As already explained in the Introduction we do
not dispose of systematic observational analyses to confirm
a direct correlation of electron and proton anisotropies, but
this condition may in general be ensured by the mechanisms
always at work in space plasmas, e.g., solar wind expan-
sion, magnetic focusing, and it seems therefore more plau-
sible than an anti-correlation of the anisotropies. Based on
these arguments, the fits obtained in panel (a) can be consid-
ered robust enough to support the implication of the EMIC
instability in constraining the proton temperature anisotropy

Fig. 9 Thresholds of the aperiodic (ωr = 0) instabilities, i.e., mirror
and the aperiodic PFH (APFH), as provided by Hellinger et al. 2006,
and the instabilities of our periodic modes, i.e., EMIC and PFH, are
compared with the proton core data at 1 AU in the solar wind

and explain the observations. In panel (b) we compare the
new thresholds obtained for the PFHI with those derived by
Michno et al. (2014) or Hellinger et al. (2006) for the APFH
instability, and can conclude that anisotropic electrons may
influence the PFHI thresholds and determine them to align
better to the observations, e.g., the long-dashed brown line
obtained for δ = −0.8. However, in this case the best-
aligned thresholds are conditioned by an anti-correlation be-
tween the proton and electron anisotropies as required by a
negative δ < 0.

5 Conclusions

In a collisionless electron-proton plasma the temperature
anisotropy, and, implicitly, the distribution function should
be regulated by the resulting instabilities and electromag-
netic fluctuations through the wave-particle interaction. For
anisotropic protons, the theory and simulations predict a
dominance of the cyclotron modes driven unstable by the
PFH and EMIC instabilities, which may develop fast enough
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leading to an important pitch angle scattering of protons to-
ward isotropy (Kennel and Scarf 1968; Gary 1992). How-
ever, predictions made by the simplified approaches for
the anisotropy thresholds of these instabilities appear to be
overestimated by comparison to the temperature anisotropy
measured in-situ in the solar wind. Instead, these observa-
tions seem to be better constrained by the aperiodic insta-
bilities, e.g., APFHI and mirror instability (Hellinger et al.
2006).

In this paper we have aimed to resolve this paradigm and
provide more realistic predictions from an advanced model-
ing that accounts for the interplay of protons and electrons,
and the presence of suprathermal electrons. New regimes
are thus found for the PFH and EMIC instabilities, which
are mainly controlled by the cumulative effects of protons
and electrons by correlating either their anisotropies, e.g.,
Ae = Aδ

p , via the parameter δ, or/and their plasma beta pa-
rameters, βe = βp . Similarities and differences among these
regimes are highlighted in Sect. 3, always comparing with
the idealized approaches which consider electrons isotropic,
i.e., δ = 0. We have studied the effects of these correlation
factors on the growth-rates and provided physical explana-
tions by studying the resonant conditions for both the pro-
tons and electrons.

A comparative analysis of these new regimes enabled us
to identify conditions that may inhibit the instabilities and
make their thresholds to adjust better to the observations.
Thus, the PFHI is driven by a proton anisotropy Ap < 1, and
can be inhibited by anisotropic electrons with anti-correlated
anisotropies Ae = Aδ

p > 1 given by a negative δ < 0. In
the opposite situation when protons exhibit a temperature
anisotropy Ap > 1, the EMIC instability is inhibited only for
a positive δ > 0 meaning electrons with a direct correlated
anisotropy Ae = Aδ

p > 1. Moreover, in both these two cases
the inhibiting effect is boosted by the suprathermal elec-
trons. The explanation is provided by the resonant factors,
which indicate that protons become less resonant inhibit-
ing the instability and leading to higher anisotropy thresh-
olds. These results confirm the expectations from the previ-
ous studies carried out by Kennel and Scarf (1968), Lazar
et al. (2011), Michno et al. (2014), Shaaban et al. (2015,
2016).

To provide a complete picture, in Sect. 4 we have stud-
ied the instability thresholds, and recovered the inhibiting
effects on the PFH and EMIC instabilities for an extended
range of the plasma beta parameter 0.005 < βp,‖ < 100.
These thresholds are compared to the proton anisotropy
data observed in the (slow) solar wind at 1 AU. The PFHI
thresholds decrease moving towards higher plasma beta
βp,‖ with decreasing the δ-index and with increasing the
suprathermal electron population. For the EMIC instabil-
ity, the threshold conditions in the low-beta regimes are
only weakly affected by the anisotropic electrons, but can

be significantly lowered by increasing the electron plasma
beta βe,‖ = 1 and the presence of suprathermal electrons.
To conclude, we have identified the conditions for the in-
stability thresholds to align and shape the limits of the
temperature anisotropy reported by the observations. These
agreements with the observations can be even better than
those obtained before for the aperiodic instabilities, but
are highly conditioned by the electron properties, i.e., the
anisotropy (correlated or anti-correlated with the proton
anisotropy), plasma beta parameter, and their suprathermal
populations.

Suprathermal electrons are ubiquitous in space plasmas
but the main question arising now concerns the existence
of the plasma states with protons and electrons having
anisotropies either direct correlated and roughly described
by a positive δ > 0, or anti-correlated by a negative δ < 0.
As already discussed in the Introduction, we do not dispose
of any systematic evidences and estimations of these corre-
lations from the observations, but there are some qualitative
indications which appear to be more favorable to direct cor-
related anisotropies of electrons and protons, i.e., Ae,p > 1
at low heliocentric distances for both species, or Ae,p < 1 at
higher radial distances, again for both species. These states
may naturally result from the large-scale processes which
generate temperature anisotropy in the solar wind, e.g., adia-
batic expansion, magnetic field compression, while the other
states with anti-correlated anisotropies may be established
most probably, locally, by the small-scale mechanisms of
particle energization involving the electromagnetic fluctu-
ations. For a correct interpretation of the kinetic effects,
like dissipation or instabilities, in space plasmas, a self-
consistent treatment of plasma particles and electromagnetic
fluctuations is therefore crucial and needs to be supported
by the observations. From this point of view, the advanced
approach proposed in the present paper may be considered
as an important progress towards a realistic interpretation of
the interplay of electrons and protons and their effects in the
solar wind.
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Appendix A: Distributions and dispersion
functions

For a plasma of electrons and protons with bi-Maxwellian
velocity distribution functions (VDFs)

http://cdaweb.gsfc.nasa.gov/
http://cdaweb.gsfc.nasa.gov/
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Fα,M(v‖, v⊥) = 1

π3/2u2
α,⊥uα,‖

exp

(
− v2‖

u2
α,‖

− v2⊥
u2

α,⊥

)
, (5)

where thermal velocities uα,‖,⊥ are defined by the compo-
nents of the anisotropic temperature

T M
α,‖ = m

kB

∫
dvv2‖Fα(v‖, v⊥) = mu2

α,‖
2kB

(6)

T M
α,⊥ = m

2kB

∫
dvv2⊥Fα(v‖, v⊥) = mu2

α,⊥
2kB

, (7)

the plasma dispersion function in Eq. (1) takes the standard
form (Fried and Conte 1961)

Zα,M

(
ξ±
α,M

) = 1

π1/2

∫ ∞

−∞
exp(−x2)

x − ξ±
α,M

dt, �(
ξ±
α,M

)
> 0 (8)

of argument ξ±
α,M = (ω ± Ωα)/(kuα,‖,)

To include suprathermal population, the electrons can be
described by a bi-Kappa VDF (Summers and Thorne 1991)

Fe,κ = 1

π3/2u2
e,⊥ue,‖

Γ (κe + 1)

Γ (κe − 1/2)

×
[

1 + v2‖
κeu

2
e,‖

+ v2⊥
κeu

2
e,⊥

]−κe−1

(9)

which is normalized to unity
∫

d3vFe,κ = 1, and is written in
terms of thermal velocities ue,‖,⊥ defined by the components
of the effective temperature (for a power-index κe > 3/2)

T K
e,‖ = 2κe

2κe − 3

meu
2
e,‖

2kB

, T K
e,⊥ = 2κe

2κe − 3

meu
2
e,⊥

2kB

. (10)

Suprathermals enhance the electron temperature, and im-
plicitly the plasma beta parameter (Leubner and Schupfer
2000, 2001; Lazar et al. 2015)

T K
e,‖,⊥ = 2κe

2κe − 3
T M

e,‖,⊥ > T M
e,‖,⊥,

βK
e,‖,⊥ = 2κe

2κe − 3
βe,‖,⊥ > βe,‖,⊥,

(11)

and for the modified Kappa dispersion function (8) we use
in Eq. (1) the form (Lazar et al. 2008)

Ze,κ

(
ξ±
e,κ

) = 1

π1/2κ
1/2
e

Γ (κe)

Γ (κe − 1/2)

×
∫ ∞

−∞
(1 + x2/κe)

−κe

x − ξ±
e,κ

dx, �(
ξ±
e,κ

)
> 0, (12)

of argument ξ±
e,κ = (ω ± Ωe)/(kue,‖,).

Appendix B: Fitting parameters for Eq. (4)

Table 1 Fitting parameters for PFH thresholds in Figs. 7 and 9(b)

κ δ a b β0

∞ 0.0 −0.453 0.467 0.652

∞ −0.5 −0.733 0.607 0.293

∞ −0.8 −0.772 0.543 0.709

2 −0.5 −1.849 0.865 0.112

6 −0.5 −0.990 0.707 0.0

Table 2 Fitting parameters for EMIC thresholds in Figs. 8 and 9(a)

κ δ βe,‖ a b

∞ 0 βp,‖ 0.451 0.402

∞ 1 βp,‖ 0.493 0.382

∞ 1 1 0.463 0.495

2 1 1 0.774 0.590

1.8 1 1 1.221 0.579
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