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Abstract In this paper we obtain a new static and spher-
ically symmetric model of compact star whose spacetime
satisfies Karmarkar’s condition (1948). The Einstein’s field
equations are solved by employing a physically reasonable
choice of the metric coefficient grr so that the obtained so-
lution is free from central singularities. Our model satisfies
all the energy conditions as well as the causality condition.
By assigning some particular values mass and radius of the
compact stars PSR J0347+0432, Cen X-3 and Vela X-1 have
been obtained which are very close to the observational data
proposed by Antoniadis et al. (Science 340:1233232, 2013),
Abubekerov et al. (Astron. Rep. 48:89, 2004) and Ash et al.
(Mon. Not. R. Astron. Soc. 307:357, 1999). For the neutron
star candidate PSR J0348+0432, we expect a very stiff equa-
tion of state to support its massive mass which corresponds
to a large value of the adiabatic index of 6.66 at the center.
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1 Introduction

In last few decades the study of compact objects has be-
come an interesting issue to the researchers. By solving the
Einstein’s Field Equations (EFEs) under different conditions
one can obtain a static and spherically symmetry model of
compact star. Due to highly non-linearity nature of the dif-
ferential equations it is very difficult to solve the EFEs.
In case of static isotropic perfect fluid model the EFEs re-
duce to a set of three ordinary differential equations (ODEs)
with four unknowns. But recent theoretical advances show
that the pressure inside a fluid sphere becomes anisotropic
due to the central density ∼ 1015 (Ruderman 1972) and
the pressure can be decomposed into two parts: radial pres-
sure pr and transverse pressure pt . Local anisotropy in
self-gravitating systems were studied by Herrera and San-
tos (1997). Cosenza et al. (1981) it has been suggested that
superdense matter may be anisotropic, at least in some den-
sity ranges. Bowers and Liang (1974) have pointed out that
anisotropy may also change the limiting values of the max-
imum mass of compact stars. In this generalization Herrera
and Ponce de Leon (1985) studied the balance and collapse
of compact spheres.

In order to solve the Einstein-Maxwell system of equa-
tions a familiar method is to assume an equation of state
which represents a relationship between the pressure and
the matter density. Several works are done by assuming an
EOS. By assuming barotropic equation of state the models
of compact star were obtained by Rahaman et al. (2014).
Bhar et al. (2014, 2015) obtained the model of compact
star by assuming one of the metric potential together with
a linear equation of state. Malaver (2014, 2015) consider a
quadratic equation of state for the matter distribution and
specify particular forms for the gravitational potential and
electric field intensity. By assuming the KB ansatz (Krori
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Fig. 1 Variation of metric potentials against r by taking the same val-
ues of the constant mentioned in Table 1 for PSR J0348+0432

and Barua 1975) Bhar (2015a,b,c) obtained the model of
compact stars. By assuming a special type of matter den-
sity Dev and Gleiser (2002) discussed an anisotropic star
model. Rahaman et al. (2010a) have also used this density
function. By using the same matter density Bhar and Ra-
haman (2015) proposed a new model of dark energy star
consisting of five zones, namely, the solid core of constant
energy density, the thin shell between core and interior, an
inhomogeneous interior region with anisotropic pressures, a
thin shell, and the exterior vacuum region. The model is sta-
ble under a small linear perturbation. By using Chaplygin
equation of state compact star model was obtained by Ra-
haman et al. (2010b), Bhar (2015d). A well-behaved class
of charged analogue of Durgapal solution was obtained by
Mehta et al. (2013). A class of super dense stars models us-
ing charged analogues of Hajj-Boutros type relativistic fluid
solutions are obtained by Pant et al. (2014).

Generalized compact spheres in electric fields was ob-
tained by Maharaj and Komathiraj (2007). Ivanov (2002)
obtained static charged perfect fluid spheres in general rel-
ativity. Böhmer and Harko (2006) obtained the upper and
lower limits for the basic physical parameters (mass-radius
ratio, anisotropy, redshift and total energy) for arbitrary
anisotropic general relativistic matter distributions in the
presence of a cosmological constant. They proved that the
values of these quantities are strongly dependent on the
value of the anisotropy parameter at the surface of the star.
Malaver (2013a,b), Singh et al. (2015, 2016a), Singh and
Pant (2015, 2016a) have used a great variety of mathemat-
ical techniques to obtain exact solutions. A different ap-
proach is also used by Gupta and Kumar (2011), Kumar
et al. (2010, 2014) and Thakadiyil and Jasim (2013) to dis-
cover solutions on embedding class I.

In our present paper we obtain a new class of compact
star of embedding class one. It is familiar that every n di-
mensional Riemannian manifold Vn is isometrically embed-
ded into some pseudo-Euclidean space of n(n+1)/2 dimen-
sions. The most important feature of this type of metric is
the dependence of the metric functions ν and λ. Recently a
large number of work has been done by assuming the metric

Fig. 2 Variation of density against r by taking the same values of the
constant mentioned in Table 1 for PSR J0348+0432

Fig. 3 Variation of pressure against r by taking the same values of the
constant mentioned in Table 1 for PSR J0348+0432

potentials satisfy the condition of embedding class one. In
this respect we want to mention the works of Singh and Pant
(2016b,c), Singh et al. (2016b,c,f,d), Maurya et al. (2016)
and Bhar et al. (2016). Inspiring these earlier work in the
present paper we model a compact star of embedding class-I
by assuming a new metric potential for grr . Our paper is
organized as follows: in Sect. 2 the basic field equations
have been given, in Sect. 3 field equations have been solved
by taking a physically reasonable new form of the metric
potential for grr . The conditions for well behaved solution
is described in Sect. 4. The Sect. 5 is focused on match-
ing of boundary conditions. Properties of the new solution
is described in Sect. 6 and its stability analysis in given in
Sect. 6.1. Finally a brief discussions are on the solution is
given in Sect. 7.

2 Interior space-time and basic field equations

A static spherically symmetry 4D spacetime is described by
the line element,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

where λ(r) and ν(r) are called the gravitational potential.
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Fig. 4 Variation of pressure to density ratio against r by taking the
same values of the constant mentioned in Table 1 for PSR J0348+0432

Fig. 5 Variation of anisotropy against r by taking the same values of
the constant mentioned in Table 1 for PSR J0348+0432

Let us assume that the matter distribution inside the stel-
lar configuration is anisotropic in nature and correspond-
ingly the energy-momentum tensor can be written as,

T μ
ν = (ρ + pr)u

μuν − ptg
μ
ν + (pr − pt)η

μην (2)

with uiuj = −ηiηj = 1 and uiηj = 0. The vectors ui and ηi

represent fluid 4-velocity and spacelike vector respectively
and ηi is orthogonal to ui , ρ is the matter density, pr and
pt are respectively the radial and transverse pressure of the
fluid and pt is in the orthogonal direction to pr .

Assuming G = 1 = c the Einstein field equations are
given by

8πρ = 1 − e−λ

r2
+ λ′e−λ

r
(3)

8πpr = ν′e−λ

r
− 1 − e−λ

r2
(4)

8πpt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
(5)

where (′) denotes differentiation with respect to radial co-
ordinate r .

Fig. 6 Variation of pressure and density gradients against r by tak-
ing the same values of the constant mentioned in Table 1 for PSR
J0348+0432

Fig. 7 Variation of sound speed square against r by taking the same
values of the constant mentioned in Table 1 for PSR J0348+0432

Using the Eqs. (4) and (5) we obtain the anisotropy pa-
rameter

	 = 8π(pt − pr)

= e−λ

[
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r
+ eλ − 1

r2

]
(6)

If the metric given in (1) satisfies the Karmarkar condi-
tion (Karmarkar 1948), it can represent a embedding class
one spacetime i.e.

R1414 = R1212R3434 + R1224R1334

R2323
(7)

with R2323 �= 0 (Pandey and Sharma 1981). This condition
leads to a differential equation given by

2ν′′

ν′ + ν′ = λ′eλ

eλ − 1
(8)

On integration we get the relationship between ν and λ

as

eν =
(

A + B

∫ √
eλ − 1 dr

)2

(9)

where A and B are constants of integration.
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Fig. 8 Variation of energy conditions against r by taking the same
values of the constant mentioned in Table 1 for PSR J0348+0432

Fig. 9 Variation of (pr + 2pt )/ρ against r by taking the same values
of the constant mentioned in Table 1 for PSR J0348+0432

By using (9) we can rewrite (6) as

	 = ν′

4eλ

[
2

r
− λ′

eλ − 1

] [
ν′eν

2rB2
− 1

]
(10)

3 Generating a new anisotropic solution

To solve the above equation (9), we have assumed an en-
tirely new type of grr metric potential given by

eλ = 1 + ar2 + br4 (11)

where a and b are constants.
On integrating (9) with the help of (11) we get

eν =
[
A + B(a + br2)3/2

3b

]2

(12)

Now employing the expression of eν and eλ in (3), (4),
(10) and (5), we obtain the expression for matter density and
radial pressure as,

8πρ = a2r2 + a(2br4 + 3) + br2(br4 + 5)

(ar2 + br4 + 1)2
(13)

8πpr = 1

(ar2 + br4 + 1){B(a + br2)3/2 + 3Ab}

Fig. 10 Variation of red-shift against r by taking the same values of
the constant mentioned in Table 1 for PSR J0348+0432

Fig. 11 Variation of adiabatic index against r by taking the same val-
ues of the constant mentioned in Table 1 for PSR J0348+0432

× [−a2B
√

a + br2 − ab
{
2Br

√
r2

(
a + br2

)

+ 3A
} + b

{
B

(
6 − br4)

√
a + br2 − 3Abr2}] (14)

and the anisotropic factor 	 and transverse pressure pt are
obtained as,

	 = r{a2 + 2abr2 + b(br4 − 1)}(a + br2)−1/2

(ar2 + br4 + 1)2{B(a + br2)3/2 + 3Abr}
× [

a2Br + b
{
3A

√
r2

(
a + br2

) + Br
(
br4 − 3

)}

+ 2abBr3] (15)

8πpt = 8πpr + 	 (16)

Using the relationship between eλ and mass m(r) i.e.

e−λ = 1 − 2m

r
(17)

and (3) we obtain the expression for the mass function as,

m(r) = r3(a + br2)

2(1 + ar2 + br4)
(18)

the compactification factor is obtained as,

u(r) = 2m(r)

r
= (a + br2)r2

1 + ar2 + br4
(19)
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Fig. 12 Variation of stability factor against r by taking the same values
of the constant mentioned in Table 1 for PSR J0348+0432

Fig. 13 Variation of compactness parameter against r by taking the
same values of the constant mentioned in Table 1 for PSR J0348+0432

Now the gravitational red-shift at the stellar surface is given
by

Z = e−ν/2 − 1 =
(

B(a + br2)3/2

3b
+ A

)−1

− 1 (20)

4 Physical acceptability conditions

For well-behaved nature of the solutions for an an-isotropic
fluid sphere following conditions should be satisfied:

1. The solution should be free from physical and geometric
singularities, i.e. it should yield finite and positive val-
ues of the central pressure, central density and nonzero
positive value of eν |r=0 and eλ|r=0 = 1.

2. For physically stable static configuration, the energy con-
dition like Null Energy Condition (NEC), Weak Energy
Condition (WEC), Strong Energy Condition (SEC) and
Dominant Energy Condition needs to satisfy throughout
the interior region i.e.

ρ ≥ 0; ρ − pr ≥ 0; ρ − pt ≥ 0;
ρ − pr − 2pt ≥ 0; ρ ≥ (|pr |, |pt |)

3. The casualty condition should be obeyed i.e. velocity of
sound should be less than that of light throughout the

Fig. 14 Variation of mass function is plotted against r by taking the
same values of the constant mentioned in Fig. 1

Fig. 15 Counter-balancing of gravitational, hydrostatic and aniso-
tropic forces acting on PSR J0348+0432 via TOV-equation for the val-
ues of the constant mentioned in Fig. 1

model. In addition to the above the velocity of sound
should be decreasing towards the surface i.e. d

dr
dpr

dρ
< 0

or d2pr

dρ2 > 0 and d
dr

dpt

dρ
< 0 or d2pt

dρ2 > 0 for 0 ≤ r ≤ rb i.e.
the velocity of sound is increasing with the increase of
density and it should be decreasing outwards.

4. The adiabatic index, Γr = ρ+pr

pr

dpr

dρ
for realistic matter

should be Γr > 4/3.
5. The red shift z should be positive, finite and monotoni-

cally decreasing in nature with the increase in r .
6. The anisotropy factor 	 should be zero at the center and

increasing towards the surface.
7. For a stable anisotropic compact star, −1 ≤ v2

t − v2
r ≤ 0

must be satisfied (Herrera and Santos 1997).

5 Exterior spacetime and boundary condition

Assuming the exterior spacetime is the Schwarzschild solu-
tion which has to be match smoothly with the interior solu-
tion and is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) (21)
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By matching the interior solution (1) and exterior solu-
tion (21) at the boundary r = rb we get

eνb = 1 − 2M

rb
=

(
A + B(a + br2

b )3/2

3b

)2

(22)

e−λb = 1 − 2M

rb
= 1

1 + ar2
b + br4

b

(23)

pr(rb) = 0 (24)

Using the boundary condition (22-24), we get

a = 1

r2
b

[
1

1 − 2M/rb
− br4

b − 1

]
(25)

A =
√

1 − 2M

rb
− B

3b

[
a + br2

b

]3/2 (26)

B =
[

3b2r2
b

√
1 − 2M/rb

C1

√
a + br2

b

+ 3ab
√

1 − 2M/rb

C1

√
a + br2

b

]

×
[
br2

b (a + br2
b )

C1
+ a(a + br2

b )

C1
− 1

]−1

(27)

where

C1 = a2 + 2abr2
b + b2r4

b − 6b. (28)

6 Properties of the new solutions

The metric potentials are plotted against r in Fig. 1. From
the figures we see that metric potentials are free from central
singularity and

eλ(0) = 1, eν(0) =
(

A + Ba3/2

3b

)2

which are constants and (eλ)′ = 0; (eν)′ = 0 at the origin
r = 0.

The central values of pr , pt , ρ and the Zeldovich’s con-
dition can be written as

8πpr(0) = 8πpt (0)

= 6bB
√

a − 3abA − a5/2B

3bA + a3/2B
> 0 (29)

8πρ(0) = 3a; ∀a > 0 (30)

pr(0)

ρ(0)
= 6bB

√
a − 3abA − a5/2B

3a(3bA + a3/2B)
≤ 1 (31)

On using (29) and (31), we get a constraint on B/A given
by

3ab

6b
√

a − a5/2
<

B

A
≤ 12ab

6b
√

a − 4a5/2
(32)

The density and pressure gradients are given as

8π
dρ

dr
= − 2r

(ar2 + br4 + 1)3

[
a3r2 + a2(3br4 + 5

)

+ abr2(3br4 + 13
)

+ b
(
b2r8 + 12br4 − 5

)]
(33)

8π
dpr

dr
= 2(ar2 + br4 + 1)−2

√
a + br2 [B(a + br2)3/2 + 3Ab]2

× [
a3bB

{
B

(
10br4 − 7

)√
r2

(
a + br2

)

+ 24Abr3} + ab2f4(r) + b3f3(r) + f1(r)

+ a2b2f2(r)
]

(34)

8π
dpt

dr
= − (ar2 + br4 + 1)−3

(a + br2)3/2 [B(a + br2)3/2 + 3Ab]2

× [−2a4bB
{
B

(
21br4 − 11

)√
r2

(
a + br2

)

+ 63Abr3} + a3b2f6(r) + a2b2f7(r)

+ ab3f9(r) + b4f8(r)r
2 + f5(r)

]
(35)

provided

f1(r) = a5B2
√

r2
(
a + br2

) + a4bBr

× {
5Br

√
r2

(
a + br2

) + 6A
}

(36)

f2(r) = 9A2
√

r2
(
a + br2

) + B2r2(10br4 − 33
)

×
√

r2
(
a + br2

) + 12ABr
(
3br4 − 2

)
(37)

f3(r) = 9A2(br4 − 1
)√

r2
(
a + br2

) + B2r2

× (
b2r8 − 19br4 − 6

)√
r2

(
a + br2

)

+ 3ABr
(
2b2r8 − 11br4 + 3

)
(38)

f4(r) = 18A2br2
√

r2
(
a + br2

) + B2(5b2r8 − 45br4 − 6
)

×
√

r2
(
a + br2

) + 3AbBr3(8br4 − 19
)

(39)

f5(r) = −4a6B2
√

r2
(
a + br2

) − 2a5bBr

× {
11Br

√
r2(a + br2) + 12A

}
(40)

f6(r) = −36A2
√

r2
(
a + br2

) + 2B2r2(65 − 14br4)

×
√

r2
(
a + br2

) + 3ABr
(
26 − 93br4) (41)

f7(r) = −144A2br2
√

r2
(
a + br2

) + 2B2(4b2r8
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+ 141br4 + 3
)√

r2
(
a + br2

) + 3AbBr3

× (
93 − 107br4) (42)

f8(r) = −36A2(3br4 − 1
)√

r2
(
a + br2

)

+ 2B2r2(3b2r8 + 44br4 + 9
)√

r2
(
a + br2

)

− 3ABr
(
15b2r8 − 56br4 + 9

)
(43)

f9(r) = −36A2(6br4 − 1
)√

r2
(
a + br2

)

+ 2B2r2(9b2r8 + 131br4 + 12
)√

r2
(
a + br2

)

− 9ABr
(
21b2r8 − 41br4 + 4

)
(44)

The profile of the matter density, radial and transverse pres-
sure are plotted in Fig. 2 and Fig. 3 respectively which
shows that ρ, pr and pt all are positive and monotonic de-
creasing function of r inside the stellar interior and pr van-
ishes at the boundary of the star. The monotonic decreas-
ing condition is reverified by Fig. 6. Both pr/ρ and pt/ρ

are monotonic decreasing function of r and lies in the range
0 < pr/ρ, pt/ρ < 1 (Fig. 4) proves that the underlying fluid
distribution is non-exotic in nature. The anisotropic factor 	

is plotted against r in Fig. 5 which shows that 	 > 0 inside
the stellar configuration and therefore the anisotropic force
is repulsive in nature which is necessary to construct the
compact object (Gokhroo and Mehra 1994). Figure 8 shows
that all the energy conditions are satisfied by our present
model. The mass function is plotted against r in Fig. 14. The
profile of mass function is monotonic increasing function of
r and positive inside the stellar configuration. The compact-
ness factor and gravitational redshift are plotted in Fig. 13
and Fig. 10 respectively. It is noted that the compactification
factor does not cross the Buchdahl limit 2m/r < 8/9 (Buch-
dahl 1939). The gravitational redshift is plotted in Fig. 10,
which has maximum value at the center and it decreases ra-
dially outwards. The surface redshift, compactification fac-
tor has been obtained for different compact stars in Table 1.
The values of the surface redshift lies in the range zs ≤ 1.
The adiabatic index Γr (Fig. 11) is monotonic increasing
outwards and Γr > 4/3 everywhere inside the fluid sphere
and hence the model is stable. The ratio of (pr + 2pt)/ρ

plotted in Fig. 9 is monotonic decreasing function of r and
less than 1. The profile of the radial and transverse veloc-
ity of sound is shown in Fig. 7 and the figure shows that
0 < v2

r , v
2
t < 1 so causality condition holds and |v2

r −v2
t | < 1

(Fig. 12), implies Andréasson (2009) condition is also satis-
fied.

6.1 Stability under three different forces

To check the equilibrium condition we use the generalized
Tolman-Oppenheimer-Volkoff (TOV) equation described

by,

−Mg(ρ + pr)

r2
e(λ−ν)/2 − dpr

dr
+ 2(pt − pr)

r
= 0 (45)

where, Mg(r) is the gravitational mass given by,

Mg(r) = 1

2
r2ν′e(ν−λ)/2 (46)

The above equation (45) can be written in terms of balanced
force equation due to anisotropy (Fa), gravity (Fg) and hy-
drostatic (Fh) i.e.

Fg + Fh + Fa = 0 (47)

Here

Fg = −Mg(ρ + pr)

r2
e(λ−ν)/2 (48)

Fh = −dpr

dr
(49)

Fa = 2(pt − pr)

r
(50)

The nature of three forces is represented by Fig. 15 which
verifies that Fg is counterbalanced by the combine effects of
Fh and Fa to keep the system in equilibrium.

7 Results and conclusions

It has been observed that the physical parameters (e−λ, ρ pr ,
pt , pr/ρ, pt/ρ, z, (pr + 2pt)/ρ, v2

r , v2
t ) are positive at the

center and within the limit of realistic equation of state and
monotonically decreasing outward (Figs. 1–4, 7, 9 and 10).
However, eν , anisotropy, mass, compactness parameter and
Γr are increasing outward which is necessary for a physi-
cally viable configuration (Figs. 1, 5, 11, 13, 14).

Furthermore, our presented solution satisfies all the en-
ergy condition which is needed by a physically possible con-
figuration. The Strong Energy Condition (SEC), Weak En-
ergy Condition (WEC), Null Energy Condition (NEC) and
Dominant Energy Condition (DEC) is shown in Fig. 8. The
stability factor v2

t − v2
r must lies in between −1 and 0 for

stable and 0 to 1 for unstable configuration. Therefore the
presented solution satisfies stability condition (Fig. 12).

The decreasing nature of pressures and density is further
justified by their negativity of their gradients, Fig. 6. The so-
lution represents a static and stale configuration as the force
acting on the fluid sphere is counter-balancing each other.
For an anisotropic stellar fluid in equilibrium the gravita-
tional force, the hydro-static pressure and the anisotropic
force are acting through TOV-equation and they are counter-
balancing to each other, Fig. 15. All the graph was plotted
for PSR J0348+0432 by assuming 2.01M	, 13 km and b =
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Table 1 Masses, radii and all the constant parameters representing well-behaved solutions that corresponds to well-known compact stars

Object M
M	 R (km) a (km−2) b (km−4) A B u = 2M

R
zs

PSR J0348+0432 2.01 13 0.00214188 0.000003 0.507144 0.0213879 0.30923 0.2032

Cen X-3 1.21 9.51 0.00332185 0.000005 0.453494 0.026522 0.25447 0.1582

Vela X-1 1.86 10.3 0.00469242 0.000006 0.168783 0.0291733 0.36116 0.2511

0.000003, the rest of the constant parameters are determined
from boundary conditions and found to be A = 0.507144,
B = 0.0213879 and a = 0.00214188.

Using this solution, we have presented some models
of well-known compact stars and compare there observed
masses and radii with our calculated values in Table 1. The
masses and radii provided in Table 1 matches with the ob-
servational values within acceptable statistical error (Anto-
niadis et al. 2013; Abubekerov et al. 2004; Ash et al. 1999).
Indeed our presented models are in good agreement with the
experimentally observed values. Hence the presented solu-
tion might have astrophysical significance in the future. As a
special case of this solution for a = 2

√
b, it reduces to Singh

et al. (2016c).
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