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Abstract The planar equilateral restricted four-body prob-
lem where two of the primaries have equal masses is used in
order to determine the Newton-Raphson basins of conver-
gence associated with the equilibrium points. The paramet-
ric variation of the position of the libration points is mon-
itored when the value of the mass parameter m3 varies in
predefined intervals. The regions on the configuration (x, y)

plane occupied by the basins of attraction are revealed us-
ing the multivariate version of the Newton-Raphson iterative
scheme. The correlations between the attracting domains of
the equilibrium points and the corresponding number of it-
erations needed for obtaining the desired accuracy are also
illustrated. We perform a thorough and systematic numer-
ical investigation by demonstrating how the dynamical pa-
rameter m3 influences the shape, the geometry and the de-
gree of fractality of the converging regions. Our numerical
outcomes strongly indicate that the mass parameter is in-
deed one of the most influential factors in this dynamical
system.

Keywords Restricted four body-problem · Equilibrium
points · Basins of attraction · Fractal basins boundaries

1 Introduction

The topic of dynamical systems of few-bodies has always
been one of the most fascinating fields in celestial mechan-
ics and dynamical astronomy. Especially these days, with
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the detection of more than 3500 extra-solar planetary sys-
tems (see http://exoplanets.eu, update: November 3, 2016),
the few-problem strongly attracts the scientific interest.

There is no doubt that one of the most well investigated
versions of the few-body problem is the circular or elliptic
restricted (or not) three-body problem (Szebehely 1967). In
the same vein, the planar restricted four-body problem de-
scribes the motion of a test particle with infinitesimal mass
(with respect to the masses of the primaries) moving inside
the gravitational field of three primary bodies. There are two
main configurations regarding the position of the three pri-
mary bodies: (i) the Eulerian configuration, where all three
primaries lie on the same axis and (ii) the Lagrangian or tri-
angular configuration, where the three primaries always lie
at the vertices of an equilateral triangle. For the latter config-
uration we have the case of the planar equilateral restricted
four-body problem (PERFBP). Usually, for the correspond-
ing configurations we use the term “central configurations”
due to the fact that the accelerations of the three primary
bodies are proportional to the corresponding radius-vectors,
while they are directed toward the common center of gravity
(Marchal 1990).

Over the years, the four-body problem has been used, by
many researchers, for several practical applications, such as
describing real celestial systems. For example: Van Hamme
and Wilson (1986), Kloppenborg et al. (2010) for the ep-
silon Aurigae system, Robutel and Gabern (2006), Melita
et al. (2008) for the Sun-Jupiter-Saturn system, Schwarz
et al. (2009a) for a system of a star, two massive planets
and a massless Trojan, Schwarz et al. (2009b) and references
therein for a system of a star, a brown dwarf, a gas giant and
a massless Trojan, Ceccaroni and Biggs (2010) and refer-
ences therein and Baltagiannis and Papadakis (2013) for the
Sun-Jupiter-Trojan Asteroid, Spacecraft system, Simó et al.
(1995), Jorba (2000), de Almeida Prado (2005), Machuy
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et al. (2007) for the Sun-Earth-Moon system, where the
fourth body can be a space vehicle.

A very interesting topic of the four-body problem is the
location of the periodic orbits (see e.g., Soulis et al. 2008;
Baltagiannis and Papadakis 2011b; Burgos-García and Del-
gado 2013; Álvarez Ramírez and Barrabés 2015). Similarly,
the determination of the position and the stability of the
equilibrium points of the four-body problem is another issue
of great importance (see e.g., Simó 1978; Hadjidemetriou
1980; Michalodimitrakis 1981; Leandro 2006; Papadakis
2007; Baltagiannis and Papadakis 2011a; Papadouris and
Papadakis 2013; Álvarez Ramírez et al. 2015; Singh and
Vincent 2015, 2016).

In dynamical systems knowing the basins of attraction as-
sociated with the equilibrium points is very important since
this knowledge reveals some of the most inartistic prop-
erties of the system. For obtaining the basins of conver-
gence we use an iterative scheme and we perform a scan
of the configuration (x, y) plane in order to determine from
which of the equilibrium points (attractors) each initial con-
dition is attracted by. The attracting domains in several types
of dynamical systems have been numerically investigated.
The Newton-Raphson iterative method was used in Douskos
(2010) to explore the basins of attraction in the Hill’s prob-
lem with oblateness and radiation pressure, while in Zo-
tos (2016a) the multivariate version of the same iterative
scheme has been used to unveil the basins of convergence in
the restricted three-body problem with oblateness and radi-
ation pressure. Furthermore, the Newton-Raphson converg-
ing domains for the photogravitational Copenhagen problem
(see e.g., Kalvouridis 2008), the electromagnetic Copen-
hagen problem (see e.g., Kalvouridis and Gousidou-Koutita
2012), the four-body problem (see e.g., Baltagiannis and Pa-
padakis 2011a; Kumari and Kushvah 2014), the ring prob-
lem of N +1 bodies (see e.g., Croustalloudi and Kalvouridis
2007; Gousidou-Koutita and Kalvouridis 2009), or even the
restricted 2 + 2 body problem (see e.g., Croustalloudi and
Kalvouridis 2013) have been studied.

In this paper we shall work as in Zotos (2016a), thus
following the same numerical techniques and methodology,
and we will try to reveal the Newton-Raphson basins of at-
traction on the configuration (x, y) plane for special case of
the PERFBP where two of the three primary bodies have
equal masses.

The present paper is organized as follows: In Sect. 2 we
present the basic properties of the considered mathemati-
cal model. In Sect. 3 the parametric evolution of the posi-
tion of the equilibrium points is investigated as the value of
the mass parameter m3 varies in predefined intervals. In the
following Section, we conduct a thorough and systematic
numerical exploration by revealing the Newton-Raphson
basins of attraction of the PERFBP with two equal masses

Fig. 1 Equilateral triangular (Lagrangian) configuration of the three
primary bodies, moving in circular orbits around their common
center of gravity. In this case, m2 = 0.25, m3 = 0.05, while
m1 = 1 − m2 − m3 = 0.7

and how they are affected by the value of the mass parame-
ter. Our paper ends with Sect. 5, where the main conclusions
of this work are presented.

2 Presentation of the mathematical model

We consider a system of units where the units of length,
mass and time are taken in such a way so that the sum of the
masses (m1 +m2 +m3), the distance between the primaries
(R) and of course the angular velocity (ω) to be equal to
unity. Consequently, the gravitational constant is G = 1.

Without the loss of generality, we may assume that one
of the primary bodies is located on the positive x axis, at the
origin of time. For describing the motion of the four-body
system, we use axes rotating with uniform angular velocity.
Furthermore, the three primaries move always on the (x, y)

plane, while their mutual distances remain constant with re-
spect to the time (see Fig. 1). In this study, we consider only
circular orbits of the primaries around their common center
of gravity.

The effective potential function in a synodic system of
coordinates is defined as

Ω(x,y) =
3∑

i=1

mi

ri
+ 1

2

(
x2 + y2), (1)

where

ri =
√

(x − xi)2 + (y − yi)2, i = 1,2,3, (2)

are the distances to the respective primaries.
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Under the assumption that the three primaries move al-
ways on the (x, y) plane and the axes are chosen in such a
way so the m1 is on the x axis the coordinates of the pri-
maries are given by the following relations (see also Balta-
giannis and Papadakis 2011b)

x1 = |K|M
K

,

y1 = 0,

x2 = −|K|[(m2 − m3)m3 + m1(2m2 + m3)]
2KM

,

y2 =
√

3

2

m3

m
3/2
2

√
m3

2

M
,

x3 = − |K|
2
√

M
,

y3 = −
√

3

2

1

m
1/2
2

√
m3

2

M
,

(3)

where

|K| = m2(m3 − m2) + m1(m2 + 2m3),

M =
√

m2
2 + m2m3 + m2

3.

(4)

The above-mentioned relations (3) apply for the general
case where m1 �= m2 �= m3. In the special case where m2 =
m3 < 1/2 and of course m1 = 1−2m3 the coordinates of the
centers of the three primaries are: P1(x1, y1) = (m3

√
3,0),

P2(x2, y2) = ((2m3 − 1)
√

3/2,1/2), and P3(x3, y3) =
(x2,−y2).

The equations describing the motion of an infinitesimal
mass (test particle) in the usual dimensionless rectangular
rotating coordinate system read (Moulton 1900)

Ωx(x, y) = ∂Ω

∂x
= ẍ − 2ẏ = x −

3∑

i=1

mi(x − xi)

r3
i

,

Ωy(x, y) = ∂Ω

∂y
= ÿ + 2ẋ = y −

3∑

i=1

mi(y − yi)

r3
i

,

(5)

where dots denote the time derivatives.
In the same vein, the second order derivatives (which

will be needed for the multivariate Newton-Raphson itera-
tive scheme) are written as

Ωxx(x, y) = ∂2Ω

∂x2
= 1 +

3∑

i=1

mi[2(x − xi)
2 − (y − yi)

2]
r5
i

,

Ωxy(x, y) = ∂2Ω

∂x∂y
= 3

3∑

i=1

mi(x − xi)(y − yi)

r5
i

,

Ωyx(x, y) = ∂2Ω

∂y∂x
= Ωxy(x, y),

Ωyy(x, y) = ∂2Ω

∂y2
= 1 −

3∑

i=1

mi[(x − xi)
2 − 2(y − yi)

2]
r5
i

.

(6)

The system of differential equations (5) admits the in-
tegral of the total orbital energy (also known as the Jacobi
integral of motion)

J (x, y, ẋ, ẏ) = 2Ω(x,y) − (
ẋ2 + ẏ2) = C, (7)

where ẋ and ẏ are the velocities, while C is the Jacobi con-
stant which is conserved.

3 Parametric variation of the equilibrium points

It is well known that the necessary and sufficient conditions
for the existence of every equilibrium point are

ẋ = ẏ = ẍ = ÿ = 0. (8)

Therefore, the coordinates of the positions of all the copla-
nar equilibrium points of the PERFBP can be numerically
derived by solving the following system of partial differen-
tial equations
{

Ωx(x, y) = 0

Ωy(x, y) = 0.
(9)

At this point, we would like to emphasize that for the
rest of the paper we shall deal only with the case where
two of the three primaries have equal masses (m2 = m3).
When y0 = 0 the second of Eqs. (5) is fully satisfied because
there are only terms of x2, y2, x3, and y3 which cancel each
other due to the symmetry of the system. Therefore, for the
PERFBP with two equal masses collinear equilibrium points
exist for every possible value of the mass parameter m3. The
coordinates (x0,0) of the collinear equilibrium points are
obtained from the first of Eqs. (5) for y0 = 0.

In Baltagiannis and Papadakis (2011a) it was shown that
the total number of the equilibrium points in the PERFBP
with two equal masses in not constant but it depends on the
value of the mass parameter m3. In particular

– When m3 ∈ (0,0.2882761] there are eight equilibrium
points: two collinear and six non-collinear points (see
panel (a) of Fig. 2).

– When m3 ∈ [0.2882762,0.4402] there are ten equilib-
rium points: four collinear and six non-collinear points
(see panel (b) of Fig. 2).

– When m3 ∈ [0.4403,0.5) there are eight equilibrium
points: four collinear and four non-collinear points (see
panel (c) of Fig. 2).
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Fig. 2 Locations of the positions (red dots) of the equilibrium points
(Li, i = 1,10) through the intersections of Ωx = 0 (green) and
Ωy = 0 (blue), when (a-upper panel): m3 = 0.15, (b-middle panel):
m3 = 0.36, and (c-lower panel): m3 = 0.47. The black dots denote the
centers (Pi , i = 1,3) of the three primary bodies

Fig. 3 The space-evolution of the equilibrium points in the PERFBP
with two equal masses, when m3 ∈ (0,1/2). The arrows indicate the
direction of the movement of both the equilibrium points and the
centers of the primary bodies, as the mass parameter m3 increases.
The black dots correspond to critical values of the mass parame-
ter m3. The meaning of the capital letters, regarding the critical and
asymptotic values of m3, is the following: A: m3 → 0, B: m3 → 0.5,
C: m3 → 0.2882762, and D: m3 → 0.4403

In Fig. 2 we see how the intersections of equations
Ωx = 0, Ωy = 0 define on the configuration (x, y) plane
the positions of the equilibrium points when (a): m3 = 0.15,
(b): m3 = 0.36, and (c): m3 = 0.47.

In this investigation we shall reveal how the mass param-
eter m3 influences the positions of the equilibrium points,
when it varies in the interval m3 ∈ (0,1/2). Our results are
illustrated in Fig. 3, where we present the space-evolution of
all the equilibrium points on the configuration (x, y) plane.
One may observe that as value of the mass parameter m3

tends to zero the equilibrium points L7 and L9, as well as
L8 and L10 move towards the centers P2 and P3, respec-
tively. It is seen that the libration points L2 and L3 emerge
only when m3 ≥ 0.2882762 (L2 and L3 completely coin-
cide for m3 = 0.2882762). Furthermore, at the special case
where m3 → 0.4402 it was found that the equilibrium points
L9 and L10 collide with each other on the x axis and they
disappear for higher values of the mass parameter. Further-
more, it interesting to note that as the value of the mass pa-
rameter tends to 1/2 the libration points L3, L4, L5, and
L6 tend to collide with each other on the x-axis. In fact,
when m3 = 1/2 only five equilibrium points exist since the
PERFBP degenerates to the restricted three-body problem
with equal masses (also known as the Copenhagen prob-
lem). In addition, for m3 → 1/2 the equilibrium points L7

and L8 as well as the centers of the primary bodies 2 and 3
tend to the vertical y axis.

The center of the primary 1 (P1) moves always on the
x axis in the interval (0,

√
3/2), while the centers P2 and

P3 of the primaries with equal masses move on the paral-
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lel lines y = 1/2 and y = −1/2, respectively in the interval
(−√

3/2,0), when the value of the mass parameter varies in
the interval (0,1/2). In the PERFBP with two equal masses
(m2 = m3) the x axis (y = 0) is the only axis of symmetry
(observe in Fig. 3 the symmetry of the parametric evolution
of all points with respect to the x axis).

The stability of all the equilibrium points of the PERFBP
with two equal masses has been numerically investigated in
Baltagiannis and Papadakis (2011a) (see Table 1).

4 The basins of attraction

There is no doubt that the most famous numerical method
for solving systems of equations is the Newton-Raphson
method. This method is also applicable to systems of multi-
variate functions f (x) = 0, through the iterative scheme

xn+1 = xn − J−1f (xn), (10)

where J−1 is the inverse Jacobian matrix of the system
of differential equations f (xn), where in our case it is de-
scribed in Eqs. (9).

With trivial matrix calculations (see e.g., Appendix in
Zotos 2016b) we can obtain the following iterative formu-
lae for each coordinate

xn+1 = xn −
(

ΩxΩyy − ΩyΩxy

ΩyyΩxx − Ω2
xy

)

(xn,yn)

,

yn+1 = yn +
(

ΩxΩyx − ΩyΩxx

ΩyyΩxx − Ω2
xy

)

(xn,yn)

,

(11)

where xn, yn are the values of the x and y coordinates at the
n-th step of the iterative process, while the subscripts de-
note the corresponding partial derivatives of first and second
order of the effective potential function Ω(x,y).

The Newton-Raphson algorithm works as follows: an ini-
tial condition (x0, y0) on the configuration plane activates
the code and the iterative process continues until one of the
equilibrium points of the system is reached, with some pre-
defined accuracy. In most of the cases the successive approx-
imation points create a crooked path line (see Fig. 4). The
initial condition may or may not converge to one of the libra-
tion points which act as attractors. If the crooked path leads
to one of the equilibrium point then the iterative method
converges for the particular initial condition. A Newton-
Raphson basin of attraction1 or convergence (also known

1It should be clarified and clearly emphasized that the Newton-
Raphson basins of convergence should not be mistaken, by no means,
with the classical basins of attraction which exist in dissipative sys-
tems. The difference between the Newton-Raphson basins of conver-
gence and the basins of attraction in dissipative systems is huge. This
is true because the attraction in the first case is just a numerical artifact
of the Newton-Raphson iterative method, while in dissipative systems
the attraction is a real dynamical phenomenon, observed through the
numerical integration of the initial conditions.

Fig. 4 A characteristic example of the consecutive steps that are fol-
lowed by the Newton-Raphson iterator and the corresponding crooked
path-line that leads to an equilibrium point (L6), when m3 = 1/3. The
red dot indicates the starting point P0 with (x0, y0) = (2.9,0.6), while
the blue dot indicates the equilibrium point to which the method con-
verged to. For this particular set of initial conditions the Newton-Raph-
son method converges after 16 iterations to L6 with accuracy of six
decimal digits, while only three more iterations are required for ob-
taining the desired accuracy of 10−15

as attracting region or domain) is composed of all the ini-
tial conditions that lead to a specific attractor (equilibrium
point).

One may claim that knowing the basins of attraction of a
dynamical system is an issue of paramount importance be-
cause these attracting regions may reflect some of the most
important qualitative properties of the system in question.
This can be justified by taking into account the fact that the
derivatives of both first and second order of the effective po-
tential function Ω(x,y) are included in the iterative formu-
lae (11).

For revealing the structures of the basins of attraction on
the configuration (x, y) plane we define a dense uniform
grid2 of 1024 × 1024 initial conditions (nodes), which will
be used as the initial values of the numerical algorithm. The
iterative procedure begins and stops only when an accuracy
of 10−15 regarding the position of the attractors has been
achieved. A double scanning of the configuration plane is
performed in order to classify all the available initial condi-
tions that lead to a specific equilibrium point (or attractor).
While classifying the initial conditions we also record the
number N of required iterations in order to obtain the afore-
mentioned accuracy. It is evident that there is a strong cor-
relation between the required number of iterations and the
desired accuracy; the better the accuracy the higher the re-

2Needless to say the initial conditions corresponding to the three cen-
ters (P1,P2,P3) of the primaries are excluded from the grid because
for these values the distances ri , i = 1,2,3 to the primaries are zero
and therefore several terms of the formulae (11) become singular.
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Fig. 5 (a-left): The Newton-Raphson basins of attraction on the con-
figuration (x, y) plane for the case of three equal masses (m3 =
1/3). The positions of the ten equilibrium points are indicated by
black dots. The color code denoting the ten attractors (equilib-
rium points) is as follows: L1 (magenta); L2 (yellow); L3 (cyan);

L4 (green); L5 (pink); L6 (brown); L7 (blue); L8 (red); L9 (orange);
L10 (purple); non-converging points (white). (b-right): The distribution
of the corresponding number (N) of required iterations for obtaining
the Newton-Raphson basins of attraction shown in panel (a)

quired iterations. In this study we set the maximum number
of iterations Nmax to be equal to 500.

In panel (a) of Fig. 5 we present the Newton-Raphson
basins of attraction when m3 = 1/3, which means that all
three primaries have equal masses. For each basin of con-
vergence we use different color, while the positions of all
the attractors (equilibrium points) are pinpointed by small
black dots. All non-converging points are shown in white.
We observe that in the case of three equal masses there are
two additional axes of symmetry, y = √

3x and y = −√
3x,

along with the y = 0, which exists in the case of two equal
masses. In panel (b) of the same figure the distribution of
the corresponding number (N) of iterations required for ob-
taining the desired accuracy is given using tones of blue.
Looking the color-coded plot in Fig. 5a we may say that the
shape of the basins of convergence corresponding to equilib-
rium points L4, L7, and L8 look like exotic bugs with many
legs and many antennas, while the shape of the basins of at-
traction corresponding to all other libration points look like
butterfly wings.

In the following we shall try to determine how the
mass parameter m3 influences the structure of the Newton-
Raphson basins of attraction, considering three cases regard-
ing the total number and also the type (collinear and non-
collinear) of the equilibrium points.

For the classification of the initial conditions on the (x, y)

plane we will use modern color-coded diagrams. In these di-
agrams, each pixel is assigned a specific color according to
the particular attractor (equilibrium point). The size of the
two-dimensional grids, or in other words the minimum and
the maximum values of x and y, are chosen differently in
each case so as to have a complete view of the basin struc-
tures created by the attractors.

4.1 Case I: two collinear points and six non-collinear
points

Our investigation begins with the case where two collinear
and six non-collinear equilibrium points are present, that
is when 0 < m3 ≤ 0.2882761. In Fig. 6 we present a
large collection of color-coded plots illustrating the Newton-
Raphson basins of convergence for several values of the
mass parameter m3. We observe that the existence of one
very large primary body and two small ones substantially in-
fluences the structure of the attracting basins, with respect to
what we seen earlier in Fig. 5a where all primaries had equal
masses. It is seen that well-formed basins of convergence
cover the majority of the configuration (x, y) plane. How-
ever, the boundaries of all these basins exhibit a highly frac-
tal3 structure and we may say that they behave as a “chaotic
sea”. The meaning of chaos is justified taking into account
that if we choose a starting point (x0, y0) inside these frac-
tal areas we will observe that the choice is highly sensitive.
In particular, even a slight change in the initial conditions
leads to a completely different final destination (different at-
tractor). This implies that in these areas it is almost impossi-
ble to predict from which of the libration points each initial
condition is attracted by.

As the value of the mass parameter m3 increases the
structure of the configuration (x, y) plane changes drasti-
cally. We found that the evolution of the structure of the

3When we state that a domain displays fractal structure we simply
mean that it has a fractal-like geometry however, without conducting,
at least for now, any specific calculations for computing the fractal di-
mensions as in Aguirre et al. (2009).
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Fig. 6 The Newton-Raphson basins of attraction on the configuration
(x, y) plane for the first case, where two collinear and six non-collinear
equilibrium points are present. (a): m3 = 0.0001; (b): m3 = 0.01;
(c): m3 = 0.05; (d): m3 = 0.22; (e): m3 = 0.25; (f): m3 = 0.258;

(g): m3 = 0.26; (h): m3 = 0.275; (i): m3 = 0.2882761. The positions
of the eight equilibrium points are indicated by black dots. The color
code, denoting the eight attractors and the non-converging points, is as
in Fig. 5

(x, y) plane, with respect to the mass parameter m3, does not

follow a specific pattern. On the contrary, we observe sud-

den and completely unpredicted changes which appear even

with a slight change of the value of the mass parameter (see

e.g. panels (f) and (g), where m3 = 0.258 and m3 = 0.26,

respectively).

Looking at Fig. 6(a–i) one may easily observe a very in-

teresting phenomenon related with the extent of the basins

of convergence. Indeed, the extent of the basins of conver-

gence corresponding to non-collinear points is always finite,

while on the other hand the extent of the attracting domains

of the two collinear points, L1 and L4, extends to infinity.
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Fig. 7 The distribution of the corresponding number (N) of required iterations for obtaining the Newton-Raphson basins of attraction shown in
Fig. 6(a–i). The non-converging points are shown in white

In most of the examined cases it is the L1 basins which is
infinite. Additional numerical calculations indicate that for
0 < m3 ≤ 0.2195, 0.248 ≤ m3 ≤ 0.259, and 0.2745 ≤ m3 ≤
0.276 the attracting domain with infinite area corresponds
to libration point L1, while for 0.2196 ≤ m3 ≤ 0.228 and
0.2725 ≤ m3 ≤ 0.274 the basins of convergence correspond-
ing to collinear point L4 are infinite. For all the other values
of m3, always in the range 0 < m3 < 0.2882761, it is nearly
impossible to know beforehand which of the two collinear
equilibrium points dominates with infinite basins of attrac-
tion.

In panel (i) of Fig. 6, where m3 = 0.2882761 (or in other
words, equal to the first critical value of m3), the basins
of convergence are surrounded by a highly chaotic mixture.

This mixture is composed of initial conditions of three types:
(i) initial conditions attracted by L1; (ii) initial conditions at-
tracted by L4; (iii) initial conditions for which the multivari-
ate Newton-Raphson method does not converge to any of the
attractors. These non-converging initial conditions are in re-
ality extremely slow converging points for which the multi-
variate Newton-Raphson method requires more than 500 it-
erations. Indeed, if we increase the maximum allowed num-
ber of iteration from 500 to 5000 we will see that all non-
converging points finally converge, sooner or later, to either
L1 or L4.

The distribution of the corresponding number (N) of it-
erations required for obtaining the desired accuracy is pro-
vided in Fig. 7(a–i), using tones of blue. It is more than ev-
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Fig. 8 The corresponding probability distribution of required itera-
tions for obtaining the Newton-Raphson basins of attraction shown in
Fig. 6(a–i). The vertical dashed red line indicates, in each case, the

most probable number (N∗) of iterations. The blue line is the best fit
for the right-hand side (N > N∗) of the histograms, using a Laplace
probability distribution function

ident that initial conditions inside the basins of attraction
converge relatively fast (N < 20), while the slowest con-
verging points (N > 50) are those in the vicinity of the basin
boundaries. In the same vein, in Fig. 8(a–i) the correspond-
ing probability distribution of iterations is presented. The
definition of the probability P is the following: if we as-
sume that N0 initial conditions (x0, y0) converge to one of
the available attractors, after N iterations, then P = N0/Nt ,

where Nt is the total number of initial conditions in every
color-coded diagram. The blue lines in the histograms of
Fig. 8 indicate the best fit to the right-hand side N > N∗
of them (more details are given in Sect. 4.4).

With increasing value of m3 the most probable number
(N∗) of iterations is reduced from 33 when m3 = 0.0001 to
11 when m3 = 0.22. For m3 > 0.22 the most probable num-
ber of iteration slightly increases up to m3 = 0.26, while
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Fig. 9 The Newton-Raphson basins of attraction on the configura-
tion (x, y) plane for the second case, where four collinear and six
non-collinear equilibrium points are present. (a): m3 = 0.2882762;
(b): m3 = 0.29; (c): m3 = 0.30; (d): m3 = 0.35; (e): m3 = 0.37;

(f): m3 = 0.38; (g): m3 = 0.40; (h): m3 = 0.42; (i): m3 = 0.4402. The
positions of the ten equilibrium points are indicated by black dots. The
color code, denoting the ten attractors and the non-converging points,
is as in Fig. 5

for higher values the tendency is reversed and finally for
m3 = 0.2882761 we have N∗ = 7. Moreover, it was found
that for m3 > 0.26 the range of the probability distribution
of the required iterations significantly increases. Indeed, we
observe in panel (i) of Fig. 8 that for m3 = 0.2882761 al-
most the entire range of available iterations, N ∈ [0,500], is
occupied.

4.2 Case II: four collinear points and six non-collinear
points

We continue our exploration with the case where four
collinear and six non-collinear libration points exist, that
is when 0.2882762 ≤ m3 ≤ 0.4402. The Newton-Raphson
basins of attraction for nine values of the mass parameter
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Fig. 10 The distribution of the corresponding number (N) of required iterations for obtaining the Newton-Raphson basins of attraction shown in
Fig. 9(a–i). The non-converging points are shown in white

m3 are presented in Fig. 9(a–i). We observe that for values
of m3 just above the first critical value (m3 = 0.2882761)

the extent of the basins of attraction corresponding to equi-
librium points L9 and L10 are much higher than all the other
basins except of course for the attracting domain of libration
point L2 which extends to infinity. However, as we proceed
to higher values of m3 the area of the basins of attraction of
equilibrium points L9 and L10 slowly decreases and other
attractors take over the configuration space.

In this case (m3 ∈ [0.2882762,0.4402]) all four collinear
equilibrium points can have infinite basins of attraction,
while those corresponding to non-collinear points always
have finite area. Our calculations reveal that each attractor
with infinite attracting domain dominate in different range

of values of the mass parameter m3. Being more precisely,
we found that

– Attractor L1 has infinite domains when 0.382 ≤ m3 ≤
0.3945.

– Attractor L2 has infinite domains when 0.2882762 ≤
m3 ≤ 0.296, 0.3806 ≤ m3 ≤ 0.3819, and 0.404 ≤ m3 ≤
0.4402.

– Attractor L3 has infinite domains when 0.2961 ≤ m3 ≤
0.372, 0.377 ≤ m3 ≤ 0.3805, and 0.396 ≤ m3 ≤ 0.403.

– Attractor L4 has infinite domains when 0.3721 ≤ m3 ≤
0.3769 and 0.3946 ≤ m3 ≤ 0.3959.

When the value of m3 approaches the second critical value
(0.4402) the area of all finite basins of convergence is re-
duced and therefore we can easily distinguish, through the
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Fig. 11 The corresponding probability distribution of required itera-
tions for obtaining the Newton-Raphson basins of attraction shown in
Fig. 9(a–i). The vertical dashed red line indicates, in each case, the

most probable number (N∗) of iterations. The blue line is the best fit
for the right-hand side (N > N∗) of the histograms, using a Laplace
probability distribution function

color-code diagrams, all the different attracting domains. In-

deed, the bug-like structures of the domains corresponding

to equilibrium points L4, L7, and L8 and the butterfly-wing

shapes of the other basins are again visible. It is interesting

to note that in panel (i) of Fig. 9, where m3 = 0.4402, the

basins of attraction corresponding to libration points L9 and

L10 heavily suppress the attracting domains of the collinear
point L3.

Our computations suggest that in this range of values
of m3 non-converging points are present only when m3 =
0.4402. Even in for this value of the mass parameter how-
ever, the relative fraction of non-converging points is so
small (< 0.01 %) that their presence is almost negligible.
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Fig. 12 The Newton-Raphson
basins of attraction on the
configuration (x, y) plane for
the third case, where four
collinear and four non-collinear
equilibrium points are present.
(a): m3 = 0.4403;
(b): m3 = 0.46; (c): m3 = 0.48;
(d): m3 = 0.4999. The positions
of the eight equilibrium points
are indicated by black dots. The
color code, denoting the eight
attractors and the
non-converging points, is as in
Fig. 5

Once more, these non-converging initial conditions are in
reality extremely slow converging points with N > 500.

In Fig. 10(a–i) we illustrate the distribution of the cor-
responding number (N) of iterations required for obtain-
ing the desired accuracy. Looking at panel (i) of Fig. 10 we
may observe a very strange phenomenon. So far, the lowest
required number of iterations have been identified for ini-
tial conditions inside the basins of attraction. However for
m3 = 0.4402 (see panel (i) of Fig. 10) it is seen all the ini-
tial conditions which are attracted either by L9 or L10 pos-
sess the highest numbers of iteration (N > 50) observed in
this case. At the moment, we cannot give a logical expla-
nation for this phenomenon (the required number of itera-
tions of initial conditions inside the basins of convergence
to be higher than the iterations of the initial conditions in
the vicinity of the basin boundaries) which still remains a
mystery. Perhaps the fact that this case corresponds to the
second critical value of the mass parameter m3 = 0.4402
gives an explanation to this strange and bizarre behavior.

The corresponding probability distribution of iterations is
given in Fig. 11(a–i). The most probable number (N∗) of it-
eration starts at 7 for m3 = 0.2882762, then it increases up to

m3 = 0.38, while for m3 > 0.38 it decreases until it reaches
the lowest observed value, N∗ = 6, for m3 = 0.4402.

4.3 Case III: four collinear points and four
non-collinear points

The last case under consideration concerns the scenario ac-
cording to which the PERFBP with two equal masses has
four collinear and four non-collinear equilibrium points
(0.4403 ≤ m3 < 1/2). In Fig. 12(a–d) we provide the
Newton-Raphson basins of convergence for four values of
the mass parameter m3. In this range of values of m3 the
changes on the configuration (x, y) plane, due to the vari-
ation of the mass parameter, are not so prominent as in the
previous two cases. Thus we decided to present in Fig. 12
only four (instead of nine) color-coded convergence dia-
grams.

As it is seen in Fig. 3 for m3 > 0.4402 the pair of the
non-collinear libration points L9 and L10 disappears. If we
compare the color-coded diagrams shown in panel (i) of
Fig. 9 and in panel (a) of Fig. 12 we will see that their
structure is almost identical with only one major difference:
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Fig. 13 The distribution of the
corresponding number (N) of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 12(a–d).
The non-converging points are
shown in white

for m3 = 0.4403 the L3 attractor has completely assimilated
the basins of convergence of equilibrium points L9 and L10,
which are present for m3 = 0.4402. As the value of the mass
parameter tends asymptotically to 1/2 the following phe-
nomena take place in the configuration (x, y) plane

– The area of the attracting domains corresponding to libra-
tion points L1, L7, and L8 increases.

– The area of the basins of converging of the attractors L5

and L6 seems almost unperturbed.
– The area of the basins of attractions corresponding to L3

and L4 decreases.
– The convergence domain of collinear point L2 is infinite.

In fact, in this case (0.4403 ≤ m3 < 1/2) only the attrac-
tor L2 has infinite attracting domain.

– The shape (bug-like or butterfly wing-like) of all the
basins of attraction remains almost unperturbed.

– In this case, there is no numerical evidence of non-
converging initial conditions, whatsoever.

Looking at panel (d) of Fig. 12, where m3 = 0.4999,
we can numerically verify a statement we made earlier in
Sect. 3. We see that the equilibrium points L3, L4, L5, and
L6 are very close to one another, while they tend to collide
to the limit m3 → 1/2. Now if we plot the corresponding
four basins of convergence with the same color we will ob-
tain a color-code diagram almost identical to that presented

in panel (f) of Fig. 3 in Zotos (2016a), while the only differ-
ence will be its orientation (a rotation by 90◦).

The corresponding number (N) of required iterations
for the desired accuracy is shown in Fig. 13(a–d), while
the probability distribution of iterations is presented in
Fig. 14(a–d). It was found, that for more than 95 % of the
examined initial conditions on the configuration (x, y) plane
the iterative scheme (11) needs no more than 30 iterations
for obtaining the desired accuracy. Furthermore, the average
value of required number (N) of iterations remains almost
constant, N∗ = 6, throughout the range of values of m3.
Only for m3 = 0.4999 it was measured a little bit lower at
N∗ = 5.

4.4 An overview analysis

The color-coded convergence diagrams on the configuration
(x, y) space, presented earlier in Figs. 6, 9, and 12, provide
sufficient information regarding the attracting domains how-
ever for only a fixed value of the mass parameter m3. In or-
der to overcome this handicap we can define another type
of initial conditions which will allow us to scan a continu-
ous spectrum of m3 values rather than few discrete levels.
The most easy configuration is to set on the two coordinates
(x, y) equal to zero, while the initial value of the other coor-
dinate will vary in the interval [−100,100]. This technique
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Fig. 14 The corresponding
probability distribution of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in Fig. 12(a–d).
The vertical dashed red line
indicates, in each case, the most
probable number (N∗) of
iterations. The blue line is the
best fit for the right-hand side
(N > N∗) of the histograms,
using a Laplace probability
distribution function

allows us to construct, once more, a two-dimensional plane
in which the x or the y coordinate is the abscissa, while the
value of m3 is always the ordinate. In panel (a) of Fig. 15
we present the attracting domains of the (x,m3) plane when
m3 ∈ (0,1/2), while in panel (b) of the same figure the dis-
tribution of the corresponding number (N) of required itera-
tions for obtaining the Newton-Raphson basins of attraction
is shown. In panels (c) and (d) of Fig. 15 the correspond-
ing results of the (y,m3) plane are shown. In both cases, the
two critical values of m3, which delimit the three cases, are
indicated using horizontal black dashed lines.

It is interesting to note that when 0.235 < m3 < 0.2882
a highly chaotic layer is present in both types of diagrams.
Therefore, in this interval the task of knowing beforehand
which of the collinear equilibrium points has infinite basins
of attraction is next to impossible. Looking at panels (b)
and (d) of Fig. 15 it becomes more than evident that the vast
majority of initial conditions in this range of values of m3 do
converge to one of the attractors however, after a relatively
high number of iterations (N > 50). Finally, it should be
noted that for about m3 = 0.258 we detected a small portion
of non-converging points. Additional numerical calculations

indicated that these non-converging points are in reality ex-
tremely slow converging points which need more than 500
of iterations in order to reach to one the attractors. A similar
behaviour was also observed for the non-converging points
in Sects. 4.1 and 4.2. In general terms we may say that in all
other regions apart from the interval m3 ∈ (0.235,28882)

the multivariate Newton-Raphson method requires no more
than 30 iterations in order to converge to one of the attrac-
tors.

So far we have discussed the fractality of the several
two-dimensional planes only in a qualitative way. More pre-
cisely, we seen that the highly fractal areas are those in
which we cannot predict from which attractor (equilibrium
point) each initial condition is attracted. On the other hand,
inside the basins of convergence the degree of fractality is
zero and the final state of the initial conditions is well known
and of course predictable. At this point we shall provide a
quantitative analysis regarding the degree of fractality for
the (x,m3) and (y,m3) planes shown earlier in panels (a)
and (c) of Fig. 15, respectively. In order to measure the
degree of fractality we have computed the uncertainty di-
mension (Ott 1993) for different values of the mass parame-
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Fig. 15 The Newton-Raphson
basins of attraction on the
(a-upper left): (x,m3) plane and
(c-lower left): (y,m3) plane,
when m3 ∈ (0,1/2). The color
code denoting the attractors is
the same as in Fig. 5. The
horizontal black dashed lines
indicate the two critical values
of m3. Panels (b) and (d): The
distribution of the
corresponding number (N) of
required iterations for obtaining
the Newton-Raphson basins of
attraction shown in panels (a)
and (c), respectively

Fig. 16 Evolution of the fractal
dimension D0 of the (a-left):
(x,m3) plane and (b-right):
(y,m3) plane of Figs. 15 as a
function of the mass
parameter m3. D0 = 1 means
total fractality, while D0 = 0
implies zero fractality. The red
dashed vertical lines indicate
the two critical values of the
mass parameter m3, which
distinguish between the three
cases regarding the total number
and the type of the equilibrium
points

ter m3, thus following the computational method introduced
in Aguirre et al. (2001). Obviously, this degree of fractality
is completely independent of the initial conditions we used
to compute it.

The evolution of the uncertainty dimension D0 for both
(x,m3) and (y,m3) planes, as a function of the mass pa-
rameter m3, is shown in Fig. 16(a–b). The computation of
the uncertainty dimension was done for only a “1D slice” of

initial conditions of Figs. 15, and for that reason D0 ∈ (0,1).
It is interesting to note that in both types of planes for the
first critical value of m3, that is m3 = 0.2882761, the un-
certainty dimension tends to one. This means that for that
critical value there is a total fractalization of the correspond-
ing planes and the chaotic set becomes “dense” in the limit.
On the contrary, for the second critical value (m3 = 0.4402)

the uncertainty dimension is almost zero. Looking carefully
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both panels of Fig. 15 we may conclude that the highest de-
gree of fractality is observed when 0.16 < m3 < 0.18 and
especially when 0.2 < m3 < 0.2882761. On the other hand
the lowest degree of fractality is measured in the third case
(m3 > 0.4402), where four collinear and four non-collinear
equilibrium points exist.

Before closing this numerical investigation we would like
to shed some light to the probability distributions of it-
erations presented in Figs. 8, 11, and 14. In particular, it
would be very interesting to try to obtain the best fit of
the tails4 of the distributions. For finding the best fit of the
tails we tried several single types of distributions (Laplace,
Maxwell-Boltzmann, Rayleigh, Pascal, Poisson, etc). Our
calculations strongly indicate that in the vast majority of the
cases the Laplace distribution is the best fit to our data. The
only two cases where the Laplace distribution fails to fit the
corresponding numerical data are the cases corresponding to
the two critical values of the mass parameter m3 (see pan-
els (i) in Figs. 8 and 11).

The probability density function (PDF) of the Laplace
distribution is given by

P(N |μ,b) = 1

2b

{
exp(−μ−N

b
), if N < μ

exp(−N−μ
b

), if N ≥ μ,
(12)

where μ is the location parameter, while b > 0, is the diver-
sity. In our case we are interested only for the x ≥ μ part of
the distribution function.

In Table 1 we present the values of the location parameter
μ and the diversity b, as they have obtained through the best
fit, for all cases discussed in Figs. 8, 11, and 14. One may
observe that for most of the cases the location parameter μ

is very close to the most probable number N∗ of iterations,
while in some cases these two quantities coincide. Here we
would like to emphasize that the Laplace distribution is only
a first good approximation to our data. Additional numerical
calculations indicate that if we use a mixture of several types
of distributions, instead of a single type of distribution (i.e.,
the Laplace distribution), the fit is much better. However we
feel that this task is out of the scope and the spirit of this
paper and therefore we did not pursue it.

5 Concluding remarks

The scope of this research paper was to numerically deter-
mine the basins of convergence associated with the equilib-
rium points. In the PERFBP with two equal masses the num-
ber, the position and the type of the libration points strongly
depends on the value of the mass parameter m3. With the

4By the term “tails” of the distributions we refer to the right-hand side
of the histograms, that is, for N > N∗.

Table 1 The values of the location parameter μ and the diversity b,
related to the most probable number N∗ of iterations, for all the studied
cases shown in Figs. 8, 11, and 14

Figure m3 N∗ μ b

8a 0.0001 33 N∗ 5.09905946

8b 0.01 17 N∗ + 1 3.22370099

8c 0.05 13 N∗ 2.86554309

8d 0.22 10 N∗ + 2 3.58862734

8e 0.25 12 N∗ + 2 7.46437951

8f 0.258 13 N∗ + 2 12.84964306

8g 0.26 16 N∗ + 5 11.56009567

8h 0.275 10 N∗ + 6 17.09014571

8i 0.2882761 7 – –

11a 0.2882762 7 N∗ + 4 2.22864018

11b 0.29 8 N∗ + 1 1.55241568

11c 0.30 8 N∗ 1.70743943

11d 0.35 7 N∗ + 1 1.68094743

11e 0.37 11 N∗ 1.66194465

11f 0.38 12 N∗ 2.28836276

11g 0.40 9 N∗ + 1 1.94075381

11h 0.42 7 N∗ 1.93663675

11i 0.4402 6 – –

14a 0.4403 6 N∗ + 1 3.41485683

14b 0.46 6 N∗ + 1 2.44498156

14c 0.48 6 N∗ + 1 2.55876653

14d 0.4999 5 N∗ + 2 3.18349760

help of the multivariate version of the Newton-Raphson it-
erative scheme we managed to unveil the extraordinary and
magnificent structures of the basins of attraction correspond-
ing to the equilibrium points of the dynamical system. These
basins play an important role as they describe how each
point on the configuration (x, y) plane is attracted by the
libration points which act as attractors. Our numerical ex-
ploration revealed how the position of the equilibrium points
and of course the structure of the attracting areas are influ-
enced by the mass parameter m3. Furthermore, we related
the several basins of attraction with the corresponding dis-
tribution of the required number of iterations. To our knowl-
edge, this is the first time that such a thorough and system-
atic numerical investigation, regarding the basins of attrac-
tion, takes place in the PERFBP and this is exactly the nov-
elty as well as the importance of the current work.

The main results of our numerical research are the fol-
lowing:

1. We observed that the change on the value of the mass
parameter m3 mostly influences the shape and the geom-
etry of the basins of attraction when 0 < m3 < 0.4402.
Indeed, in this range it is almost impossible to know be-
forehand the structure of the attracting regions, as even a
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tiny change on the value of m3 leads to a complete dif-
ferent structure on the (x, y) plane. For larger values of
m3 the influence of the same parameter on the attracting
regions is much more milder.

2. In all examined cases the area of the basins of conver-
gence corresponding to the non-collinear libration points
is finite. On the other hand, all four collinear equilibrium
points can have infinite attracting domains. In particular,
it was found that when 0.2882762 ≤ m3 ≤ 0.4402 each
collinear attractor dominate in different ranges of the val-
ues of m3.

3. The iterative method was found to converge very fast
(0 ≤ N < 15) for initial conditions around each equilib-
rium point, fast (15 ≤ N < 25) and slow (25 ≤ N < 50)

for initial conditions that complement the central regions
of the very fast convergence, and very slow (N ≥ 50) for
initial conditions of dispersed points lying either in the
vicinity of the basin boundaries, or between the dense re-
gions of the equilibrium points.

4. In general terms we concluded that the average value of
required iterations (N∗) for obtaining the desired accu-
racy decreases with increasing value of the mass param-
eter. In almost all cases, the Newton-Raphson method,
for more than 90 % of the initial conditions, requires less
than 60 iterations to converge to one of the available at-
tractors.

5. Our calculations strongly suggest that non-converging
points on the configuration (x, y) plane exist only when
0 < m3 < 0.4402. Being more precisely, they appear
mostly for values of m3 just before the two critical values
(m3 = 0.2882761 and m3 = 0.4402). A deeper analysis
on these points revealed the fact that these points are not
true non-converging points. In reality they are extremely
slow converging points which require a huge number of
iterations (N > 500) in order to reach to one of the at-
tractors.

6. In the case where eight equilibrium points exist (two
collinear and six non-collinear) we observed the high-
est degree of fractality, especially when 0.2 < m3 <

0.2882761. On the other hand, in the third case (m3 >

0.4402), where four collinear and four non-collinear
equilibrium points exist, we measured the lowest degree
of fractality.

7. Our tests indicate that our numerical data, corresponding
to the histograms with the probability distributions of the
required iterations, are best fitted by the Laplace proba-
bility distribution function (PDF). Only the cases just be-
fore the two critical values of the mass parameter (which
have long tails) cannot be fitted well by a Laplace PDF.

A double precision code, written in standard
FORTRAN 77, has been deployed for performing all the
required numerical calculations regarding the basins of con-
vergence. For the graphical illustration of the paper, we used

the latest version 11.0 of Mathematica® Wolfram (2003).
For the classification of each set of the initial conditions
on the several types of two-dimensional planes, we needed
about 5 minutes of CPU time using a Quad-Core i7 2.4 GHz
PC, depending of course on the required number of itera-
tions. When an initial condition had converged to one of the
attractors with the predefined accuracy the iterative proce-
dure was effectively ended and proceeded to the next avail-
able initial condition.

Judging by the novel results revealed through the de-
tailed and systematic numerical exploration we believe that
we successfully completed our computational task. We hope
that our investigation and the corresponding outcomes to be
useful in the field of attracting domains in the PERFBP. Tak-
ing into account that the current analysis of the case with two
equal masses was encouraging it is our future plans to study
the general case with three unequal masses. In addition, it
would be highly interesting to try and use other types of it-
erative formulae (of higher order with respect to the classi-
cal Newton-Raphson method) and compare the similarities
as well as the differences of the structures of the basins of
attraction.
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