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Abstract Anisotropic compact star models have been con-
structed by assuming a particular form of a metric func-
tion eλ. We solved the Einstein field equations for deter-
mining the metric function eν . For this purpose we have as-
sumed a physically valid expression of radial pressure (pr ).
The obtained anisotropic compact star model is represent-
ing the realistic compact objects such as PSR 1937 +21.
We have done an extensive study about physical parameters
for anisotropic models and found that these parameters are
well behaved throughout inside the star. Along with these
we have also determined the equation of state for compact
star which gives the radial pressure is purely the function of
density i.e. pr = f (ρ).

Keywords General relativity · Anisotropic fluid ·
Einstein’s field equations · Compact star · Equation of state

1 Introduction

The strong gravity is a very interesting field in the astro-
physics and responsible for several fundamental phenom-
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ena. These phenomenons give the features of diverse char-
acters of the gravitating stars. The simplest equation of
state ρ = 3p + B , where B = 2.28 × 1014 has been con-
sidered by Brecher and Caporaso (1976) for constructing
the first model of quark star. A star forms strange quark
matter having surface density 2.28 × 1014 gm/cm3 with
the maximum mass M = 2.8M�, which was much higher
than the equation of state for baryon matter. Witten (1984)
also obtained the strange star models with maximum mass
M = 2M� and radius R = 11.1 km having bag constant
B = 57.5 MeV fm−3. The first model with realistic equation
of state for strange quark matter was proposed by Haensel
et al. (1986). He has also given the specific property of ac-
cretion on strange stars. In addition, Alcock et al. (1986)
discussed about the creation of strange stars and compared
them with the normal curst. Recently Rahaman et al. (2012)
have determined the strange star models of the equation
of state pr = 1

3 (ρ − 4Bg) with mass M = 1.4M�, radius
R = 6.88 km and surface density ρR = 1.43 × 1015 gm/cm3

for the bag constant Bg = 202.275 MeV fm−3. In recent
years, it has been shown that there is no astrophysical object
which is entirely a perfect fluid. The theoretical investiga-
tions of Ruderman (1972) about more realistic stellar object
shows that the nuclear matter may be locally anisotropic at
least in very high density ranges (ρ > 1015 gm/cm3).

In this situation the anisotropy factor can divide the pres-
sure inside the fluid sphere into two different pressures as
radial pressure and transverse pressure which are orthogonal
to each other. Therefore,the pressure anisotropy is quite rea-
sonable inside any compact stellar model to consider more
realistic objects. In this connection, Gokhroo and Mehra
(1994) have shown that due to anisotropic fluid case the
existence of repulsive force helps to construct compact ob-
jects. On the other hand Kippenhahn and Weigert (1990)
have argued that anisotropy could be introduced due to
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the existence of solid core or due to the presence of type
3A-superfluid. Also the existences of anisotropy in fluid
spheres which is due to different kind of phase transitions
(Sokolov 1980), pion condensation (Sawyer 1972) and ef-
fects of slow rotation inside the star (Silva et al. 2014). It
is noted by Bowers and Liang (1917) that anisotropy might
have non-negligible effects on such parameters like equilib-
rium mass and surface redshift. The theoretical investiga-
tions about the anisotropic compact star models are avail-
able in the literature (Herrera et al. 2004; Herrera and San-
tos 1997; Varela et al. 2010; Rahaman et al. 2015; Ko-
mathiraj and Maharaj 2007, 2011; Murad 2016; Malaver
2014, 2015a,b; Maurya and Gupta 2012a, 2013, 2014). In
addition, Maurya et al. (2015a,b,d, 2016a,b,c) and Singh
et al. (2016a,b), Singh and Pant (2016a,b) have obtained sev-
eral anisotropic compact star models in different approach.
However some other important solutions for compact star
with electric charge are obtained by several authors (Mau-
rya et al. 2011, 2015c; Maurya and Gupta 2011, 2012b;
Pant and Maurya 2012; Ivanov 2010) In this context, the al-
gorithm for generating all spherical symmetric anisotropic
solution has been given by Herrera et al. (2008) and for
charged anisotropic case by Maurya et al. (2015b). Recently
Bhar and Ratanpal (2015) have obtained the anisotropic
model for Matese-Whitman mass function. In this solu-
tion we have noted that the tangential pressure is not al-
ways greater than the radial pressure i.e. pt < pr inside the
star at some points. As the existence of a repulsive force
(in the case in which pt > pr ) allows the construction of
more compact objects while using anisotropic fluid than us-
ing isotropic fluid (Gokhroo and Mehra 1994). For this pur-
pose, we have started with a physically valid metric func-
tion λ(r) = ln(1 + br2) − ln(1 + ar2) to obtain the solu-
tion for the anisotropic compact stars. Next, we have dis-
cussed several physical properties like tangential pressure,
anisotropy factor, casuality condition, TOV equation and
red-shift etc. It is noted by Fig. 8 that the anisotropic factor is
always positive and finite everywhere inside the star. How-
ever, the central density of the compact star PSR 1937 +21
is 1.3347 × 1015 gm/cm3. On the other hand, we have also
done important investigation about the equation of state in
present solution. In this regard, we have determined the EOS
for the anisotropic compact star in Sect. 3.2. As we can see
from Eq. (15), the radial pressure (pr ) is purely the function
of density (ρ). So this relation of pressure and density can
represent the equation of state for present anisotropic com-
pact star models.

The structure of the paper as follows: in Sect. 2, the
spherically symmetric metric and Einstein’s field equation
for anisotropic fluid distribution are discussed. Section 3
includes three subsections (Sects. 3.1, 3.2 and 3.3). In

Sect. 3.1, we proposed new solution for anisotropic com-
pact star and the equation of state to represent the realis-
tic matter in Sect. 3.2. However in Sect. 3.3, we have de-
termined the arbitrary constants and mass function (M) by
using the boundary conditions. Some physical features of
the solution like as equation of state parameters, energy
conditions, Tolman-Oppenheimer-Volkoff (TOV) equation
and effective mass-radius relation with surface red-shift are
given in Sect. 4. At last in Sect. 5, we have presented the
physical analysis and conclusion.

2 The spherical symmetric metric and Einstein’s
field equation for anisotropic fluid distribution

We assume the static spherically symmetric metric of the
form:

ds2 = eν(r)dt2 − r2(dθ2 + sin2 θdφ2) − eλ(r)dr2. (1)

The energy momentum tensor (T i
j ) for the anisotropic

fluid distribution is defined as (Dionysiou 1982):

T i
j = [

(pr − pt)θ
iθj − ptδ

i
j + (ρ + pr)v

ivj

]
, (2)

where θiθj = −vivj = −1 and viθj = 0. θi is the unit space
like vector in the direction of radial vector and vi is the four-
velocity, pr and pt correspond to radial pressure and tangen-
tial pressure respectively.

Then the Einstein’s field equations are given as:

Ri
j − 1

2
Rgi

j = −8πT i
j (3)

where we suppose G = 1 = c in relativistic geometrized
units. However G and c respectively being the Newtonian
gravitational constant and velocity of photon in vacua.

In view of metric (1), the Einstein field equations (3) can
be expressed in the following system of ordinary differential
equations as (Dionysiou 1982):

[
λ′

r
− 1

r2

]
e−λ + 1

r2
= 8πρ (4)

[
ν′

r
+ 1

r2

]
e−λ − 1

r2
= 8πpr, (5)

[
ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r

]
e−λ = 8πpt , (6)

where the prime denotes differential with respect to r .
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Fig. 1 Metric function eλ verses fractional radius r/R for the compact
star PSR 1937 +21. We have employed the data values in this figure as:
a = −0.000591, b = 0.007694 and R = 11.4005 km

Fig. 2 Energy density (8πρ) verses to fractional radius r/R for the
compact star PSR 1937 +21. The data values of the constants a, b and
a0 in this figure is same as in Fig. 1

3 New anisotropic solution, equation of state and
boundary conditions

3.1 New anisotropic solution

To determine the anisotropic solution, we suppose the metric
potential λ(r) of the form:

λ(r) = ln
(
1 + br2) − ln

(
1 + ar2) (7)

where a and b are constants with a �= b �= 0. However for
the physical validity of metric function eλ, it should be 1 at
centre and monotonically increasing with increase of r . For
this purpose the constant b should be positive and a should
be negative.

We have noted that the metric potential eλ is 1 at the cen-
tre and monotonically increasing away from the centre. The
behaviour of eλ can be seen in Fig. 1.

The expressions for energy density and metric function ν

are given by Eqs. (4) and (5) respectively as:

8πρ = (b − a)(3 + br2)

(1 + br2)2
(8)

Fig. 3 Radial pressure 8πpr verses fractional radius r/R for the com-
pact star PSR 1937 +21 with the values of the constants and parameters
as: a = −0.000591, b = 0.007694, a0 = 0.0037 and R = 11.4005 km

Then from Eq. (8), ρr=0 = 3(b − a)/8π . Since the den-
sity should be positive at the centre this imply that b > a.
It is clear from Fig. 2, the density is positive everywhere
within stellar model and maximum at centre. However it is
monotonically decreasing away from centre.

ν′ = 8πrpr(1 + br2)

1 + ar2
+ (b − a)r

1 + ar2
. (9)

To find the metric function ‘ν’, we suppose the expres-
sion for radial pressure as:

8πpr = a0(1 − br2)

(1 + br2)2
. (10)

where, a0 is positive constant. We can see that the radial
pressure pr is physically valid, singularity free and posi-
tive finite everywhere inside the star (Fig. 3). However it is
monotonically decreasing away from centre. It also vanishes
at r = 1√

b
, which gives the radius of the anisotropic star.

By plugging the value of radial pressure from Eq. (10)
into in Eq. (9), we get ν′ as:

ν′ = a0r(1 − br2)

(1 + ar2)(1 + br2)
+ r(b − a)

(1 + ar2)
. (11)

After integration of the above equation w.r. to r , we get
the metric function ν of the form as:

eν = C
(
1 + br2)A(

1 + ar2)B (12)

where, A = a0
(b−a)

, B = (b−a)2−a0(b+a)
2a(b−a)

and C is arbitrary
positive constants of integration. The metric function eν

should be free from singularity and positive, finite within
the stars. From Eq. (12), eν(0) = C, which imply that eν is
positive and finite at centre due to C is a positive. Figure 4
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Fig. 4 Metric function eν verses fractional radius r/R for the compact
star PSR 1937 +21. For the purpose of plotting this graph, we have
employed same data values for the arbitrary constants as in Figs. 1, 2
and 3

Fig. 5 Tangential pressure (8πpt ) verses fractional radius r/R for
the compact star PSR 1937 +21 with the values of the constants:
a = −0.000591, b = 0.007694, a0 = 0.0037 and R = 11.4005 km

indicates that the metric function is satisfying the required
physical conditions.

Next we obtained the expression for tangential pressure
(pt ) by putting the value of λ and ν into Eq. (6):

8πpt = bp1 + a2r2p2 + ap3

(1 + ar2)(1 + br2)3
(13)

where,

p1 = [−1 − br2 + bA2r2 + A(2 − br2)
]
,

p2 = [
1 + A2b2r4 + b(1 + 3A)r2

+ B(1 + br2)(1 + 2Abr2) + B2(1 + br2)2],

p3 = 1 + 5Abr2 + b2(−1 − A + 2A2)r4

+ B(1 + br2)
[
2 + (1 + 2A)br2].

We have shown the behaviour of tangential pressure in
Fig. 5 and conclude that pt is maximum at centre however

Fig. 6 Anisotropic factor (8π	) verses fractional radius r/R for the
compact star PSR 1937 +21. For this figure, we have taken the same
values of the constants a, b and a0 as in Fig. 5

it is decreasing monotonically throughout the star. Also pt

and pr are equal at centre.
Now the pressure anisotropy factor (	 = pt −pr ) can be

determined by using the pressure isotropy condition as:

8π	 = bp1 + a2r2p2 + ap3 − a0(1 + ar2)(1 − b2r4)

(1 + ar2)(1 + br2)3

(14)

From Fig. 6, it is clear that the anisotropic factor is zero at
the centre and monotonically increasing with increase of ‘r’.

3.2 Equation of state for compact star

For realistic matter, there should be an equation of state
for constructing the compact star models. This implies that
radial pressure must be purely the function of density i.e.
pr = f (ρ). In our present solution we have determined the
relation between pressure and density by eliminating r from
Eqs. (8) and (10), which is given as:

pr = a0(1 − ρ1)

8π(1 + 2ρ1 + ρ1
2)

(15)

where, ρ1 = b−a−16πρ+√
(b−a)(b−a+64πρ)

16πρ
.

It clear from the above equation that radial pressure is
purely the function of density i.e. pr = f (ρ). This implies
that Eq. (15) can represent the equation of state (EOS) for
present compact star models.

3.3 Boundary conditions

For determining the arbitrary constants, we should join
smoothly the interior of metric (1) for anisotropic matter dis-
tribution to the exterior of Schwarzschild solution which can
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be given by:

ds2 =
(

1 − 2M

r

)
dt2 − r2(dθ2 + sin2 θdφ2)

−
(

1 − 2M

r

)−1

dr2. (16)

For the Continuity of the metric, we must join the met-
ric potentials eν and eλ at the boundary of the star r = R

between the interior and the exterior regions of the star. The
above system of equations is also solved subject to boundary
condition that the radial pressure pr should be zero at sur-
face of the star r = R, whose mass m(r = R) = M is same
as Schwarzschild mass M (Misner and Sharp 1964):

The following boundary condition can be expressed as:

e−λ(R) = 1 − 2M

R
(17)

eν(R) = 1 − 2M

R
(18)

pr = 0, r = R (19)

So from Eq. 10, pr(R) = 0 gives,

R = 1√
b
. (20)

Now from (17) and (18), e−λ(R) = eν(R) gives:

C = (1 + aR2)1−B

(1 + bR2)1+A
(21)

The total mass M can be determined by using the condi-
tion (17) as:

M = R

2

[
(b − a)R2

1 + bR2

]
(22)

4 Some physical features of the anisotropic models

4.1 The variation of ratio of pressure and density

We suppose the radial and tangential pressure are related to
the matter density by the parameters ωr and ωt as: pr = ωrρ

and pt = ωtρ.
Then it can be defined as:

wr = a0(1 − br2)

(b − a)(3 + br2)
, (23)

wt = bp1 + a2r2p2 + ap3

(b − a)(1 + ar2)(3 + 4br2 + b2r4)
(24)

We have observed that ωr and ωt are less than 1 throughout
inside the star (Fig. 7). This implies that density is dom-
inating pressures everywhere inside the star. However the

Fig. 7 Behaviour of parameters wr and wt verses fractional radius
r/R for the compact star PSR 1937 +21. The values of the constants a,
b and a0 involved in this figure is same as of the Figs. 5 and 6

Fig. 8 Energy conditions verses fractional radius r/R for the compact
star PSR 1937 +21. For this figure, we have employed the values of the
constants as: a = −0.000591, b = 0.007694, a0 = 0.0037 and radius
R = 11.4005 km

decreasing nature of ωr and ωt also represents that the tem-
perature is decreasing outward.

4.2 Energy conditions

The anisotropic fluid models must be satisfy the follow-
ing energy conditions: (i) Null energy condition (NEC),
(ii) Weak energy condition (WEC) and (iii) Strong energy
condition (SEC). Then for satisfying the above energy con-
ditions, the anisotropic models should satisfy the following
inequalities everywhere inside the compact star (Fig. 8):

(i) NEC: ρ ≥ 0,
(ii) WECr : ρ − pr ≥ 0,

(iii) WECt : ρ − pt ≥ 0,
(iv) SEC: ρ − pr − 2pt ≥ 0.

4.3 Causality condition

The anisotropic models should satisfy the causality condi-

tions, i.e. 0 ≤ Vr =
√

dpr

dρ
< 1 and 0 ≤ Vt =

√
dpt

dρ
< 1, at all
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Fig. 9 Behaviour of radial and tangential velocity verses fractional
radius r/R for the compact star PSR 1937 +21. For the purpose of
the plotting this figure, we have employed the same data values of the
constants a, b and a0 as in Fig. 8

points inside the star. As from Fig. 9, we can see that our
model is satisfying above these causality conditions. How-
ever we note from this figure that Vr and Vt are monotoni-
cally decreasing throughout from the centre to boundary of
the star. So our anisotropic solution is well behaved.

4.4 Generalized Tolman-Oppenheimer-Volkoff
equation

The generalized (TOV) equation for anisotropic fluid distri-
bution is given by the expression as (Tolman 1939; Oppen-
heimer and Volkoff 1939):

e
λ−ν

2
MG(ρ + pr)

r2
+ 2

r
(pr − pt ) + dpr

dr
= 0; (25)

Where MG is the effective gravitational mass given by

MG(r) = 1

2
r2e

ν−λ
2 ν′ (26)

Equation (25) together with Eq. (26) gives:

−1

2
ν′(ρ + pr) + 2

r
(pt − pr) − dpr

dr
= 0; (27)

Equation (27) describes the equilibrium condition for
an anisotropic fluid distribution subject to gravitational

Fig. 10 Behaviour of different forces Fi verses fractional radius r/R

for the compact star PSR 1937 +21. For plotting this figure, we
have taken the values of constants as a = −0.000591, b = 0.007694,
a0 = 0.0037

force (Fg), hydrostatic force (Fh) and anisotropic stress (Fa)
so that (Fig. 10):

Fg + Fh + Fa = 0, (28)

where, Fg , Fh, and Fa can be defined as:

Fg = −1

2
ν′(ρ + pr) (29)

Fh = −dpr

dr
(30)

Fa = 2

r
(pt − pr) (31)

The explicit form of Fg , Fh and Fa can be written as:

Fg = r

16π

[
a0r(1 − br2) + r(b − a)(1 + br2)

(1 + ar2)(1 + br2)

]

+ r

16π

[
a0 + b2r2 − a(3 + br2) + b(3 − a0r

2)

(1 + br2)2

]

(32)

Fh = r

4π

[
a0b(3 − br2)

(1 + br2)3

]
(33)

and

Fa =
[
bp1 + a2r2p2 + ap3 − a0(1 + ar2)(1 − b2r4)

4πr(1 + ar2)(1 + br2)3

]

(34)

4.5 The effective mass radius relation and surface
red-shift

The effective mass of the star can be defined as:

Meff

R
= eλ(R) − 1

2eλ(R)
= 4π

R

∫ R

0
ρr2dr. (35)
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For above mass-radius ratio, the compactness of the star
can written as:

u = Meff

R
= 1

2

[
1 − e−λ(R)

] = 1

2

[
(b − a)R2

1 + bR2

]
. (36)

The red-shift corresponding to above compactness u can
be defined as:

Z = eλ(R)/2 − 1 = 1 − √
1 − 2u√

1 − 2u
. (37)

The above equation (37) implies that red shift of the com-
pact star can not be arbitrary large as it depends upon the
compactness u, i.e. if u is increasing then corresponding sur-
face red shift will increase. In other order words the surface
red shift is decreasing with increase of radius R.

5 Conclusion

In the present investigation, we have obtained anisotropic
solution by considering the anisotropic matter distribution
and spherical symmetric space time. The obtained compact
star is same as like PSR 1937 +21. However we have intro-
duced the standard values of G and c in the appropriate equa-
tions for obtaining the numerical result of physical quanti-
ties. The anisotropic compact star PSR 1937 +21 has central
density of order 1015 gm/cm3 which is reliable for the real-
istic compact star model.

The physical nature of anisotropic solution can be stated
as follows.

Regularity of metric functions at centre: The metric func-
tions eλ and eν are finite and positive inside the star with val-
ues 1 and C at the centre respectively. It is observed that the
metric functions are also non-singular at the centre (Figs. 1
and 4).

Anisotropy factor: The anisotropy factor should be pos-
itive and finite everywhere inside the star to represent the

realistic compact star i.e. the tangential pressure (pt ) should
always greater than the radial pressure (pr ) everywhere in-
side the star. From Fig. 6, it clear that the anisotropy is
monotonically increasing throughout the star. This features
of anisotropy implies that pt > pr at each inside point of
star.

Energy conditions: In the present solution, the energy
conditions are satisfying everywhere inside the compact ob-
jects (Fig. 8).

TOV equation: We studied the equilibrium condi-
tion through the generalized Tolman-Oppenheimer-Volkoff
equation for the anisotropic star. From Fig. 11, the gravita-
tional force is counter balance by the joint action of hydro-
static force and anisotropic stress. Also it is observed that
this action keeps the system is in static equilibrium.

Mass-radius relation: We define the effective mass-radius
relation for the compactness u of the star. In our proposed
model, the ratio of effective mass—radius is 0.2692 which
satisfy the Buchdahl (1959) condition. However the red-
shift of the star is determined by using above compactness u.
The surface red-shift turns out to be 1.0425. This implies
that red-shift of our model is in good agreement for the com-

Fig. 11 Red-shift (Z) verses fractional radius r/R for the compact star
PSR 1937 +21. For purpose of plotting this graph, we have employed
the data values of the constants same as in Fig. 8

Table 1 Values of different
physical parameters of
PSR 1937 +21 for
a = −0.000591, b = 0.007694,
a0 = 0.0037, M = 2.0833M�,
R = 11.4005 km, Pr = 8πpr ,
Pt = 8πpt , D = 8πρ,
	i = 8π	

r/R Pr Pt D 	i Vr Vt eν eλ Z

0.0 0.0037 0.0037 0.0249 0.0000 0.5176 0.5172 0.2397 1 1.0425

0.1 0.0036 0.0036 0.0244 1.22 × 10−6 0.5163 0.5109 0.2416 1.0108 1.0346

0.2 0.0033 0.0033 0.0233 1.59 × 10−5 0.5121 0.4925 0.2472 1.0432 1.0113

0.3 0.0028 0.0029 0.0215 6.83 × 10−5 0.5053 0.4634 0.2567 1.0976 0.9737

0.4 0.0023 0.0025 0.0195 1.79 × 10−4 0.4958 0.4251 0.2702 1.1744 0.9238

0.5 0.0018 0.0021 0.0172 3.51 × 10−4 0.4837 0.3797 0.2880 1.2745 0.8634

0.6 0.0013 0.0019 0.0151 5.72 × 10−4 0.4690 0.3289 0.3105 1.3987 0.7947

0.7 0.00085 0.0017 0.0130 8.17 × 10−4 0.4519 0.2736 0.3381 1.5483 0.7197

0.8 0.000495 0.0016 0.0112 0.0011 0.4323 0.2135 0.3718 1.7248 0.6400

0.9 0.00022 0.0015 0.0096 0.0013 0.4103 0.1446 0.4125 1.9301 0.5570

1.0 0.0000 0.0015 0.0083 0.0015 0.3858 0.0260 0.4616 2.1664 0.4719



352 Page 8 of 8 M.K. Jasim et al.

Table 2 Central density,
surface and central pressure for
PSR 1937 +21 for the above
parameter values of Table 1

Compact star
candidates

Central density
gm/cm3

Surface density
gm/cm3

Central pressure
dyne/cm2

Mass
(M�)

Radius
(km)

2M/R

PSR 1937 +21 1.3347 × 1015 4.4490 × 1014 1.7886 × 1035 2.0833 11.4005 0.5384

pact star (Böhmer and Harko 2007; Straumann 1984; Böh-
mer and Harko 2006; Ivanov 2002).

Causality condition for well behaved nature: We ob-
served that Vr and Vt both are lies between 0 and 1. However
Both velocities are monotonically decreasing throughout in-
side the star from centre to boundary (Figs. 9 and 10). This
nature of Vr and Vt implies that our solution is well behaved.

Moreover the numerical values of all the physical quan-
tities for the star PSR 1937 +21 are given in Tables 1 and 2.
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