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Abstract This paper deals with the interior models of com-
pact stars in the framework of modified f (R) theory of
gravity, which is the generalization of the Einstein’s grav-
ity. In order to complete the study, we have involved solu-
tion of Krori and Barua to the static spacetime with fluid
source in modified f (R) theory of gravity. Further, we have
matched the interior solution with the exterior solution to de-
termine the constants of Krori and Barua solution. Finally,
the constants have been formulated by using the observa-
tional data of various compact stars like 4U1820-30, Her
X-1, SAX J1808-3658. Using the evaluated form of the solu-
tions, we have discussed the regularity of matter components
at the center as well as on the boundary, energy conditions,
anisotropy, stability analysis and mass-radius relation of the
compact stars 4U1820-30, Her X-1, SAX J1808-3658.

Keywords f (R) gravity models · Compact stars

1 Introduction

In the weak field regime, General Relativity (GR) has suc-
ceeded to counter the observation tests whereas strong filed
is yet to be explored. In fact the great success of GR has
not stopped the alternatives being proposed and modifica-
tions begin to appear in very early days of this theory. Cur-
rent investigations reveals the fact GR fails to explain the
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strong gravitational field effects which suggests that this the-
ory may require modification. The presence of higher order
term in Einstein-Hilbert (EH) action has motivated the re-
searcher to modify this theory in strong field regime (Buch-
dahl 1970). In 1980, Starobinsky presented the idea of cur-
vature driven inflationary scenario, where the action of GR
is replaced by f (R) = R + λR2 (Starobinsky 1980). In cur-
rent years, numerous efforts have been made to get beyond
the original Einstein theory, in order to explore the dark en-
ergy models in more scientific ways (Nojiri and Odintsov
2011; Sharif and Zubair 2013a, 2013b).

Exploring the exotic compact objects in modified grav-
ity, would be a scientific tool to handle this problem. The
study of strong gravitational field of compact objects clearly
explain the significant differences between GR and its mod-
ification. The modeling of massive star in f (R) gravity have
added some additional proprieties to stars (Capozziello et al.
2011, 2012; Jamil et al. 2011; Azadi et al. 2008; Hendi and
Momeni 2011; Momeni and Gholizade 2009; Farooq et al.
2013; Momeni et al. 2014; Houndjo et al. 2017). Accord-
ing to Psaltis (2008b) the strong gravitational fields could
be considered as modified theories of gravity. One can con-
sider the hydrostatic equilibrium of stars in f (R) gravity as
a test of the theory’s viability; there are several models of
f (R) gravity which exclude the existence of stable star and
are considered unrealistic (Briscese et al. 2007). However,
possible problems regarding the existence of these objects
may be avoided due to scalar tensor theory (Tsujikawa et al.
2009). Recently, many people (Arapoglu et al. 2011; Alavi-
rad and Weller 2013; Astashenok et al. 2014, 2015; Yazad-
jiev et al. 2014) have worked on existence of neutron star
in f (R).

During the last decades many researchers have derived
the models of anisotropic compact stars. Egeland (2007)
discussed the modeling of the mass-radius relation of Neu-
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tron star. Using spherical symmetry of compact stars, an
exact solution of equation of was proposed by Mak and
Harko (2004), which predicts the properties of strange
stars. Rahaman et al. (2012) applied the Krori-Barua (1975)
models to compact stars with Chaplygin gas EOS. Lobo
(2006) investigated the models of the compact objects with
a barotropic EOS. He also extended the Mazur-Mottola
gravastar models by using the junction conditions between
static spacetime and Schwarzschild vacuum solution. In the
present study, we have investigated the formation of spher-
ically symmetric anisotropic compact stars in f (R) gravity
that were initially suggested by Alcock et al. (1986) and
Haensel et al. (1986). The anisotropic compact stars mod-
els with linear equation of state and variable cosmologi-
cal constant have been formulated by Hossein et al. (2012).
Further, Herrera and his collaborators (Herrera and Santos
1997; Herrera 2008; Herrera and Barreto 2013) have stud-
ied a class of anisotropic solutions for static and non static
sources which have wide application in astrophysics and
astronomy. Recently, Abbas and his collaborators (Abbas
et al. 2014, 2015a, 2015b, 2015c, 2015d, 2015e; Zubair et
al. 2016a, 2016c; Zubair and Abbas 2016b) have investi-
gated the compact stars solutions in GR, f (T ) and f (G)

theories of gravity.
We study the formation of anisotropic compact stars with

more generalized f (R) model i.e., f (R) = R +λR2 (where
λ is constant) and conclude that f (R) gravity can provide
that existence the of anisotropic compact stars candidates.
The objective of this paper is that if compact star solutions
exist in f (R), what are the constraints on f (R) model and
parameters of the theory? This paper is organized as follow.
In the coming section, we formulate the equations of motion
for anisotropic source and static metric in f (R) gravity. In
Sect. 3, we discuss the implementation of the solution to a
class of compact stars and present the physical behavior of
the constructed models. We summarize the findings of the
paper in the last section.

2 Anisotropic matter configuration in f (R)
gravity

The action of f (R) theory of gravity in the presence of mat-
ter is given by (Psaltis 2008a)

I =
∫

dx4√−g
[
f (R) +L(matter)

]
, (1)

where 8πG = 1, R is the scalar curvature, f (R) is an arbi-
trary function of R as well as its higher powers and L(matter)

denotes the Lagrangian density of matter part. Hence, we get
the following form of field equations

Gμν = Rμν − 1

2
Rgμν = T (curv)

μν + T (matter)
μν , (2)

where T
(matter)
μν is the stress-energy tensor of the matter and

T
(curv)
μν is curvature term, given by

T (curv)
μν = 1

F(R)

[
1

2
gμν

(
f (R) − RF(R)

)

+ F(R);αβ(gμαgνβ − gμνgαβ)

]
, (3)

where F(R) = f ′(R).
The general spherically symmetric metric is given by

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2(dθ2 + sin2 θdφ2), (4)

where ν = Ar2, μ = Br2 + C, A, B and C are constants
(Krori and Barua 1975).

For the anisotropic fluid the stress energy tensor is de-
fined by

T m
αβ = (ρ + pt )uαuβ − ptgαβ + (pr − pt)vαvβ, (5)

where uα = e
μ
2 δ0

α , vα = e
ν
2 δ0

α , are four velocities, ρ is en-
ergy density, pr and pt are radial and transverse pressures,
respectively. In this case set of field equations is

ρ = −e−νF ′′ + e−ν

(
ν′

2
− 2

r

)
F ′ + e−ν

r2

(
μ′′r2

2
+ μ′2r2

4

− μ′ν′r2

4
+ μ′r

)
F − 1

2
f, (6)

pr = e−ν

(
μ′

2
+ 2

r

)
F ′ − e−ν

r2

(
μ′′r2

2
+ μ′2r2

4

− μ′ν′r2

4
− ν′r

)
F + 1

2
f, (7)

pt = −e−νF ′′ + e−ν

(
μ′

2
− ν′

2
+ 1

r

)
F ′

− e−ν

r2

(
μ′r
2

− ν′r
2

− eν + 1

)
F + 1

2
f. (8)

The Starobinsky model is (Starobinsky 1980)

f (R) = R + λR2, (9)

where λ is an arbitrary constant. Here, we have considered
the R-squared gravity (R + λR2) which introduces a new
parameter λ. In modified gravitation theories the instability
of models is tested through the Dolgov-Kawasaki instability
criterion

fR(R) > 0, fRR(R) > 0, R≥R0,

which restricts the Starobinsky’s parameter as λ > 0. The
parameter λ has also been constrained under different con-
sideration via neutron stars (Arapoglu et al. 2011; Orellana



Some interior models of compact stars in f (R) gravity Page 3 of 11 342

et al. 2013). The most important thing in existence of com-
pact stars is the requirement of static configuration i.e., the
EoS satisfies the condition ρ −3p > 0. Therefor, in fixing λ,
one needs to analyze this situation and avoid the existence of
singularities. In this settings we find that the viable values of
λ lies in the range 0 < λ < 6. One can choose suitable value
of λ according to this condition. Herein, we set λ = 2 km2,
one value is presented keeping in mind the length of our
work. However, other values can also be presented in simi-
lar fashion.

For this model (6)–(8) become

ρ = e−2ν

8r4

{
r4λμ′4 − 2r3λμ′3(−4 + rν′)

+ r2λμ′2(16 + 8rν′ − 11r2ν′2 + 4r2μ′′ + 8r2ν′′)

+ 4r2λμ′(−16rν′2 + 3r2ν′3 + ν′(−4 + 9r2μ′′

− 7r2ν′′) + 2r
(−2μ′′ + 6ν′′ − 2rμ′′′ + rν′′′))

+ 4
(−2eνr2 + 2e2νr2 − 20λ + 24eνλ − 4e2νλ

+ 12r3λν′3 − 3r4λμ′′2 − r2λν′2(12 + 11r2μ′′)

+ 8r2λν′′ + 8r4λμ′′μ′′ − 16r3λμ′′′

+ 2rν′(eνr2 − 8λ + 16r2λμ′′ − 14r2λν′′ + 6r3λμ′′′)

+ 8r3λν′′′ − 4r4λμ(iv)
)}

, (10)

pr = e−2ν

8r4

{−r4λμ′4 − 2r4λμ′3ν′ + r3λμ′2(−24ν′

+ 3rν′2 + 4r
(
μ′′ − ν′′)) − 4(−2eνr2 + 2e2νr2

+ 28λ − 24eνλ − 4e2νλ − 12r2λν′2 − 16r2λμ′′

+ 8r3λν′μ′′ + r4λμ′′2 + 16r2λν′′ − 8r3λμ′′′

+ 8rμ′(eνr2 − 8λ + 3r2λν′2 + 6r2λμ′′

− rλν′(8 + r2μ′′) − 4r2λν′′ + r3λμ′′′)}, (11)

pt = e−ν

8r4

{
r4λμ′4 + 2r3λμ′3(2 − 3rν′) + r2μ′2(−32rλν′

+ 17r2λν′2 + 2
(
eνr2 − 8λ + 6r2λμ′′ − 6r2λν′′))

− 2rμ′(−38r2λν′2 + 6r3λν′3 + rν′(eνr2 − 24λ

+ 28r2λμ′′ − 14r2λν′′) − 2
(
eνr2 − 4λ + 12enuλ

+ 10r2λμ′′ − 14r2λν′′ + 6r3λμ′′′ − 2r3λν′′′))

− 4
(
12r3λν′3 − 11r4λμ′′ν′2 − 5r4λμ′′2

+ μ′′(−eνr4 + 8r2λ + 8r4λν′′) + rν
(
eνr2 − 28λ

+ 12eνλ + 28r2λμ′′ − 28r2λν′′ + 12r3λμ′′′)

+ 4λ
(−7 + 6eν + e2ν − 3r3μ′′′ + 2r3ν′′′

− r4μ(iv)
))}

. (12)

We have five unknown functions ρ, pr , pt , μ, ν, and three
equations (10)–(12). We have to chose any two functions,
keeping in mind the regularity conditions of the compact
stars, we chose μ and ν as after Eq. (4). As metric functions
are exponential i.e., eμ(r), eν(r), for ν = Ar2, μ = Br2 + C,
metric functions remain exponential as well as regular even
at center of the star. Moreover, this choice satisfies the
boundary conditions in the center of the star (Yazadjiev et al.
2014)

ρ(0) = ρc, ν(0) = 0,
dμ

dr
(0) = 0.

From the metric potential function, we have following
results

ρ = 1

r4
e−2Ar2{

e2Ar2(
r2 − 2λ

) + 2
(−5 − 3B2r4 + 6B3r6

+ B4r8 + 12A3r6(2 + Br2) − A2r4(40 + 68Br2

+ 11B2r4) + A
(−4r2 + 48Br4 + 26B2r6

− 2B3r8))λ + eAr2(−r2 + 2Ar4 + 12λ
)}

, (13)

pr = 1

r4
e−2Ar2{−e(2Ar2)

(
r2 − 2λ

) + 2
(−7 + 11B2r4

+ 2B3r6 − B4r8 + 3A2r4(2 + Br2)2

− 2Ar2(4 + 16Br2 + 9B2r4 + B3r6))λ
+ eAr2(

r2 + 2Br4 + 12λ
)}

, (14)

pt = 1

r4
e−2Ar2{−2

(−7 + 6eAr2 + e2Ar2)
λ + 16B3r6λ

+ 2B4r8λ − 24A3r6(2 + Br2)λ
+ 2A2r4(28 + 74Br2 + 17B2r4)λ + B2r4(eAr2

r2

+ 22λ
) + 2Br2(−6λ + eAr2(

r2 + 6λ
))

− Ar2(4
(−7 + 19Br2 + 25B2r4 + 3B3r6)λ

+ eAr2(
r2 + Br4 + 12λ

))}
. (15)

Here, we consider the following form of linear equation of
state (EOS)

pr = wrρ, pt = wtρ (16)

The above equations lead to the following relations

ωr = {−e2Ar2(
r2 − 2λ

) + 2
(−7 + 11B2r4 + 2B3r6

− B4r8 + 3A2r4(2 + Br2)2 − 2Ar2(4 + 16Br2

+ 9B2r4 + B3r6))λ + eAr2(
r2 + 2Br4 + 12λ

)}

/
{
e2Ar2(

r2 − 2λ
) + 2

(−5 − 3B2r4 + 6B3r6 + B4r8
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+ 12A3r6(2 + Br2) − A2r4(40 + 68Br2 + 11B2r4)

+ A
(−4r2 + 48Br4 + 26B2r6 − 2B3r8))λ

+ eAr2(−r2 + 2Ar4 + 12λ
)}

, (17)

ωt = {−2
(−7 + 6eAr2 + e2Ar2)

λ + 16B3r6λ + 2B4r8λ

− 24A3r6(2 + Br2)λ + 2A2r4(28 + 74Br2

+ 17B2r4)λ + B2r4(eAr2
r2 + 22λ

) + 2Br2(−6λ

+ eAr2(
r2 + 6λ

)) − Ar2(4
(−7 + 19Br2 + 25B2r4

+ 3B3r6)λ + eAr2(
r2 + Br4 + 12λ

))}

/
{
e2Ar2(

r2 − 2λ
) + 2

(−5 − 3B2r4 + 6B3r6 + B4r8

+ 12A3r6(2 + Br2) − A2r4(40 + 68Br2 + 11B2r4)

+ A
(−4r2 + 48Br4 + 26B2r6 − 2B3r8))λ

+ eAr2(−r2 + 2Ar4 + 12λ
)}

. (18)

3 Physical analysis

In this section, we discuss the following physical properties
of the solutions.

3.1 Anisotropic constraints

In the first place, we present the evolution of matter compo-
nents as shown in Figs. 1–3 for different strange stars (see
Table 1).

Taking derivatives of (13) and (14) with respect to radial
coordinate, we have

dρ

dr
= 1

r5
2e−2Ar2{−e2Ar2(

r2 − 4λ
) − 4

(−5 − 3B3r6

− B4r8 + 12A4r8(2 + Br2) − A3r6(52 + 80Br2

+ 11B2r4) + A2r4(−4 + 82Br2 + 37B2r4

− 2B3r6) + Ar2(−7 − 16B2r4 + 8B3r6

+ B4r8))λ + eAr2(
Ar4 − 2A2r6 − 24λ

+ r2(1 − 12Aλ)
)}

, (19)

dpr

dr
= 1

r5
2e−2Ar2{

e2Ar2(
r2 − 4λ

) − 4
(−7 − B3r6 + B4r8

+ 3A3r6(2 + Br2)2 − A2r4(8 + 38Br2 + 21B2r4

+ 2B3r6) + Ar2(−11 + 20B2r4 + 4B3r6

− B4r8))λ − eAr2(
Ar4 + 2ABr6 + 24λ

+ r2(1 + 12Aλ)
)}

. (20)

The evolution of dρ
dr

and dpr

dr
is shown in Figs. 4 and 5. It can

be seen that dρ
dr

< 0 and dpr

dr
< 0.

We also examine the behavior of ρ and pr at center of
compact star at r = 0 and it is found that

dρ

dr
= 0,

dpr

dr
= 0,

d2ρ

dr2
< 0,

d2pr

dr2
< 0.

(21)

The behavior of above quantities is shown in Figs. 1–3. We
present the evolution of EoS parameters ωr and ωt in Figs. 6
and 7. We call these parameters as effective since these in-
volve the contribution from the additional terms in f (R)

gravity.
The anisotropy measurement � = 2

r
(pt − pr) for this

model is given by

� = 1

r5
2e−2Ar2{

e2Ar2(
r2 − 4λ

) − 4
(−7 + 3Br2 − 3B3r6

− B4r8 + 6A3r6(2 + Br2) − A2r4(8 + 31Br2

+ 7B2r4) + Ar2(−11 + 3Br2 + 16B2r4 + 2B3r6))λ
− eAr2(

Ar4 + (A − B)Br6 + 24λ + r2(1 + 12Aλ

− 12Bλ)
)}

. (22)

The measure of anisotropy is directed outward when pt > pr

which implies � > 0 whereas it is directed inward if pt < pr

resulting in � < 0. In this discussion we consider the frac-
tional pressure anisotropy given by �r/pr . The evolution of
fractional pressure anisotropy is shown in Fig. 8. It is obvi-
ous that �r/pr remains positive and repulsive force exists
which produces more massive configuration.

It is interesting to see that at center r = 0, pt(0) =
pr(0) = p0 = 34A2λ + 2B(1 + 11Bλ) − A(1 + 64Bλ).

3.2 Matching conditions

Cooney et al. (2010) studied the formation of compact ob-
jects like Neutron Star in f (R) gravity theories with per-
turbation constraints. The Schwarzschild-de Sitter metric is
considered as an exterior solution which is matched with
the interior spherical symmetry using conditions analogous
to that in GR. According to these authors (Goswami et al.
2014; Ganguly et al. 2014) Schwarzschild solution is the
most suitable solution as exterior geometry of the star. Using
this approach in f (R) gravity, a lot of work has been done
(Ifra and Zubair 2015; Sharif and Yousaf 2014a, 2014b;
Ifra et al. 2015) by taking Schwarzschild or Vaidya met-
ric to address the problems related to gravitational col-
lapse.
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Fig. 1 Variation of energy density ρ versus radial coordinate r (km). Herein, we set λ = 2 km2

Fig. 2 Variation of radial pressure pr versus radial coordinate r (km)

Fig. 3 Variation of transverse pressure pt versus radial coordinate r (km)

Fig. 4 Behavior of dρ
dr

versus radial coordinate r (km)
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Fig. 5 Behavior of pr

dr
versus radial coordinate r (km)

Fig. 6 Variation of EoS parameter ωr versus radial coordinate r (km)

Fig. 7 Variation of EoS parameter ωt versus radial coordinate r (km)

Fig. 8 Variation of anisotropy measurement
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The Schwarzschild metric is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2dθ2 + r2 sin2 θdϕ2. (23)

The continuity of line elements yield,

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (24)

where − and +, are quantities for the inner and outer portion
of star. Hence we get

A = − 1

R2
ln

(
1 − 2M

R

)
, (25)

B = M

R3

(
1 − 2M

R

)−1

, (26)

C = ln

(
1 − 2M

R

)
− M

R

(
1 − 2M

R

)−1

. (27)

Li et al. (1999) studied X-ray pulsar SAX J1808.4-3658
to compare its mass-radius relation with theoretical mass-
radius relation of strange star and for neutron star candidates
and shown the consistency of strange star model with SAX
J1808.4-3658. They suggested that SAX J1808.4-3658 is a
likely strange star candidate and calculated masses and radii
of strange star as 1.44M�, 1.32M� and 7.07 km, 6.53 km,
respectively. Zhang et al. (1998) presented the mass mea-
surement for the neutron star in 4U 1820-30 and reported
mass of the order � 2.2M�. In Guver et al. (2010), mass
and radius of neutron star in 4U 1820-30 are determined
with 1σ error as M = 1.58 ± 0.06M� and a radius of
R = 9.11±0.4 km. However, upper bound limit in this mea-
surement is consistent with that in Zhang et al. (1998). In
fact there is a certain uncertainty in measurement of mass
and radius of a compact stars. Abubekerov et al. (2008) es-
timated the mass of Her X-1 using more recent and physi-
cally justified techniques and found two different values of
masses mx = 0.85 ± 0.15M� and mx = 1.8M� through the
radial-velocity curves. This uncertainty may be due to the
tense X-ray heating in Her X-1. Using the observed values
of M and R for various compact stars (Lattimer and Steiner
2014; Li et al. 1999), the values of A and B are given in the
Table 1.

3.3 Energy conditions

The validity of these energy conditions is necessary for a
physically reasonable energy-momentum tensor. The energy
conditions for anisotropic fluid are following

NEC : ρ + pr ≥ 0, ρ + pt ≥ 0, (28)

Fig. 9 Evolution of energy constraints for compact star Her X-1

WEC : ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0, (29)

SEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

ρ + pr + 2pt ≥ 0, (30)

DEC : ρ > |pr |, ρ > |pt |. (31)

In Fig. 9 energy conditions are fulfilled for our model.

3.4 TOV equation

In this case Tolman-Oppenheimer-Volkoff (TOV) is

dpr

dr
+ ν′(ρ + pr)

2
+ 2(pr − pt )

r
= 0 (32)

Following Hossein et al. (2012), above equation can be writ-
ten as

Fg + Fh + Fa = 0, Fg = −Br(ρ + pr),

Fh = −dpr

dr
, Fa = 2(pt − pr)

r

(33)

Using the effective ρ, pr and pt (10)–(12), for strange star
Her X-1, we have plotted these values in Fig. 10.

3.5 Stability analysis

People (Herrera 1992; Chan et al. 1993; Di Prisco et al.
1997) have discussed the appearance of cracking in spher-
ical compact objects by using different approaches. Herrera
(1992) introduced the concept of cracking to identify poten-
tially unstable configuration. Now, by considering the sound
speeds one can assess the potentially stable and unstable
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Table 1 Values of A and B

Compact Star M R (km) M
R

A (km−2) B (km−2)

Her X-1 0.88M� 7.7 0.168 0.0069062764281 0.0042673646183

SAX J1808.4-3658 1.435M� 7.07 0.299 0.018231569740 0.014880115692

4U 1820-30 2.25M� 10.0 0.332 0.010906441192 0.0098809523811

Fig. 10 Variation of gravitating, hydrostatic and pressure anisotropic forces for compact star candidates

compact stars. The region for which v2
sr > v2

st hold is po-
tentially stable.

To complete this analysis, we calculate the radial and
transverse speeds as

v2
sr = {−e2Ar2(

r2 − 4λ
) + 4

(−7 − B3r6 + B4r8

+ 3A3r6(2 + Br2)2 − A2r4(8 + 38Br2 + 21B2r4

+ 2B3r6) + Ar2(−11 + 20B2r4 + 4B3r6

− B4r8))λ + eAr2(
Ar4 + 2ABr6 + 24λ

+ r2(1 + 12Aλ)
)}

/
{
e2Ar2(

r2 − 4λ
)

+ 4
(−5 − 3B3r6 − B4r8 + 12A4r8(2 + Br2)

− A3r6(52 + 80Br2 + 11B2r4)

+ A2r4(−4 + 82Br2 + 37B2r4 − 2B3r6)

+ Ar2(−7 − 16B2r4 + 8B3r6 + B4r8))λ
+ eAr2(−Ar4 + 2A2r6 + 24λ

+ r2(−1 + 12Aλ)
)}

, (34)

v2
st = {

B2eAr2
r6 + 4

(−7 + 6eAr2 + e2Ar2)
λ

− 12B
(−1 + eAr2)

r2λ + 16B3r6λ + 4B4r8λ

+ 48A4r8(2 + Br2)λ − 4A3r6(40 + 86Br2

+ 17B2r4)λ + A2r4(4
(−14 + 75Br2 + 67B2r4

+ 6B3r6)λ + eAr2(
r2 + Br4 + 12λ

))

− Ar2(−8
(−7 + 3eAr2)

λ + 56B3r6λ + 4B4r8λ

+ B2r4(eAr2
r2 + 144λ

) + 3Br2(−8λ + eAr2(
r2

+ 4λ
)))}

/
{−e2Ar2(

r2 − 4λ
) − 4

(−5 − 3B3r6

− B4r8 + 12A4r8(2 + Br2) − A3r6(52 + 80Br2

+ 11B2r4) + A2r4(−4 + 82Br2 + 37B2r4

− 2B3r6) + Ar2(−7 − 16B2r4 + 8B3r6 + B4r8))λ
+ eAr2(

Ar4 − 2A2r6 − 24λ + r2(1 − 12Aλ)
)}

. (35)

In Figs. 11 and 12 it is shown that v2
sr and v2

st satisfy the in-
equalities 0 ≤ v2

sr ≤ 1 and 0 ≤ v2
st ≤ 1 within the anisotropic

matter configuration.
The difference of v2

sr and v2
st can be obtained as

v2
st − v2

sr = {
e2Ar2(

r2 − 8λ
) − 4

(−14 + 3Br2 + 3B3r6

+ 2B4r8 + 12A4r8(2 + Br2) − 2A3r6(14

+ 37Br2 + 7B2r4) + A2r4(−22 + 37Br2

+ 46B2r4 + 4B3r6) − Ar2(25 − 6Br2

+ 16B2r4 + 10B3r6 + 2B4r8))λ − eAr2((
A2

− AB + B2)r6 + A(A − B)Br8 + 48λ

+ Ar4(1 + 12Aλ − 12Bλ) + r2(1 + 36Aλ

− 12Bλ)
)}

/
{
e2Ar2(

r2 − 4λ
) + 4

(−5 − 3B3r6
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Fig. 11 Variation of v2
sr for compact star candidates

Fig. 12 Variation of v2
st for compact star candidates

− B4r8 + 12A4r8(2 + Br2) − A3r6(52

+ 80Br2 + 11B2r4) + A2r4(−4 + 82Br2

+ 37B2r4 − 2B3r6) + Ar2(−7 − 16B2r4

+ 8B3r6 + B4r8))λ + eAr2(−Ar4 + 2A2r6

+ 24λ + r2(−1 + 12Aλ)
)}

. (36)

The v2
st − v2

sr of different strange stars is shown in Fig. 13.
Thus, our proposed model is stable.

3.6 Surface redshift

The Mass-radius relation is

u = M(R)

R

= πe−2AR2

32A2(AR2)3/2

{−4
√

AR2
(
15R2B4λ

+ 192A5R4(2 + R2B
)
λ + 2AR2B3(21 + 10R2B

)
λ

− 16A4R2(22 + 53R2B + 11R4B2)λ
+ A2R2B2(99 + 56R2B + 16R4B2)λ
− 4A3(−49R4B2λ + 8R6B3λ + 16

(
5 − 6eAR2

+ e2AR2)
λ + R2(−8eAR2 + 8e2AR2 − 33Bλ

)))

− 1536A4R2e2AR2
Erf

(√
AR2

)√
πλ + 3R2(224A4

+ 44A3B + 33A2B2 + 14AB3 + 5B4)

× e2AR2√
2πλErf

(√
2AR2

)}
. (37)

The surface redshift (Zs ) is

1 + Zs = (1 − 2u)−1/2

=
{

1 − πe−2AR2

16A2(AR2)3/2

{−4
√

AR2
(
15R2B4λ

+ 192A5R4(2 + R2B
)
λ + 2AR2B3(21

+ 10R2B
)
λ − 16A4R2(22 + 53R2B

+ 11R4B2)λ + A2R2B2(99 + 56R2B

+ 16R4B2)λ − 4A3(−49R4B2λ + 8R6B3λ

+ 16
(
5 − 6eAR2

e2AR2)
λ + R2(−8eAR2

+ 8e2AR2 − 33Bλ
))) − 1536A4R2e2AR2

× Erf
(√

AR2
)√

πλ + 3R2(224A4 + 44A3B

+ 33A2B2 + 14AB3 + 5B4)e2AR2√
2πλ

× Erf
(√

2AR2
)}}−1/2

. (38)
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Fig. 13 Variation of v2
st − v2

sr for compact star candidates

Fig. 14 Surface redshift of Her X-1

Figure 14 shows the plot of redshift of compact star Her X-1
of radius 7 km and the maximum redshift turns out to be
Zs = 0.845.

4 Conclusion

The modified f (R) theory of gravity providing the theoret-
ical models of dark energy, has attracted the much attention
of modern cosmologist. This theory has attained a particular
interest since the f (R) modifications to general theory of
relativity appeared in a very natural way in the low-energy
effective actions of the quantum theory of gravity and the
quantization of underlying fields in curved spacetime. This
theory is also conformally related to GR with some exotic
scalar field (Barrow and Cotsakis 1988).

This paper is about the mathematical modeling of com-
pact stars whose interior source is static anisotropic fluid.
To complete the study, we have considered that in f (R)

gravity there may exists such compact stars that have
anisotropy in their interiors. The interior geometry of the
compact stars has been handled by metric assumption
proposed by Krori and Barua (1975). Then we perform
the junction conditions formalism for the interior metric
with exterior Schwarzschild metric to determine the con-
stants of interior metric in terms of masses and radii of
the compact stars. These conditions yield the values of

models constants that determine the nature of the com-
pact stars. For these values of the constants, we found
that the energy conditions hold for the proposed model.
The results indicate that the EOS parameters are given
by 0 < ωi(r) < 1, (i = r, t). The matter energy density
and pressure are regular and physical in the interior of
stars.

It is interesting to note that � > 0 for the different
strange stars as shown in Fig. 8. Hence, in this case repul-
sive force exists which allows more massive stellar configu-
ration in f (R) gravity. The subliminal velocity of sound is
less than 1, i.e., 0 < v2

sr , v2
st < 1 and v2

sr > v2
st . The variation

of v2
st − v2

sr for different strange stars is shown in Fig. 13,
which satisfies the inequality |v2

st − v2
sr | ≤ 1. Thus, in the

presence of f (R) term the proposed models are stable. The
range of surface redshift Zs for the class of the particular
star is 0 < Zs ≤ 0.845.

Conflict of interest The authors have no conflict of interests regard-
ing the publication of this paper.
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