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Abstract We study some scale factor power-law solutions
of the field equations of the extended Gauss Bonnet gravity
in the spatial FRW (Friedmann-Robertson-Walker) universe.
We consider the lagrangian density given by F(R,G) =
f (G) + R + αR2 which exhibits a modification comparing
with the modified Gauss Bonnet gravity. After constructing
the Friedmann equations and finding the power-law solu-
tion we obtain the real valued of our model describing a
mechanism that shows transitions among three stages of the
universe (inflation, deceleration, acceleration) in an unified
way. In particular, in this unified solution we obtained an
inflation model without using any scalar field description
when α > 0, and also we verified our early time inflationary
scenario using observational parameters, i.e. ns , r . Further,
we research for the power-law solution of our model when
the universe is in the phantom phase. Here, it is observed
that the acceleration of the universe in phantom region is
composed of two phases which congruent with the recent
observations.
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1 Introduction

It is seen that the cases of the early time inflation and the late
time acceleration of the universe have been supported by the
recent observational researches (Ade et al. 2014a, 2014b,
2015). In particular, it has been considered the concept of
the dark energy which has a repulsive impact that causes the
current acceleration. However, the observations show that
the structure of the universe consists of 68.3 %’s dark en-
ergy, 26.8 %’s dark matter, and also it spatially is flat. The re-
maining 4 % component of the universe consists of the nor-
mal matter. To explain the dark energy paradigm, Einstein
equation which includes the cosmological constant has been
taken into consideration. However, this approach is not so
sufficient to explain the case because the magnitude of this
constant does not coincide with observation data. Therefore,
the scalar field descriptions have been made by researchers.
Here, while the quintessence phase region of the universe is
defined by a normal scalar field (equation of state parameter
(EOS) is in the range −1 < w < −1

3 ) (Caldwell et al. 1998;
Peebles and Vilenkin 1999) the scalar field that has a neg-
ative sign describes the phantom case (w < −1) (Cald-
well 2002; Nojiri and Odintsov 2003; Cline et al. 2004;
Wei and Cai 2006). In the case w = −1 shows the cos-
mological constant where the expansion of the universe is
a de Sitter type expansion. The early time inflation of the
universe is also explained by defining the scalar field, in
which it is constructed a mechanism that requires a scalar
field. This mechanism tells that the inflation drives from a
false vacuum rolling slowly to a true vacuum. Namely, af-
ter the beginning singularity, this mechanism remarks that
the inflation of the universe is de Sitter type till the radi-
ation era. This picture of the early universe resembles to
the late time cosmic acceleration of the universe. On the
other hand, there are also other alternative approaches to
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explain the cosmic acceleration that one of these is the mod-
ified gravitational theory. One can show the unification of
the early time inflation and the late time acceleration of
the universe by this way. For example, the f (R) gravity,
which a functional form of the Einstein’s term, can describe
this unification. One can take its simplest model such as
f (R) = R + Rn that shows the cosmic inflation if n > 1
or the cosmic acceleration if n < 0 (Nojiri and Odintsov
2003, 2011; Carroll et al. 2004; Sotiriou 2007; Faraoni 2008;
De Felice and Tsujikawa 2010). Transition from the mat-
ter dominant epoch into the late time cosmic acceleration
in f (R) gravity has been shown by Nojiri and Odintsov
(2006) where several realistic models obtained from the the-
ory produce this transition compatible with the solar sys-
tem tests. The unification of the early time inflation with the
late time acceleration of the universe has been studied by
Cognola et al. (2008), where the realistic f (R) models are
considered. The model produces inflation at the large cur-
vature where the model behaves as the cosmological con-
stant. Whereas with the small curvature late time acceler-
ation is shown besides to intermediate universe (decelera-
tion phase regions). Other candidate of the dark energy sec-
tor is the modified Gauss-Bonnet gravity, i.e. R + f (G).
The authors have shown that the late time acceleration of
the universe could be explained by this gravity theory and
by a deceleration phase case as well (Nojiri et al. 2006;
Nojiri and Odintsov 2011), in which it was considered the
power form of the function, i.e. f (G) = Gσ . Furthermore
the ΛCDM model in this gravity was studied by Myrza-
kulov et al. 2011. It has been also shown the late time cos-
mic acceleration in non-minimial coupling scalar field la-
grangian with the f (G) (Sadeghi et al. 2009). Further, the
exact scale factor power-law phantom solutions could be
seen in the literature (Rastkar et al. 2012). Unification of
both the decelerated and accelerated expansion of the uni-
verse was also shown by Goheer et al. (2009) in this grav-
ity theory. In the modified teleparallel gravity including tor-
sion tensor in the functional form f (T ), the exact scale fac-
tor power-law solutions were studied by Setare and Darabi
(2012), and also early time inflationary cases as well (Fer-
raro and Fiorini 2007; Bengochea and Ferraro 2009). On the
other hand, a more general approach in gravity theories is
the f (R,G) gravity theory that includes the curvature scalar
and the Gauss-Bonnet term in the functional form (Cog-
nola et al. 2006). The some cosmological applications on
this gravity were done by (Alimohammadi and Ghalee 2009;
Makarenko et al. 2013; Álvaro and Saez-Gomez 2012), and
the future time singularities were studied by (Bamba et al.
2010; Nojiri and Odintsov 2011), and cosmic acceleration,
as well (Bamba et al. 2013). Furthermore, the unification
of stages of the universe can be realized in a single form
by proposing realistic f (R) and f (G) models consistent
with the local tests and cosmological bounds (Nojiri and

Odintsov 2007a). It is proposed some different f (R), f (G)

and f (R,G) models to show the unification of the early
time inflation with the late time acceleration or the tran-
sition from the deceleration to the acceleration (Nojiri and
Odintsov 2007b), where these models are considered as the
models that verified by the solar system tests. These theo-
ries are candidates for explaining the dark energy paradigm
and the other stages of the universe. In the present work, we
have a model that shows this unification via solving the field
equations of f (R,G) theory in the cases of the phantom and
the non-phantom phase.

In this study, we considered extended Gauss Bonnet grav-
ity, namely f (R,G) gravity theory. We take the F(R,G) =
f (G) + R + αR2 model that is an extended version of the
modified Gauss Bonnet gravity, i.e. f (G) + R where α is
a small constant (Nojiri and Odintsov 2009; Hussain et al.
2012). We constructed the Friedmann equation correspond-
ing to the gravity and obtained the real valued of our model
by considering scale factor power-law solutions for the both
phantom and non-phantom phase cases. It is seen that this
model defines mathematically three stages of evolution of
the universe in a unified form: inflation, deceleration and
the late time cosmic acceleration. Furthermore, without us-
ing scalar field we obtained an inflation model according to
α parameter in this unified solution, and also we verified our
early time inflationary scenario using observational parame-
ters, i.e. ns , r . The paper is organized as follow: In Sect. 2 we
constructed the Friedmann equation of the extended Gauss
Bonnet gravity for spatial FRW geometry; in Sect. 3 we per-
formed the power-law solution of the equation and obtained
the real valued of our model which describes three stages of
the universe in a unified form; in Sect. 4 we demonstrated
that our model has a solution when the universe is in the
phantom region. Finally, in Sect. 5 we summarized our re-
sults.

2 Friedmann equations for F(R,G) gravity

The action integral of the extended Gauss Bonnet gravity is
given as the following (Cognola et al. 2006):

S =
∫

d4x
√−g

[
1

2k2
F(R,G) + Lm

]
. (1)

Here, Lm is lagrangian density of the matter,
√−g is the

determinant of the metric tensor gμν . We will use the FRW
metric with the scale factor a:

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2]. (2)

The Ricci scalar and the Gauss Bonnet term are given as

R = 6
[
Ḣ + 2H 2], G = 24H 2(Ḣ + H 2), (3)
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respectively, where H = ȧ
a

is the Hubble parameter and over
dot represents the time derivative. Varying the action (1)
with respect to the metric tensor the field equations are ob-
tained as the following:

1

2
gμνF (R,G) + ∇μ∇νFR − gμν

(∇2FR

) − RμνFR

− 2RRμνFG − 4FGRμβσνRβσ + 4FGRμ
ρ Rνρ

− 2FGRμ
ρεσ Rνρεσ + 2R

(∇μ∇νFG

)

− 2gμνR
(∇2FG

) − 4Rβμ
(∇β∇νFG

)

− 4Rνβ
(∇β∇μFG

) + 4Rμν
(∇2FG

)

+ 4gμνRρβ(∇ρ∇βFG) − 4Rμρντ (∇ρ∇τFG)

= −k2T μν (4)

where FG = ∂f (R,G)
∂G

, FR = ∂f (R,G)
∂R

, and T μν is the energy-
momentum tensor of matter. We have the Friedmann equa-
tions from (4) as

− 12H 3ḞG + G

2
FG − F(R,G)

2

+ 3
(
Ḣ + H 2)FR − 3HḞR = −k2ρ, (5)

F(R,G)

2
− 1

2
(RFR + GFG) + F̈R + 2HḞR

+ 4H 2F̈G + 8HḢḞG + 8H 3ḞG + (
2Ḣ + 3H 2)FR

= −k2p. (6)

We can write the above equations in the standard Einstein
equations form without cosmological constant (Bamba et al.
2010):

ρek
2 = 3H 2, (7)

pek
2 = −(

2Ḣ + 3H 2), (8)

where,

ρe = 1

FR

{
ρ + 1

2k2

[
12H 2FR − f (R,G) − 6HḞR

+ 6ḢFR − 24H 3ḞG + GFG

]}
, (9)

pe = 1

FR

{
p + 1

2k2

[−12H 2FR + f (R,G) + 4HḞR

− 6ḢFR + 2F̈R − GFG + 16HḢḞG + 16H 3ḞG

+ 8H 2F̈G

]}
(10)

are the effective energy density and pressure, respectively,
that satisfy the conservation law in the FRW universe:

ρ̇ + 3H(ρ + p) = 0, ρ̇e + 3H(ρe + pe) = 0. (11)

One should note that, when f (R,G) = R, ρe = ρ and
pe = p Eqs. (9) and (10) reduce the standard Einstein equa-
tions.

3 Scale factor power law solutions

In this section, we will construct the Friedmann equation.
Next we will realize the scale factor power-law solution of
it. For this purpose when we use the relationship

Z = [
k2(pe − wρe) + 2Ḣ + 3H 2(1 + w)

]
FR, (12)

with we = w = −1 − 2Ḣ

3H 2 , and obtain the following equa-
tion:

4H 2F̈G + 8HḢḞG + 4H 3ḞG(2 + 3w) − G

2
FG(1 + w)

+ F(R,G)

2
(1 + w) + F̈R + HḞR(2 + 3w)

− ḢFR(1 + 3w) − 3H 2FR(1 + w) = Z = 0. (13)

Here, we used the definition of the equation of the state
parameter w = p

ρ
which equals to the effective one. This

means that the w parameter behaves as dark energy when
the universe is in the early time or the late time.

Now, we examine the solutions of Eq. (13). Taking the
lagrangian density as sum of two functions

F(R,G) = f1(G) + f2(R), (14)

and inserting it into Eq. (13) we have

4H 2f̈1G + 8HḢ ḟ1G + 4H 3ḟ1G(2 + 3w) − G

2
f1G(1 + w)

+
[
f1(G)

2
+ f2(R)

2

]
(1 + w) + f̈2R + Hḟ2R(2 + 3w)

− Ḣf2R(1 + 3w) − 3H 2f2R(1 + w) = 0 (15)

for a specific case, this equation can be split into two equa-
tions as (Makarenko et al. 2013; Álvaro and Saez-Gomez
2012)

4H 2f̈1G + 8HḢ ḟ1G + 4H 3ḟ1G(2 + 3w)

+
[
f1(G)

2
− G

2
f1G

]
(1 + w) = 0, (16)

f̈2R + Hḟ2R(2 + 3w) − Ḣf2R(1 + 3w)

− 3H 2f2R(1 + w) + f2(R)

2
(1 + w) = 0. (17)

The lagrangian (14) is generally found by the solutions
of Eqs. (16) and (17). But, since we consider F(R,G) =
f1(G) + R + αR2 model where the function f2(R) is
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clear, we will only solve Eq. (16) and investigate f2(R)

into Eq. (17) that includes quadratic term (which is known
as Staronbinsky model [Starobinsky 1980]). However the
R+αR2 model is in agreement with the Planck data, and the
inflationary cosmology is perfectly realized by this model
(Ade et al. 2014b). In brief, the lagrangian (14) will be de-
termined by f1(G).

Finding an exact solution of Eq. (16) is very difficult
since it includes some higher derivative terms of functions
and Hubble parameter. Therefore, we focus on the scale fac-
tor power-law solutions that given as

a(t) = a0t
h, H = h

t
, (18)

where the ä > 0 denotes acceleration and ä < 0 denotes de-
celeration. Using the solution (18) Eq. (16) can be written in
terms of cosmic time as

4
d

dt

(
g(t)

) − 4
h

t
g(t)

= Nt−3h(1+w) − 54h2(2h − 1)α(1 + w)t−4

+ 3h2(1 + w)t−2, (19)

where N = −k2ρ0a
−3(1+w)
0 and g(t) = H 2ḟ1G. The solu-

tion of this differential equation is

g(t) = − Nt−3h(1+w)+3

4h2[4h + 3hw − 1] + 54(2h − 1)α(1 + w)

4(h + 3)
t−1

− 3(1 + w)

4(h + 1)
t + c1

h2
th+2. (20)

Using the relation G = βt−4 = 24h3(h − 1)t−4, it is ob-
tained the following equation in terms of Gauss Bonnet in-
variant:

f1(G) = A

(
G

β

) 3h(1+w)
4 + B

[
G ln

G

β
− G

]
+ F

(
G

β

) 1
2

+ DG
−h+1

4 + c2G, (21)

where, A = k2ρ0(1+w)β

h2[4h+3hw−1][−3h(1+w)+4][3h(1+w)] ,

B = − 27(2h−1)α(1+w)
8(h+3)

, F = − 3(1+w)β
4(h+1)

and D = 4c1β
h+3

4

h2(h+3)(1−h)
.

Furthermore, it is known that the linear c2 term does not con-
tribute to the field equations, and therefore c2 = 0 (Goheer
et al. 2009). As we mentioned before that the lagrangian (14)
was found by obtaining f1(G). However, we will search the
case of f2(R) = R + αR2 function in Eq. (17). In line with
this, using f2(R) = R + αR2 and Eq. (17) we obtain

Xt−4 + Y t−2 = 0, (22)

with X = 18αh(2h − 1)[4 − 3h − 3hw] and Y = h[−2 +
3h + 3hw]. This equation has a trivial solution given as fol-

lowing:

h1 = 2

3(1 + w)
, (23)

h2 = 4

3(1 + w)
. (24)

While the solution given by (23) denotes the FRW solution,
the other one satisfies super acceleration one (Elizalde and
Saez-Gomez 2009). Note that the EOS parameter obtained
from (12) matches with the solution (23).

Hence the lagrangian (14) is constructed as

F(R,G) = B

[
G ln

G

β
− G

]
+ A

(
G

β

) 3h(1+w)
4 + F

(
G

β

) 1
2

+ DG
−h+1

4 + R + αR2. (25)

This solution is more general a unified solution comparing to
the solution of the modified Gauss Bonnet gravity (Goheer
et al. 2009). To illiterate this for instance,

1. To show Einstein approach in modified Gauss Bonnet
gravity the authors have taken k2ρ0 = 3h2 and h = 2

3(1+w)
,

and concluded that c1 = 0 to make f (G) = 0 (Goheer et al.
2009). Similarly by using (23) and k2ρ0 = 3h2 with α = 0

the expression (25) reduces to F(R,G) = DG
−h+1

4 + R un-
der the requirement c1 = 0 for the Einstein approach. There-
after, when this lagrangian is inserted into Eq. (15) the so-
lution (23) will be found, so that the deceleration phase re-
gions are seen: the radiation (with w = 1

3 ) and the dust (with
w = 0).

2. If c1 �= 0 and α = 0 the real value of DG
−h+1

4 term
can be obtained by using values (23), (24) as f1(G) =
DG

3w+1
12(1+w) or DG

3w−1
12(1+w) , respectively. But, using the value

(24) in (25) brings an uncertainty in the A term. That is why
we use the value in (23). When σ = 3w+1

12(1+w)
, and σ < 0, the

late time acceleration of the universe (−1 < w < −1
3 ) is ex-

hibited. As a result, the lagrangian function can be written
the form F(R,G) = DGσ + R, with α = 0.

3. If c1 = 0 and α �= 0 or the first term dominates the
other terms the solution is reduced to the super accelerated
expansion case, in which the dark energy term is F(R,G) =
B[G ln G

β
− G]. To illustrate this one can put this term

Eq. (16) and obtains

27h2(2h − 1)α(1 + w)(3hw + 3h − 4)

2t4
= 0. (26)

For real value of h with w we have only one solution of
the above equation: h2 = 4

3(1+w)
. So, the function f1(G) =

B[G ln G
β

− G] produces the super accelerated expansion.

However, when the function f2(R) = R + αR2 is inserted
into Eq. (17), Eq. (22) will be found. When the value ob-
tained from (26) is written in (22) the following result will
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Fig. 1 Evolution of F(R,G) versus cosmic time where we fixed h = 3
and taken 0 < t < 1 and α = 10−2. Also, for any value of h in the range
1 < h < 2 the figure exhibits a similar form due to the evolution of the
function relating directly to the cosmic time

be obtained:

8

3(1 + w)
t−2 = 0. (27)

There is one solution of this equation in the FRW universe
which indicates the big bang singularity as w → ∞. As a
result, after the singularity at the beginning one can have the
early time super accelerated inflation model with f1(G) =
B[G ln G

β
− G].

Hence in general the real value of the lagrangian function
should be as follows

F(R,G) = B

[
G ln

G

β
− G

]
+ DGσ + R + αR2, (28)

with the FRW value. This lagrangian provides a transition
mechanism among the three evolution stages of the universe
in unified way:

(i). In the early time universe, the first term dominates to
the other terms where we fixed σ < 0. At the limit t → 0
the F(R,G) has a singularity as F(R,G) → −∞. If α > 0.
Here it should be noted that (1 + w) > 0. When t > 0 this
term increases with time as given in Fig. 1 that correspond-
ing to the inflation.

As we explained in (26) and (27) previously this term in
the function produces a super accelerated expansion. In this
regard (see Fig. 2), for h > 2 the EOS parameter is in the
range −1 < w < −1

3 that there is a quintessence type expan-
sion after the singularity. For 1 < h < 2 the EOS parameter
is in the range of −1

3 < w < 1
3 . Here, we conclude that the

quintessence type-energy should evolve into the known nor-
mal matter-energy form or the known normal matter-energy
should be made from a part of dark energy during the infla-
tion.

Since the EOS parameter is w < 1
3 for h > 1 the infla-

tion continues till the radiation era (h = 1
2 ,w = 1

3 ) where
the B term is zero. Therefore, the universe should pass to a

Fig. 2 Evolution of F(R,G) versus t and the EOS parameter. The
time and the EOS parameter are in the range of 0 < t < 1 and
−1 < w < 1

3 , respectively

new phase in this point and the FRW solution is valid in this
point only. Here we did not use any inflationary scalar field
(Ferraro and Fiorini 2007) or any scalar field description.

On the other hand, we have clarified our approach using
the slow-roll parameters, i.e., ε = − Ḣ

H 2 , η = − Ḧ

2HḢ
which

satisfy the following conditions during inflation (Bamba
et al. 2014; De Laurentis et al. 2015):
∣∣∣∣ Ḣ

H 2

∣∣∣∣ � 1,

∣∣∣∣ Ḧ

HḢ

∣∣∣∣ � 1, (29)

where ε = − Ḣ

H 2 and η = − Ḧ

HḢ
are positive due to Ḣ < 0

and must be very small during the inflation process. Using
Eqs. (9), (10) one can arrive at the following result:

ρe(1 + we)fR − ρ(1 + w)

= 1

2k2

(−2HḞR + 2F̈R + 16HḢḞG

− 8H 3ḞG + 8H 2F̈G

)
. (30)

Inserting the function into the equation above and using the
definition of the EOS parameter from Z relation we obtain
the slow-roll parameters as

ε = 2

h
, η = 4

h
, (31)

where we take w ∼ we for h 	 2 (where the EOS parameter
behaves as the dark energy). The slow-roll conditions given
by (29) are satisfied when h 	 2. Furthermore, the spectral
index ns and the tensor scalar ratio r , which are the observa-
tional parameters, are given as follows (Bamba et al. 2014):

ns − 1 ∼ −6ε + 2η, r = 16ε. (32)

Using the values in (31) one obtains

ns ∼ 1 − 4

h
, r = 32

h
. (33)

For the very large values of h, namely when h 	 2, it can be
obtained the realistic values coming from the observational
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data given by the spectral index and the tensor scalar ratio
ns = 0.9603 ± 0.0073(68%CL) and r < 0.11(95%CL), re-
spectively (Ade et al. 2014a, 2014b). However, for the very
large values of h both the spectral index and the tensor scalar
ratio dominate during the inflation stage, but for 1 < h < 2
the inflation is driven by ns only. To show this cases we will
use the number of e-folds N (because of our inflation model
relating to the cosmic time (see Fig. 1)) given as

N(t) =
∫ te

ti

Hdt, (34)

where ti and te denote the time at the beginning and end-
ing of the inflation, respectively. When we use the Hubble
parameter given by (18) the number of e-folds is found as

N(t) = h(ln te − ln ti ). (35)

The expression given by (33) can be written in the terms of
e-folds as

ns ∼ 1 − 4(ln te − ln ti )

N
, r = 32(ln te − ln ti )

N
. (36)

We define te = 10−m, ti = 10−n and two regions in the in-
flation process, i.e. h > 2 and 1 < h < 2. We also define two
slow-roll parameters corresponding to the regions ε1 and ε2.
When the range of h is evolved from h > 2 into 1 < h < 2
the slow-roll parameter is evolved from ε1 into ε2.

For the first region h > 2, the condition r < 0.11 shows
that n − m < 0.0901 when N = 60. The spectral index ns

is approximately equal to 0.98 when n − m = 0.09, where
we have chosen the initial time of the inflation as 10−3 to
compatible with Fig. 1.

On the other hand, for the second region when we use
Eq. (30) the effective EOS is obtained as we = −1+ 4

3h
. Us-

ing ε, which equals to ε1 we obtain ε1 = 3(we+1)
2 . As we ex-

pressed before (we = w), we expect evolving of we into w,
i.e. we ∼ w after the first region so that ε1 ∼ ε2 showing the
creation of the normal matter. Using the FRW value given
by (23) and ε2 = 3(w+1)

2 , the slow-roll parameters of the sec-
ond region are found as ε2 = 1

h
, η = 2

h
, and are obtained in

the terms of N the spectral index and the tensor scalar ra-

tio as ns ∼ 1 − 2(ln te2 −ln ti2 )

N
and r = 16(ln te2−ln ti2 )

N
, respec-

tively, where te2 = 1 and ti2 = 10−m.m = 2.91 is the begin-
ning time of the second region in the inflation process. When
N ∼ 50ns and r are found as ∼0.74 and ∼2.14, respectively,
and the slow-roll parameters as ε2 ∼ 0.13, η ∼ 0.26. How-
ever, it is known that when the values in (33) equal to or
larger than unity, and N � 50 the inflation stops (Bamba
et al. 2014). Therefore the inflation in the second region is
driven by ns .

Hence it is provided that the first term given by (28) de-
scribes the inflationary universe in the two regions by the
observables parameters ns and r .

On the other hand, some authors argued that for the disap-
pearing of the anti-gravity (namely ghost field) in the early
time universe, it should be α > 0 in the f (R) = αRm model
(Nojiri and Odintsov 2009, 2011) that coincides with our ap-
proach. After the inflation they used α < 0. In this study, we
similarly take α < 0 after the inflation.

(ii). Next, the radiation type expansion occurs with the
Einstein term due to B = 0. However, for dust region h = 2

3
there is not a physical meaning of the second term, and
therefore it has not any impact on this region so c1 = 0.
In this case the Einstein term again dominates to the first
term. Further, for h = 1 the universe is at beginning of ac-
celeration but the acceleration has not started yet. The EOS
parameter is w = −1

3 , and the lagrangian function is still de-
fined by the Einstein term. So, the expansion of the universe
continues with this term.

(iii). If α < 0 and when w < −1
3 , the late time accelera-

tion of the universe occurs with the second term because we
fixed σ < 0.

Hence, we shown that the lagrangian function (28) is
a unified solution which describes transitions between the
phases from the early time inflation to the deceleration and
also the late time cosmic acceleration without using a scalar
field.

4 Phantom solutions

The scale factor and Hubble parameter in this region are
given as follows (Nojiri and Odintsov 2005):

a = a0(ts − t)−h, H = h

ts − t
(h > 0), (37)

where ts indicates Rip time singularity at ts = t (Nojiri and
Odintsov 2005; Bamba et al. 2010). From (3) Ricci scalar
and its derivative and from (11) the energy density are

R = 6h(2h + 1)

(ts − t)2
, Ṙ = 12h(2h + 1)

(ts − t)3
,

ρ = ρ0a
−3(1+w)
0 (ts − t)3h(1+w).

(38)

By following a similar way as we did in the previous section
and by taking h → −h we obtain

f1(G) = Ǎ

(
G

β

)−3h(1+w)
4 + B̌

[
G ln

G

β
− G

]
+ Ď

(
G

β

) 1
2

+ F̌G
h+1

4 + c2G, (39)

finally the lagrangian (14) will be found as
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F(R,G) = Ǎ

(
G

β

)−3h(1+w)
4 + B̌

[
G ln

G

β
− G

]
+ Ď

(
G

β

) 1
2

+ F̌G
h+1

4 + R + αR2, (40)

with c2 = 0. Here Ǎ = k2ρ0a
−3(1+w)
0 (1+w)β

h2[4h+3hw+1][3h(1+w)+4][3h(1+w)] ,

B̌ = − 27(2h+1)α(1+w)
8(h−3)

, Ď = 3(1+w)β
4(h−1)

and F̌ = 4c1β
−h+3

4

h2(h−3)(1+h)
.

The h values are found from Eq. (17):

h1 = − 2

3(1 + w)
, (41)

h2 = − 4

3(1 + w)
. (42)

One can write the real value of the lagrangian (40) as the
following:

F(R,G) = B̌

[
G ln

G

β
− G

]
+ F̌G

3w+1
12(1+w)

+ R + αR2, (43)

this is the solution of our model in the phantom phase. This
lagrangian specifies that the acceleration of the universe is
in two regions:

1. The range − 11
9 < w < −1 is described by the second

term.
2. The case w < − 11

9 is defined by the first term.

Other terms produce the FRW and the super accelerated
values, in which one can investigate the expansion of the
universe in the phase by using these values.

5 Concluding remarks

In this study, we have considered the extended Gauss Bonnet
gravity that its lagrangian is given by F(R,G) = f (G) +
R + αR2. This model is a modification including R2-term
comparing with the modified Gauss Bonnet lagrangian den-
sity i.e., f (G) + R. We have constructed the Friedmann
equation corresponding to the gravity (given in (12)). This
equation is appeared as a differential equation which relates
to the time (given in (19)) with the solution (18). Next, we
discussed the power-law solutions of the equation. By this
way, we have realized the unified solution of our model,
which describes a mechanism that provides transitions be-
tween three stages of the universe (in given (28)). In par-
ticular, in this solution we have obtained an inflation model
that continues into two phase regions;

1. In initial part the universe should completely be filled
with dark energy.

2. During the process it is appearing that a part of this
energy evolves to the normal matter-energy form.

Here, we did not use a scalar field, and the inflation of the
universe is an expansion out of de Sitter type. The function
approaches to zero at the end point of the inflation for any
values of the EOS parameter in the range 1

3 > w > −1, be-
cause the evolution of the function depends only on cosmic
time. However, when the universe passes in the radiation re-
gion the term is zero due to B = 0. Further, we have shown
that our approach for the inflation is realistic by finding ns ,
r indexes. Here, the inflation in the initial part is driven by
the both indexes whereas the second region is driven by ns

only.
It should be noted that, when α > 0 we have obtained the

inflation stage, in which any ghost field (the case of negative
energy density) does not exist, because ρ > 0, p < 0 from
Eqs. (5), (6), where the EOS behaves as the quintessence
type dark energy. In the range of 1 < h < 4

3 the pressure is
greater than zero, so that in this point a part of dark energy
evolves into the normal matter-energy form where the infla-
tion is driven by the spectral index parameter ns . Although
the first term given in (28) contains the ghosts in the stages
out of the inflation it does not affect these stages. Therefore
it does not cause any instability in the space-time.

Next, the universe passes to a new phase where the Ein-
stein term is trivial, so the radiation and dust regions, and
also beginning of the acceleration case are expressed by this
term.

Next, with the real value of the Gauss Bonnet term we
have shown the late time accelerated expansion case if
σ < 0. In other words, the value (23) which is produced
by Eq. (17) tells us that it is necessarily to be a real value

of DG
−h+1

4 term to find the real valued of F(R,G) for
quintessence type acceleration.

Finally, we have demonstrated the solution of our model
if the universe crosses the w = −1 barrier, and in a similar
way as we did previously for non-phantom case, we have
found the real valued of our F(R,G) model with the value
(43) that shows accelerating universe in two regions:

1. − 11
9 < w < −1,

2. w < − 11
9 ,

that coincides with recent cosmological observations (Ade
et al. 2014a). However, in both cases, the type I (Big Rip)
singularity can occur at ts = t , where a → ∞, ρ → ∞ and
p → ∞ (Nojiri and Odintsov 2005, 2011; Nojiri at al. 2005;
Bamba et al. 2010).

Acknowledgement A.I. Keskin thanks M. Arslan Tekinsoy and
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