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Abstract Under the static spherically symmetric Einstein–
Maxwell spacetime of embedding class one we explore pos-
sibility of constructing electromagnetic mass model where
mass and other physical parameters have purely electromag-
netic origin (Lorentz in Proc. Acad. Sci. Amst. 6, 1904).
This work is in continuation of our earlier investigation
of Maurya et al. (Eur. Phys. J. C 75:389, 2015a) where we
developed an algorithm and found out three new solutions
of electromagnetic mass model. In the present work we con-
sider different metric potentials ν and λ and have analyzed
them in a systematic way. It is observed that some of the pre-
vious solutions related to electromagnetic mass model are
nothing but special cases of the presently obtained general-
ized solution set. We further verify the solution set and es-
pecially show that these are extremely applicable in the case
of compact stars.
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1 Introduction

It is interesting to note that as long as in 1924 (Eddington
1924) conceived the idea that our spacetime can be con-
sidered as a four dimensional space embedded in a higher-
dimensional flat space. This idea has gained quantum of at-
traction to the scientific community due to the recent pro-
posal by Randall and Sundram (1999) and Anchordoqui and
Bergila (2000). The details discussion about the embedding
class has been provided by Maurya et al. (2015a).

On the other hand, general theory of relativity (GTR), an
outstanding extension of the special theory of relativity with
non-uniform reference frame and tensorial presentation of
curved spacetime, was put forward by Einstein (O’Connor
and Robertson 1996) in the year 1915—a century ago. Till
date this is considered as the most profound and effective
theory of gravitation. The field theoretical effect of this ge-
ometric theory has been described by Wheeler (1990) in a
poetic exposition as follows: “Matter tells space–time how
to bent and space–time returns the complement by telling
matter how to move”.

In the present context we employ GTR as our background
canvas to formulate solutions from class 1 metric and there-
after to investigate electromagnetic mass model (EMMM).
As the present work is a sequel of our earlier work (Mau-
rya et al. 2015a) so we shall refer that article for detailed
discussions on class 1 metric as well as the EMMM.

In connection to the above work on the EMMM it have
been specially argued by Maurya et al. (2015a) that most of
the investigators (Cooperstock and de la Cruz 1978; Tiwari
et al. 1984; Gautreau 1985; Grøn 1985; Tiwari et al. 1986;
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Ponce de Leon 1987; Tiwari et al. 1991; Tiwari and Ray
1991a,b; Ray et al. 1993, 2007; Ray and Ray 1993; Tiwari
and Ray 1997; Ray 2002, 2006, 2007; Ray and Das 2002,
2004; Ray and Bhadra 2004) consider an ad hoc equation of
state (EOS) ρ + p = 0 (where ρ is the matter density and p

is the fluid pressure), which suffers from a negative pressure.
In the present investigation, however, for the construction of
EMMMs following Maurya et al. (2015a) we also employ
a different technique by adopting a special algorithm. We
shall see later on that this algorithm will act as a general
platform to generate physically valid solutions compatible
with the spherically symmetric class one metric.

The plan of the present work can be outlined as follows:
we have provided the static spherically symmetric space-
time and the Einstein–Maxwell field equations in Sect. 2
whereas in Sect. 3 based on an algorithm for class one met-
ric we construct a set of new general solutions. In the next
Sect. 4 boundary conditions are discussed to find out con-
stants of integration. The Sect. 5 deals with the solutions
where critical analysis has been performed to check several
physical properties of the model regarding validity with the
stellar structure. We have put some remarks in the conclud-
ing Sect. 6.

2 The static spherically symmetric spacetime
and Einstein–Maxwell field equations

The Einstein–Maxwell field equations can be provided as
usual

Gi
j = Ri

j − 1

2
Rgi

j = −κ
(
T i

j + Ei
j

)
, (1)

where k = 8π is the Einstein constant (G = c = 1, in the
relativistic units).

The matter distribution inside the star is assumed to be lo-
cally perfect fluid and consequently T i

j and Ei
j , the energy-

momentum tensors for fluid distribution and electromag-
netic field respectively, are defined by

T i
j = [

(ρ + p)vivj − pδi
j

]
, (2)

Ei
j = 1

4π

(
−F imFjm + 1

4
δi
jF

mnFmn

)
, (3)

where vi is the four-velocity as e−ν(r)/2vi = δi
4.

Now the anti-symmetric electromagnetic field tensor,
Fij , satisfies the Maxwell equations

Fik,j + Fkj,i + Fji,k = 0, (4)

∂

∂xk

(√−gF ik
) = −4π

√−gj i, (5)

where g is the determinant of quantities gij in Eq. (5) and is
defined by g = −e(ν+λ)r4 sin2 θ .

The only non-vanishing components of the electromag-
netic field tensor are F 41 and F14 which describe the ra-
dial component of the electric field and are related as F 41 =
−F 14. From Eq. (5), we can obtain the following expression
for the electric field

F 41 = e− (λ+ν)
2

q(r)

r2
, (6)

where q(r) represents the total charge contained within the
sphere of radius r and is defined by

q(r) = r2
√

−F14F 14 = r2F 41e(λ+ν)/2

= r2E = 4π

∫ r

0
σ r2eλ/2dr, (7)

where σ is the charge density.
Now, following the work of Maurya et al. (2015a) here

we consider the static spherically symmetric metric in the
form

ds2 = −eλdr2 − r2(dθ2 + sin2 θdϕ2) + eνdt2. (8)

The above metric represents spacetime of embedding
class one if it satisfies the Karmarkar condition (Karmarkar
1948)

R1414 = R1212R3434 + R1224R1334

R2323
(9)

along with the constraint R2323 �= 0 (Pandey and Sharma
1982). In this connection we note that every gravitational
metric of spherical symmetry is in general of class two.
Basically through the above mentioned Karmarkar condi-
tion (Karmarkar 1948) it was shown that this is a necessary
and sufficient condition for the spherically symmetric space-
time to be of class 1. However, later on it was again shown
by Pandey and Sharma (1982) that along with the Karmarkar
condition (Karmarkar 1948) the constraint R2323 �= 0 is also
needed to impose.

However, in connection to the above condition the com-
ponents of the Riemann curvature tensor Rhijk (for static
case i.e. the derivative with respect to t is zero) under the
metric (8) are as follows:

R2323 = sin2 θr2[1 − e−λ
]
, R1212 = 1

2
λ′r,

R1224 = 0, R1414 = eν

[
1

2
ν′′ + 1

4
ν′2 − 1

4
λ′ν′

]
,

R2424 = 1

4
ν′β ′eν−λ, R3434 = sin2 θ R2424.

Hence, by inserting the components of Rhijk in Eq. (9),
we obtain the following second order differential equation:

λ′ν′

(1 − eλ)
= −2

(
ν′′ + ν′2) + ν′2 + λ′ν′, (10)
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where ν(r) and λ(r) are metric potentials and depend only
on the radial coordinate r . Here eλ �= 1 with r �= 0.

The solution of above Eq. (10) can be represented in both
the forms with eλ as well as eν . The meaning is that if we
opt for ν then we can determine λ whereas for the option of
λ one can determine ν of the solution. Therefore, after some
manipulation, the solution of the second order differential
equation (10), can be obtained in the following forms:

eλ = (
1 + Kν′2eν/4

)
, eν/2 = A + 1√

K

∫ √(
eλ − 1

)
dr,

(11)

where K and A are two non-zero arbitrary constants of in-
tegration, ν′(r) �= 0, eλ(0) = 1 and ν′(0) = 0.

For the above spherically symmetric metric (8), the
Einstein–Maxwell field equations (1) can be expressed as
the following set of ordinary differential equations (Maurya
et al. 2015a,b):

ν′

r
e−λ − (1 − e−λ)

r2
= κp − q

r4

2
, (12)

[
ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r

]
e−λ = κp + q

r4

2
, (13)

λ′

r
e−λ + (1 − e−λ)

r2
= κρ + q

r4

2
, (14)

where the prime denotes differentiation with respect to r .
Therefore, by incorporating Eq. (11) in the set of

Eqs. (12)–(14), we get

ν′

r2(4 + Kν′2eν)

(
4r − Kν′eν

) = κp − q2

r4
, (15)

4

(4 + Kν′2eν)

(
ν′

2r
− (Kν′eν − 2r)(2ν′′ + ν′2)

2r(4 + Kν′2eν)

)

= κp + q2

r4
, (16)

Keνν′

r (4 + Kν′2eν)

(
4(2ν′′ + ν′2)
(4 + Kν′2eν)

+ ν′

r

)
= κρ + q2

r4
. (17)

Using the Eqs. (15) and (16), the pressure isotropy condi-
tion (Maurya et al. 2015a), and the pressure gradient by Tol-
man (1939), Oppenheimer and Volkoff (1939) can be written
as follows:
(

Kν′eν

2r
− 1

)(
2ν′

r(4 + Kν′2eν)
− 4(2ν′′ + ν′2)

(4 + Kν′2eν)2

)

= 2q2

r4
, (18)

dp

dr
= −MG(r)(ρ + p)

r2
e(λ−ν)/2 + q

4πr4

dq

dr
, (19)

where MG is the gravitational mass within the radius r and
is given by

MG(r) = 1

2
r2ν′e(ν−λ)/2. (20)

The above Eq. (19) represents the charged generalization
of the Tolman–Oppenheimer–Volkoff (TOV) (Tolman 1939;
Oppenheimer and Volkoff 1939) as generally referred to the
equation of hydrostatic equilibrium or equation of continu-
ity.

It have been argued by Maurya et al. (2015a) that if
charge vanishes in a charged fluid of embedding class one
then survived neutral counterpart will only be either the
Schwarzschild (1916) interior solution (or its special cases
de Sitter universe or Einstein’s universe) or Kohler and
Chao (1965) solution otherwise either charge cannot be zero
or the survived space–time metric is flat. This means for
q = 0 in Eq. (18), the first factor of the left hand side gives
the Kohler-Chao solution while the second factor gives the
Schwarzschild solution.

3 A set of new class of solutions

In general, in the presence of electrical charge, the fluid
sphere under consideration can be defined by the following
metric functions:

e−λ = 1 − 2m(r)

r
+ q2

r2
, (21)

ν′ = (κrp + 2m

r2 − 2q2

r3 )

(1 − 2m
r

+ q2

r2 )
, (22)

where m(r) is the mass function where Eq. (21) has been
derived with the help of Eqs. (12) and (21) which means
λ and ν are dependent on each other as also evident from
Eq. (11).

Using Eqs. (12)–(14), in terms of the above mass function
m(r) of Eq. (21), an algorithm for constructing electromag-
netic mass models of class one metric have been provided
by Maurya et al. (2015a).

By plugging Eqs. (11) and (18) into Eq. (21), we get ex-
pression of mass function m(r) as:

m(r) = r ν′(Kν′eν − 2r)

2(4 + Kν′2eν)
− r2 (2ν′′ + ν′2)(Kν′eν − 2r)

2(4 + Kν′2eν)2

+ r K ν′2 eν

2(4 + K ν′2 eν)
(23)

For constructing electromagnetic mass model, we con-
sider the following form of metric potential:

λ = log

(
1 + ar2

1 + br2

)
, (24)
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a and b being two real numbers. Here we are opting for λ

on the basis of Eq. (18) (i.e. charge should not be zero for
that λ).

Then the metric function ν can be determined from
Eq. (11) as

ν = 2 log
[
A + B

√
1 + br2

]
, (25)

where A and B are two positive constants with

B = 1

b

√
(a − b)

K
, (26)

However, the supposition of metric function λ will lead
us to a new class of very interesting and physically valid
solutions. The explanations for this λ are given as:

3.1: If a = 0, then the present charge fluid reduces to the
interior solution of Schwarzschild (1916).

3.2: If a = 2b and A = 0, then the said solution reduces to
the interior solution of Kohler and Chao (1965).

3.3: If a �= 0 and a �= 2b, then the charged solution can
not reduce to any uncharged solution. But the charged so-
lution in this case can still be uncharged for taking a = b

and reduces to a flat spacetime. Consequently, the charged
fluid spheres (for different values of a and b with a �= 0
and a �= 2b) represent a class of electromagnetic mass mod-
els (Lorentz 1904) as they reduce to the flat spacetime (the
pressure and charged density both vanish simultaneously)
on the removal of charge.

Therefore, for determining the features of charged fluid
as well as to understand concept of the electronic structure,
we shall consider the third case i.e. a �= 0 and a �= 2b only.

Hence the expressions for the electric charge and elec-
tromagnetic mass respectively can be provided by using the
Eqs. (18) and (23) together with Eqs. (24) and (25) as:

q(r) = Er2 = √
a r3

√[
C(r) − D(r)

F (r)

]
, (27)

m(r) = 1

2
r3

[
(a − b)

1 + ar2
+ ar2[C(r) − D(r)]

F(r)

]
, (28)

where

C(r) = a
(
B + bBr2 + A

√
1 + br2

)
,

D(r) = b
(
A

√
1 + br2 + 2B + 2Bbr2),

F (r) = 2
(
1 + ar2)2

√
1 + br2

[
A + B

√
1 + br2

]
.

The expressions for fluid pressure and energy density
respectively are obtained by plugging the value of ν from

Eq. (25) into Eqs. (15) and (17) as:

8πp =
[−a2r2H(r) + 2b[H(r) + 2B(1 + br2)] + aI1

F(r)

]
,

(29)

8πρ =
[−6bH(r) + a2r2H(r) + aI2

F(r)

]
, (30)

where

H(r) = B(1 + br2) + A
√

1 + br2,

I1 = A(−2 + br2)
√

1 + br2 + 2B(−1 + br2 + 2b2r4),

I2 = A(6 − br2)
√

1 + br2 + 6B(1 + br2).

Therefore, the pressure and density gradients are

dp

dr
= 2r

8π

[
p1 + p2 + p3

4(1 + ar2)3
√

1 + br2[A + B
√

1 + br2]2

]
,

(31)

dρ

dr
= −2ar

8π

[
ρ1 + ρ2 + ρ3

4(1 + ar2)3
√

1 + br2[A + B
√

1 + br2]2

]
,

(32)

where

p1 = 4Ab2B − ab
[
6A2

√
1 + br2 + 16B2(1 + br2)3/2

+ AB
(
22 + 15br2)],

p2 = 2a3r2[A2
√

1 + br2 + B2(1 + br2)3/2

+ 2AB
(
1 + br2)],

p3 = a2[−2A2(−3 + br2)
√

1 + br2

+ AB
(
12 + 2br2 − 7b2r4)

− 2B2(−3 + br2 + 4b2r4)
√

1 + br2
]
,

ρ1 = −b
[
22A2

√
1 + br2 + 24B2(1 + br2)3/2

+ AB
(
46 + 47br2)],

ρ2 = 2a2r2[A2
√

1 + br2 + B2(1 + br2)3/2

+ 2AB
(
1 + br2)],

ρ3 = a
[−2A2(−11 + br2)

√
1 + br2 + 22B2(1 + br2)3/2

+ AB
(
44 + 42br2 − 3b2r4)].

4 Boundary conditions

The arbitrary constants A, B and K can be obtained by using
the boundary conditions. For the above system of equations
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the boundary conditions that applicable are as follows: the
pressure p = 0 at r = R, where r = R is the outer boundary
of the fluid sphere [matching the second fundamental form
at r = R i.e. matching of ∂gtt

∂r
at r = R]. Actually, the interior

metric (8) should join smoothly at the surface of the sphere
(r = R) to the exterior Reissner–Nordström metric whose
mass is m(r = R) = M , a constant (Misner and Sharp 1964),
given by

ds2 = −
(

1 − 2M

r
+ Q2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2M

r
+ Q2

r2

)
dt2. (33)

This requires the continuity of eλ, eν and Q across the
boundary r = R, so that

e−λ(R) = 1 − 2M

R
+ Q2

R2
, (34)

eν(R) = 1 − 2M

R
+ Q2

R2
, (35)

q(R) = Q, (36)

p(r=R) = 0. (37)

The pressure is zero on the boundary r = R and hence
we obtain

B

A
= (a − b)(2 + aR2)

[6b − a2R2 − a(2 − 4bR2)]√1 + bR2
. (38)

Again, at the boundary e−λ(R) = eν(R), which gives

A = (6b − a2R2 − 2a + 4abR2)
√

1 + bR2

(4b + 3abR2)
√

1 + aR2
. (39)

Also from Eqs. (38) and (39) one can get

B = (a − b)(2 + aR2)

(4b + 3abR2)
√

1 + aR2
. (40)

For the third constant K , we use Eqs. (26) and (40),
which provides the required expression as

K = (4b + 3abR2)2(1 + aR2)

b2(a − b)(2 + aR2)2
. (41)

5 Physical acceptability conditions
for the isotropic stellar models

In the present Section we have critically verified our mod-
els by performing mathematical analysis and plotting several
figures for some of the compact star candidates. All these in-
dicate that the results are fantastically overcome all the bar-
rier of the physical tests.

Fig. 1 Behavior of the metric potentials ν and λ with respect to radial
coordinate r/R

5.1 Regularity and reality conditions

5.1.1 Case 1

It is expected that the solution should be free from physi-
cal and geometrical singularities i.e. the pressure and energy
density at the center should be finite and metric potentials
eλ(r) and eν(r) should have non-zero positive values in the
range 0 ≤ r ≤ R. We observe that at the center Eqs. (24) and
(25) give eλ(0) = 1 and eν(0) = (A + B)2. These results sug-
gest that the metric potentials are positive and finite at the
center. These features can be found explicitly from Fig. 1.

5.1.2 Case 2

For any physically valid solutions the density ρ and pressure
p should be positive inside the star. Also the pressure must
vanish on the boundary of the fluid sphere r = R. The other
physical conditions to be maintained are as follows:

(1) (dp/dr)r=0 = 0 and (d2p/dr2)r=0 < 0 so that pressure
gradient dp/dr is negative for 0 ≤ r ≤ R.
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(2) (dρ/dr)r=0 = 0 and (d2ρ/dr2)r=0 < 0 so that density
gradient dρ/dr is negative for 0 ≤ r ≤ R.

The above two conditions (1) and (2) imply that the
pressure and density should be maximum at the center and
they should monotonically decrease towards the surface. All
these are evident from Fig. 2.

We have also shown these features of pressure and den-
sity for some specific compact stars in Tables 1 and 2 where
we have figured out physical parameters as well as some

Fig. 2 Behavior of the fluid pressure p and energy density ρ with
respect to radial coordinate r/R, where pi = κp, ρi = κρ

constants of our models. Actually, the values of Table 1 have
been used in Table 2 to find out the energy densities and
pressure for different strange star candidates. It is worth-
while to mention that the densities ∼ 1015 gm/cm3 and pres-
sure ∼ 1035 dyne/cm2 are in good agreement with the obser-
vational data of the compact stars, specially Her X-1 (Rud-
erman 1972; Maurya et al. 2015c).

For specific numerical values of the constant κ =
8πG/c4 and other physical parameters we have used the
data G = 6.67 × 10−8 cm3/gs−2 and c = 2.997 × 1010 cm/s
in the calculations of Table 2.

5.2 Causality and well behaved conditions

Inside the fluid sphere the speed of sound should be less than
the speed of light i.e. 0 ≤ (

dp
dρ

) < 1, which can be observed
in Fig. 3. We note from this figure that the velocity of sound
monotonically is decreasing away from the center (Canuto
1973).

5.3 Energy conditions

It is, in general, argued that a physically reasonable energy-
momentum tensor which represents an isotropic charged
fluid sphere composed of matter must satisfy the following
energy conditions:

1. null energy condition (NEC): ρ + E2

4π
≥ 0

2. weak energy condition (WEC): ρ − p + E2

4π
≥ 0

3. strong energy condition (SEC): ρ − 3p + E2

4π
≥ 0

The behaviour of these energy conditions are shown in
Fig. 4. This figure clearly indicates that all the energy condi-
tions in our model are satisfied throughout the interior region
of the spherical distribution.

5.4 Stability conditions

5.4.1 The Tolman–Oppenheimer–Volkoff equation

The generalized Tolman–Oppenheimer–Volkoff (TOV)
equation can be provided as

−MG(ρ + pr)

r2
e

λ−ν
2 − dp

dr
+ σ

q

r2
e

λ
2 = 0, (42)

Table 1 Values of the model
parameters for different charged
compact stars

Compact star
candidates

M (M�) R (Km) M/R a (Km−2) b (Km−2) A K (Km2)

Her X-1 0.9800 6.70 0.2160 0.00535 −0.00600 1.4566 485.1733

RX J 1856-37 0.9000 6.00 0.2220 0.00650 −0.00800 1.4137 377.0041

SAX 1 1.4351 7.07 0.2990 0.00719 −0.00800 1.2506 414.5739

SAX 2 1.3235 6.35 0.3071 0.01320 −0.00811 1.4506 351.2430

PSR 1937+21 2.0830 11.40 0.2692 0.00200 −0.00295 1.2546 1138.6000

4U 1820-30 2.2457 9.95 0.3325 0.00542 −0.00400 1.2946 797.8075
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Table 2 Energy densities and
pressure for different charged
compact star candidates for the
above parameter values of
Table 1

Compact stars
candidates

Central density
(gm/cm3)

Surface density
(gm/cm3)

Central pressure
(dyne/cm2)

Her X-1 1.8285 × 1015 1.2590 × 1015 1.7018 × 1035

RXJ 1856-37 2.3360 × 1015 1.6223 × 1015 2.3810 × 1035

SAX 1 2.4471 × 1015 1.4404 × 1015 4.5051 × 1035

SAX 2 3.4330 × 1015 1.6506 × 1015 5.0610 × 1035

PSR 1937+21 1.5176 × 1015 7.2620 × 1014 3.0741 × 1035

4U 1820-30 7.9745 × 1015 5.3441 × 1014 1.2871 × 1035

Fig. 3 Behavior of the sound speed V with respect to radial coordinate
r/R

where MG is the effective gravitational mass given by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (43)

This Eq. (42) describes the equilibrium condition for a
charged perfect fluid subject to the gravitational (Fg), hy-
drostatic (Fh) and electric (Fe). In summary, we can write
it as

Fg + Fh + Fe = 0, (44)

where

Fg = −1

2
(ρ + p)ν′

= − rbB

8π

[
2[A(a − b)

√
1 + br2 + Ba(1 + br2)]

(1 + ar2)2(1 + br2)[A + B
√

1 + br2]2

]
,

(45)

Fh = −dp

dr

= − 2r

8π

[
p1 + p2 + p3

4(1 + ar2)3
√

1 + br2[A + B
√

1 + br2]2

]
,

(46)

Fe = σ
q

r2
eλ/2

= ar

4π

[
Fe1 + Fe2 + Fe3

4(1 + ar2)3
√

1 + br2[A + B
√

1 + br2]2

]
.

(47)

In the above Eq. (47) the symbols used are as follows:

Fe1 = −b
[
6A2

√
1 + br2 + 12B2(1 + br2)3/2

+ AB
(
18 + 19br2)],

Fe2 = 2a2r2[A2
√

1 + br2 + B2(1 + br2)3/2

+ 2AB
(
1 + br2)],

Fe3 = a
[−2A2(−3 + br2)

√
1 + br2

+ AB
(
12 + 6br2 − 7b2r4)

+ 2B2(3 + br2 − 2b2r4)
√

1 + br2
]
.

We have shown the plots for TOV equation in Fig. 5 for
different compact strange stars. From figures it is observed
that the system is in static equilibrium under three different
forces, e.g. gravitational, hydrostatic and electric to attain
overall equilibrium.

5.4.2 Electric charge contain

In the present work the expression for electric charge can be
given by Eq. (27) and following the work of Maurya et al.
(2015a) we can figure out the charge on the boundary as
1.15295 × 1020 C and at the center it is zero. The charge
profile has been shown in Fig. 6 for different compact stars
which starts from a minimum value at the center and ac-
quires the maximum value at the boundary. This feature is
also evident from the Table 3 and compatible with the result
of Ray et al. (2003) where they studied the effect of elec-
tric charge in compact stars and found the upper bound as
∼ 1020 Coulomb. However, in this connection it is to note
that in the Table 3 we have mentioned the data for charge q

for different stars in the relativistic unit Km. Therefore, to
convert these values of charge in Coulomb unit, one has to
multiply every value by a factor 1.1659 × 1020.
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Fig. 4 Behavior of the energy conditions with respect to fractional
radius r/R

5.4.3 Effective mass-radius relation

Buchdahl (1959) has proposed an absolute constraint on
the maximally allowable mass-to-radius ratio (M/R) for
static spherically symmetric isotropic fluid spheres which
amounts 2M/R ≤ 8/9. On the other hand, Böhmer and
Harko (2007) proved that for a compact charged fluid sphere
there is a lower bound for the mass-radius ratio

3Q2

2R2

(1 + Q2

18R2 )

(1 + Q2

12R2 )
≤ 2M

R
, (48)

for the constraint Q < M .

Fig. 5 Behavior of the forces for the compact stars (i) Her X-1
(Top Left), (ii) RX J 1856-37 (Top Right) and (iii) 4U 1820-30
(Middle left), (iv) SAX J1808.4-3658 (SS1) (Middle Right),
(v) SAX J1808.4-3658 (SS2) (Bottom left) and (vi) PSR 1937+21 (Bot-
tom Right) with respect to radial coordinate r/R

This upper bound of the mass for charged fluid sphere
was generalized by Andréasson (2009) who proved that

√
M ≤

√
R

3
+

√
R

9
+ Q2

3R
. (49)

In the present model, we find the effective gravitational
mass as

Meff = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = 1

2
R

[
(a − b)R2

(1 + aR2)

]
. (50)

Note that in the above equation, for the condition a = b,
the effective gravitational mass vanishes which is a required
feature of electromagnetic mass model.
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Table 3 The profile of electric
charge for different compact
stars in the unit of
1020 Coulomb

r/R Her. X-1 RXJ 1856-37 SAX-2 SAX-1 4U 1820-30 PSR 1937+21

0.0 0 0 0 0 0 0

1.0 0.9686 0.8706 1.4664 1.4056 2.3974 1.8996

Fig. 6 Behavior of electric charge q with respect to radial coordinate
r/R

Fig. 7 The behavior of surface redshift Z with respect to radial coor-
dinate r/R

In terms of the compactness factor u = Meff /R we now
define the surface redshift Z as

Z = (1 − 2u)−
1
2 − 1 = e

1
2 λ(R) − 1 =

√
(1 + aR2)

(1 + bR2)
− 1. (51)

We have demonstrated the behavior of surface redshift Z

with respect to radial coordinate r/R in Fig. 7 which shows
the desirable features (Maurya et al. 2015b).

6 Conclusion

Our sole aim in the present paper was to investigate na-
ture of class 1 metric. For this purpose we have con-
sidered matter-energy distribution under the framework of
Einstein–Maxwell spacetime. At first we developed an al-
gorithm which has a general nature and thus can be re-
duced to three special cases, viz. (i) charge analogue of
the Kohler and Chao (1965) solution, (ii) charge analogue
of the Schwarzschild (1916) solution (i.e. the Reissner–
Nordström solution), and (iii) the Lorentz (1904) solution
of electromagnetic mass model.

By considering the third case of the Lorentz solution of
electromagnetic mass model we have studied its properties
through the following two basic physical testing, such as
(i) regularity and reality conditions, and (ii) causality and
well behaved conditions. Moreover, some other essential
testing also have been performed, viz. (i) energy conditions,
and (ii) stability conditions. In the case of energy condi-
tions we have seen that the isotropic charged fluid sphere
composed of matter satisfy the (i) null energy condition

(ρ + E2

4π
) ≥ 0, (ii) weak energy condition (ρ − p + E2

4π
) ≥ 0,

and (iii) strong energy condition (ρ −3p+ E2

4π
) ≥ 0 (Fig. 4).

On the other hand, in connection to stability conditions we
critically have discussed the TOV equation, electric charge
contain, effective mass-radius relation of the charged spheri-
cal distribution. Here also we find that the results are in favor
of the physical requirements (Figs. 5 –7).

As a special feature of the models we have presented
here an application to stellar structure. The behavior of the
compact stars (i) Her X-1, (ii) RX J 1856-37, (iii) 4U 1820-
30, (iv) SAX J1808.4-3658 (SS1), (v) SAX J1808.4-3658
(SS2), and (vi) PSR 1937+21 have been demonstrated
through two Tables 1 and 2 which are quite satisfactory.
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