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Abstract This paper presents a new model of static spher-
ically symmetric relativistic charged stellar objects with lo-
cally anisotropic matter distribution together with the Chap-
lygin equation of state. The interior spacetime has been
matched continuously to the exterior Reissner–Nordström
geometry. Different physical properties of the stellar model
have been investigated, analyzed, and presented graphically.

Keywords General relativity · Relativistic astrophysics ·
Exact solution · Anisotropic fluid sphere · Charged fluid
sphere · Compact stars · Relativistic stars · Equation of state

1 Introduction

The study of static charge fluid sphere is an interesting topic
to the researchers. Bonnor (1960, 1965) proposed that a
spherical body carrying certain modest electric charge den-
sity can remain in equilibrium under its own gravitational
and electric repulsion. Stettner (1973) considered a model
of homogeneous distribution of matter with a net surface
charge. He showed that a fluid sphere of uniform density
with modest surface charge is more stable without charge.
According to Bekenstein (1971) gravitational attraction may
be balanced by electrostatic repulsion due to electric charge
and pressure gradient. Joshi (1993) proposed that Einstein–
Maxwell solutions are also important to study the cosmic
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censorship hypothesis and the formation of naked singu-
larities. The presence of charge affects the values for red-
shifts, luminosities, and maximum mass for stars. Komathi-
raj and Moharaj (2007) obtained new classes of exact so-
lutions to the Einstein–Maxwell system of equations for a
charged sphere with a particular choice of the electric field
intensity and one of the gravitational potentials and found
exact solutions to the Einstein–Maxwell field equations cor-
responding to a static spherically symmetric gravitational
potential in terms of hypergeometric functions. A good col-
lection of Einstein–Maxwell solutions, satisfying a variety
of criteria for physical acceptability was studied in (Ivanov
2002). Thomas et al. (2005), Tikekar and Thomas (1998),
Paul and Tikekar (2005) described that charged relativistic
spheres may be used to model core-envelope stellar con-
figuration where the core consists an isotropic fluid and
the envelope comprises an anisotropic fluid. Charged, self-
gravitating anisotropic fluid spheres have been investigated
in general relativity was studied by Bonnor (1960). Varela
et al. (2010) proposed a model of charged anisotropic mat-
ter with linear or nonlinear equation of state. The model
was obtained by Krori–Barua (KB) ansatz. Rahaman et al.
(2010) obtained a new model of singularity-free solutions
for anisotropic charged fluids with Chaplygin equation of
state by using KB metric. From the investigation of Ruder-
man (1972) the pressure inside the highly compact astro-
physical objects like X-ray pulsar, Her-X-1, X-ray buster
4U 1820-30, millisecond pulsar SAX J 1804.4-3658, PSR
J1614-2230, LMC X-4 etc. having the core density beyond
the nuclear density (∼ 1015 g cm−3) becomes anisotropy in
nature, i.e., the pressure can be decomposed into two parts;
radial pressure Pr and transverse pressure Pt . The differ-
ence, denoted by � = Pt − Pr , measures the anisotropy is
called the anisotropic factor. The existence of solid core, in
presence of type 3A superfluid (Kippenhahn et al. 2012),

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-016-2923-9&domain=pdf
mailto:piyalibhar90@gmail.com
mailto:mhmurad@bracu.ac.bd


334 Page 2 of 10 P. Bhar, M.H. Murad

rotation, magnetic field, mixture of two fluid, existence of
external field etc. are reasonable for it. Local anisotropy in
self-gravitating systems were extensively studied by Herrera
and Santos (1997). Bhar et al. (2015) have studied the behav-
ior of static spherically symmetric relativistic objects with
locally anisotropic matter distribution considering the Tol-
man VII form for the gravitational potential grr in curvature
coordinates together with the linear relation between the en-
ergy density and the radial pressure.

In 1998, according to the discovery of High-z Supernova
Search Team the expansion of our universe is accelerating.
Dark energy is one of the suitable hypotheses to explain this.
P = ωρ with ω < 0 is called the dark energy equation of
state, ω being the equation of state parameter. A two di-
mensional Brans–Dicke star model with exotic matter and
dark energy was studied by Jun (2009). Chan et al. (2011)
have proposed a model of the dark energy star consisting
of four regions and by analyzing the model they conclude
that for a static solution at least one of the regions must be
constituted by dark energy. Lobo (2006) has given a model
of a stable dark energy star by assuming two spatial types
of mass function: one is of constant energy density and the
other mass function is a Tolman–Whitker mass. He showed
that the system is stable under a small linear perturbation.
Inspired by this work, Bhar and Rahaman (2015) proposed
a new model of dark energy star consisting of five zones,
namely, the solid core of constant energy density, the thin
shell between core and interior, an inhomogeneous interior
region with anisotropic pressures, a thin shell, and the exte-
rior vacuum region. They have also discussed the stability
condition under a small linear perturbation. P = −B/ρα is
generally called the Chaplygin equation of state where the
α and B are positive constants and 0 ≤ α ≤ 1. The gen-
eral properties of a spherically symmetric body described
through the generalized Chaplygin equation of state was
studied by Bernardini and Bertolami (2005). The modified
Chaplygin gas equation of state for the radial pressure is de-
scribed by P = Aρ − B/ρα . Here A, B , and α are con-
stant parameters. If we take α = 1 then it gives generalized
Chaplygin equation of state. In a very recent work one of
us (Bhar 2015) obtained a new model of anisotropic star
by using Finch–Skea ansatz by using generalized Chaply-
gin equation of state. Inspired by all of these previous works
in this present paper we want to present a model for charged
anisotropic star admitting generalized Chaplygin equation
of state.

As a continuation of our previous work we intend to
develop some new analytical relativistic anisotropic stellar
models by using a particular type of metric function together
with the generalized Chaplygin equation of state. Our anal-
ysis depends on several mathematical key assumptions. The
form of metric potential ensures that the metric function is
nonsingular, continuous, and well behaved in the interior of

the star. This is one of the desirable features for the model
on physical grounds. The solutions obtained in this work
are expected to provide simplified but easy to mathemati-
cally analyzed stellar models with nonzero super-high sur-
face density which could reasonably model the stellar core
of a bare strange quark star by satisfying applicable physical
boundary conditions.

Our paper is organized as follows. In Sect. 2 the in-
terior spacetime and Einstein–Maxwell field equations are
described. The solution of the field equations are given in
Sect. 3 In the next section, 4, physical acceptability con-
ditions are described. We match our interior spacetime to
the exterior Reissner–Nordström spacetime in Sect. 5. Some
physical properties have been discussed in Sects. 6–10 and
finally some concluding remarks are made in Sect. 11.

2 Einstein–Maxwell field equations

To describe the interior of a static spherically symmetric
distribution of matter the line element can be taken in the
standard form as (Tolman 1939, Oppenheimer and Volkoff
1939)1,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (2.1)

where λ and ν are the functions of radial coordinate r only.
Let us further assume that the matter distribution inside

the compact star is locally anisotropic in nature whose en-
ergy momentum tensor is given by the following:

T μ
ν =

⎛

⎜⎜⎜
⎝

ρ + E2

8π
0 0 0

0 −Pr + E2

8π
0 0

0 0 −Pt − E2

8π
0

0 0 0 −Pt − E2

8π

⎞

⎟⎟⎟
⎠

(2.2)

where ρ is the matter density, Pr and Pt are respectively the
radial and the tangential pressure of the fluid distribution.
E is the electric field intensity.

Taking G = 1 = c, the Einstein–Maxwell field equations
can be written as,

κρ = 1

r2

[
r
(
1 − e−λ

)]′ − E2, (2.3)

κPr = − 1

r2

(
1 − e−λ

) + ν′

r
e−λ + E2, (2.4)

κPt = e−λ

4

(
2ν′′ + ν′2 + 2ν′

r
− ν′λ′ − 2λ′

r

)
− E2, (2.5)

and

σ = e−λ

4πr2

(
r2E

)′

1Throughout the work we will use c = G = 1, except in figures.



Relativistic compact anisotropic charged stellar models with Chaplygin equation of state Page 3 of 10 334

where κ = 8π and ′ denotes the derivative with respect to
the radial coordinate r and σ is the proper charge density.

In analogy to the electrically charged case one usually
introduces a quantity m(r) by the following expression:

e−λ = 1 − 2m(r)

r
+ q2

r2
. (2.6)

If rΣ represents the radius of the fluid distribution then it can
be showed that m is constant m(r = rΣ) = M outside the
fluid distribution where M is the gravitational mass. Thus
m(r) represents the gravitational mass of the matter con-
tained in a sphere of radius r . Using Eqs. (2.6) and (2.3)–
(2.5), respectively, one can arrive at the following:

m(r) = κ

2

∫
ρr2dr + q2

2r
+ 1

2

∫
q2

r2
dr, (2.7)

ν′ = (κrPr + 2m/r2 − 2q2/r3)

(1 − 2m/r + q2/r2)
, (2.8)

dPr

dr
= − (Pr + ρ)

2
ν′ + 2(Pt − Pr)

r
. (2.9)

Finally combining (2.8) and (2.9), one gets the anisotropic
generalization of well known Tolman–Oppenheimer–Vol-
koff (TOV) equation of hydrostatic equilibrium for charged
stellar configuration (Oppenheimer and Volkoff 1939, Bow-
ers and Liang 1974),

dPr

dr
= − (Pr + ρ)

2

(κrPr + 2m/r2 − 2q2/r3)

(1 − 2m/r + q2/r2)

+ 2(Pt − Pr)

r
(2.10)

It is to be noted that the presence of an additional term,
2(Pt − Pr)/r , represents additional “force” due to the pres-
sure anisotropy, which is directed outward when Pt > Pr

and inward when Pt < Pr . The existence of repulsive force,
Pt > Pr , allows the construction of more compact distribu-
tion when using anisotropic fluid than when using isotropic
perfect fluid, Pt = Pr , (León 1987, Gokhroo and Mehra
1994).

From Eqs. (2.4) and (2.5) one gets,

κ(Pt − Pr) = e−λ

4

(
2ν′′ + ν′2 + 2ν′

r
− ν′λ′ − 2λ′

r

)

+ 1

r2

(
1 − e−λ

) − ν′

r
e−λ + 2E2 (2.11)

Introducing the transformations

x = r2, Z(x) = e−λ(r), and y(x) = eν(r) (2.12)

Eqs. (2.3)–(2.5), and (2.7) take the following forms:

κρ = 1 − Z

x
− 2Ż − E2, (2.13)

κPr = 2Z
ẏ

y
− 1 − Z

x
+ E2, (2.14)

κPt = Z

[(
2ÿ

y
− ẏ2

y2

)
x + 2ẏ

y

]

+ Ż

(
1 + x

ẏ

y

)
− E2, (2.15)

m(x) = κ

4

∫ x

0

√
ωρ(ω)dω, (2.16)

where ˙ denotes the derivative with respect to x.
Introducing � = Pt − Pr , the anisotropic factor, which

measures the pressure anisotropy within the star and com-
bining Eqs. (2.14) and (2.15) one obtains,

κ� = Z

(
2ÿ

y
− ẏ2

y2

)
x + Ż

(
1 + x

ẏ

y

)
+ 1 − Z

x

− E2. (2.17)

To solve Eqs. (2.13)–(2.15) we assume that the radial pres-
sure, Pr , and the matter density ρ are related by the follow-
ing form:

Pr = α1ρ + α2

ρ
, (2.18)

where α1 and α2 are constants.
Using Eq. (2.18) together with Eqs. (2.13) and (2.14) we

obtain

ẏ

y
= α1

2Z

(
1 − Z

x
− 2Ż − E2

)

+ α2κ
2

2Z

(
1 − Z

x
− 2Ż − E2

)−1

+ 1 − Z

2xZ
− E2

2Z
. (2.19)

3 Solution of the Einstein–Maxwell field equations

To solve the system of Eqs. (2.19) let us take the following
potential

Z = 1 + (a − b)x

1 + ax
, (3.1)

where, a and b are constants but b �= 0. Because b = 0 leads
to

κρ = −E2 < 0.

The expression for the metric potential Z is physically rea-
sonable since it gives a monotonic increasing mass function
which is regular at the center of the stellar configuration and
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at the same time it gives a monotonic decreasing matter den-
sity. The same metric potential was used earlier by Lobo
(2006) to model a dark energy star and putting a = b we
obtain our previous result (Bhar 2015).

We further assume,

E2 = kax

(1 + ax)2
, (3.2)

where, k > 0. This form of E2 gives a monotonic increasing
electric field regular at the center and positive inside the star.
Moreover by putting k = 0 we regain the uncharged model.

Inserting the Z and the E2 from Eqs. (3.1)–(3.2) into
Eq. (2.19), we obtain,

ẏ

y
= b(1 + 3α1) + a(b − k)(1 + α1)x

2(1 + ax)(1 + (a − b)x)

+ α2κ
2

2

(1 + ax)3

(1 + (a − b)x)(3b + a(b − k)x)
. (3.3)

Integrating Eq. (3.3), we get,

Case I: a �= b �= k.

lny = k + (2b + k)α1

2b
ln(1 + ax)

+ (b2 − ak) + (3b2 − a(2b + k)α1)

2(a − b)b

× ln
(
1 + (a − b)x

) + α2κ
2

2

[
a(3bk − a(b + 2k))

(a − b)2(b − k)2
x

+ a2

2(a − b)(b − k)
x2

− b3

(a − b)3(−3b2 + a(2b + k))
ln

(
1 + (a − b)x

)

− (2b + k)3

(b − k)3(3b2 − a(2b + k))

× ln
(
3b + a(b − k)x

)] + C1, (3.4)

Case II: a = b �= k.

lny = −a + k + (2a + k)α1

2a
ln(1 + ax)

+ (1 + α1)(a − k)

2a
x

+ α2κ
2

2

[
(1 + ax)

6a(a − k)3

((
20a2 + 23ak + 11k2)

− a(a − k)(2a + 7k)x + 2a2(a − k)2x2)

− (2a + k)3

a(a − k)3
ln

(
3a + a(a − k)x

)] + C2, (3.5)

Case III: a �= b = k.

lny = (1 + 3α1)

2
ln

(
1 + ax

1 + (a − k)x

)

+ α2κ
2

6k

[
a(a2 − 3ak + 3k2)

(a − k)3
x

+ a2(2a − 3k)

2(a − k)2
x2 + a3

3(a − k)
x3

− k3

(a − k)4
ln

(
1 + (a − k)x

)] + C3, (3.6)

Case IV: a = b = k.

lny = (1 + 3α1)

2
ln(1 + kx) + α2κ

2

6k2
(1 + kx)4

+ C4, (3.7)

where, C1, C2, C3, and C4 are constants of integration to
be determined by using an appropriate physical boundary
condition. Therefore Eqs. (2.13)–(2.16), with the help of
Eqs. (3.2) and (3.4) become,

κρ = 3b + a(b − k)x

(1 + ax)2
, (3.8)

κPr = α1
3b + a(b − k)x

(1 + ax)2
+ α2κ

2 (1 + ax)2

3b + a(b − k)x
, (3.9)

κPt = κPr + κ�, (3.10)

where

κ� = x(1 + (a − b)x)

(1 + ax)

(
ẏ

y

)2

− bx

(1 + ax)2

ẏ

y

+ a(b − 2k)x

(1 + ax)2
+ x(B0 + B1x + B2x

2)

(1 + ax)2(1 + (a − b)x)

+ α2κ
2 x(A0 + A1x + A2x

2 + A3x
3 + A4x

4)

(1 + ax)(3b + a(b − k)x)2(1 + (a − b)x)
,

where

A0 = 3b2 + a(5b + k),

A1 = 2a
(
b(b − k) + a(8b + k)

)
,

A2 = 9ab
(
2a2 + b − ab

)
,

A3 = 2a3(4ab − 3b2 − ak
)
,

A4 = a4(a − b)(b − k),

B0 = b2 − a(b + k) + (
3b2 − a(b + k)

)
α1,

B1 = −2ab(a − b)(1 + 3α1),

B2 = −a2(a − b)(b − k)(1 + α1).
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4 Physical acceptability conditions

For the well behaved nature of the solution, the following
conditions should be satisfied (Abreu et al. 2007):

(i) The metric potentials should be free from singularities
inside the radius of the star moreover the fluid sphere
should satisfy eν(0) = constant, and e−λ(0) = 1.

(ii) The density ρ and pressures Pr, Pt should be positive
inside the fluid configuration.

(iii) The radial pressure Pr must be vanishing but the
tangential pressure Pt may not necessarily vanish at
the boundary r = rΣ . However, the radial pressure is
equal to the tangential pressure at the center of the
fluid sphere, i.e., pressure anisotropy vanishes at the
center, �(0) = 0 (Bowers and Liang 1974, Ivanov

2002) and �(r = rΣ) = κ

C
Pt(rΣ) > 0 (Böhmer and

Harko 2006).
(iv) The radial pressure gradient dPr/dr ≤ 0 for 0 ≤ r ≤

rΣ .
(v) The density gradient dρ/dr ≤ 0 for 0 ≤ r ≤ rΣ .

(vi) A physically acceptable fluid sphere must satisfy the
causality conditions, the radial and tangential adi-
abatic speeds of sound should less than the speed
of light. In the unit c = 1 the causality conditions
take the form 0 < v2

sr = dPr/dρ ≤ 1 and 0 < v2
st =

dPt/dρ ≤ 1.
(vii) The interior solution should satisfy either

• strong energy condition (SEC) ρ − Pr − 2Pt ≥
0, ρ − Pr ≥ 0, ρ − Pt ≥ 0 or

• dominant energy condition (DEC) ρ ≥ Pr and ρ ≥
Pt .

(viii) The charged interior solution should continuously
match with the exterior Reissner–Nordström solution.

Conditions (iv) and (v) imply that pressure and density
should be maximum at the center and monotonically de-
creasing towards the surface.

5 Physical boundary conditions

5.1 Mass to radius ratio

The interior solution should match continuously with an ex-
terior Reissner–Nordström solution,

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2

− r2(dθ2 + sin2 θdφ2); r ≥ rΣ . (5.1.1)

This requires the continuity of eν and eλ across the boundary
r = rΣ ,

eν(rΣ ) = e−λ(rΣ ) =
(

1 − 2M

rΣ
+ Q2

r2
Σ

)
, (5.1.2)

which sets the compactness parameter,

2M

rΣ
= r2

Σ [b + a(b + k)r2
Σ ]

(1 + ar2
Σ)2

. (5.1.3)

5.2 Determination of the constant of integration

From Eq. (5.1.2), we get,

C1 = ln

(
1 − 2M

rΣ
+ Q2

r2
Σ

)
− k + (2b + k)α1

2b
ln

(
1 + ar2

Σ

)

− (b2 − ak) + (3b2 − a(2b + k)α1)

2(a − b)b

× ln
(
1 + (a − b)r2

Σ

) − α2κ
2

2

[
a(3bk − a(b + 2k))

(a − b)2(b − k)2
r2
Σ

+ a2

2(a − b)(b − k)
r4
Σ

− b3

(a − b)3(−3b2 + a(2b + k))
ln

(
1 + (a − b)r2

Σ

)

− (2b + k)3

(b − k)3(3b2 − a(2b + k))
ln

(
3b + a(b − k)r2

Σ

)]
.

6 Some features

6.1 Mass function

The mass function within the radius r can be obtained by
integrating Eq. (3.8),

m(x) = 2a(b − k)x3/2 − 3k
√

x

4a(1 + ax)
+ 3k

4a3/2
arctan

√
ax. (6.1)

6.2 Mass-radius relation

The ratio of mass to the radius of a compact star can not
be arbitrarily large. Buchdahl (1959) obtained an absolute
constraint of the maximally allowable mass-to-radius ratio
(M/rΣ) for isotropic fluid spheres of the form 2M/rΣ ≤
8/9 (in the units c = G = 1), which states that for a given ra-
dius a static isotropic fluid sphere cannot be arbitrarily mas-
sive. Böhmer and Harko (2007) proved that for a compact
object with charge, Q(< M), there is a lower bound for the
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mass-radius ratio,

3Q2

2r2
Σ

(1 + Q2

18r2
Σ

)

(1 + Q2

12r2
Σ

)
≤ 2M

rΣ
.

The upper bound of the mass of charged sphere was gener-
alized by Andréasson (2009) and one proved that

√
M ≤

√
rΣ

3
+

√
rΣ

9
+ Q2

3rΣ
.

The ratio of mass to radius for our model is given by,

u(x) = 2a(b − k)x − 3k

4a(1 + ax)
+ 3k

4a3/2

arctan
√

ax√
x

. (6.2.1)

6.3 Surface redshift

The surface redshift zs of a star is given by

zs =
(

1 − 2M

rΣ
+ Q2

r2
Σ

)− 1
2 − 1. (6.3.1)

7 Construction of physically realistic fluid spheres

7.1 Pressure and density gradients

A straightforward differentiation of the pressure and density
Eqs. (3.8)–(3.10) with respect to the auxiliary variable x one
obtains the pressure and density gradients respectively,

κ
dρ

dx
= −a(5b + k) + a2(b − k)x

(1 + ax)3
< 0, (7.1.1)

κ
dPr

dx
=

(
α1 − α2

ρ2

)
κ

dρ

dx
< 0, (7.1.2)

κ
dPt

dx
= κ

dPr

dx
+ κ

d�

dx
, (7.1.3)

where

d�

dx
= 1 + (a − b)(2x + ax2)

(1 + ax)2
f 2

+ 2
x(1 + (a − b)x)

(1 + ax)
f

df

dx
− b(1 − ax)

(1 + ax)3
f

− bx

(1 + ax)2

df

dx
+ a(b − 2k)(1 − ax)

(1 + ax)3

+ G(x)

(1 + ax)3(1 + (a − b)x)2

+ α2κ
2 I (x)

(1 + ax)2(1 + (a − b)x)2(3b + a(b − k)x)3
,

and

f (x) = ẏ

y
,

G(x) = B0 + (−aB0 + 2B1)x

+ [
(a − b)(−2aB0 + B1) + 3B2

]
x2

+ [−a(a − b)B1 + (3a − 2b)B2
]
x3,

df

dx
= F(x)

2(1 + ax)2(1 + (a − b)x)2

+ α2κ
2

2

H(x)

(1 + (a − b)x)2(3b + a(b − k)x)2
,

F (x) = b2 − a(b + k) + (
3b2 − a(5b + k)

)
α1

− 2a(a − b)b(1 + 3α1)x

+ (
a2(−a + b)(b − k)(1 + α1)

)
x2,

H(x) = 3b2 + a(5b + k)

+ 2a
[
b(b − k) + a(8b + k)

]
x

+ 3a2b(6a − 2b − k)x2

+ 2a3(4ab − 3b2 − ak
)
x3

+ a4(a − b)(b − k)x4,

I (x) = 3bA0 + (
a(−b + k)A0 + 6bA1

)
x

+ [
a
(−7ab + 5b2 + 4ak − 2bk

)
A0

+ 3b
(
(2a − b)A1 + 3A2

)]
x2

+ [−3a2(a − b)(b − k)A0

− a(2a − b)(b − k)A1

+ 13abA2 − 6b2A2 − akA2 + 12bA3
]
x3

+ [−2a2(a − b)(b − k)A1 + 3ab(a − b)A2

+ 20abA3 − 9b2A3 − 2akA3 + 15bA4
]
x4

+ [−a2(a − b)(b − k)A2

+ a
(
8ab − 7b2 − 2ak + bk

)
A3

+ 3
(
9ab − 4b2 − ak

)
A4

]
x5

+ a
(
13ab − 11b2 − 4ak + 2bk

)
A4x

6

+ a2(a − b)(b − k)A4x
7.

8 Junction condition

Our solution should satisfy the Darmois conditions on the
boundary (Darmois 1927) to avoid the singularity and it re-
quires the continuity of the first and second fundamental
form across the boundary. These conditions are equivalent
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to the conditions imposed by Lichnerowicz (1955) proposed
by Bonnor and Vickers (1981). These conditions require the
existence of a coordinate system where the metric and all
their first derivatives are continuous across the boundary sur-
face. If the second fundamental form is not continuous, then
there is a shell on the boundary surface, and the matching is
described by the Israel conditions. Using the Darmois–Israel
(1966, 1967) formation the surface stresses at the junction
boundary is obtained as,

σ = − 1

4πrΣ

[√

1 − 2M

rΣ
−

√
1 + (a − b)r2

Σ

1 + ar2
Σ

]
, (8.1)

P = 1

8πrΣ

[ 1 − M
rΣ√

1 − 2M
rΣ

−
√

1 + (a − b)r2
Σ

1 + ar2
Σ

×
(

1 + r2
Σ

2

b(1 + 3α1) + a(b − k)(1 + α1)r
2
Σ

(1 + ar2
Σ)(1 + (a − b)r2

Σ)

+ α2κ
2r2

Σ

2

(1 + ar2
Σ)3

(1 + (a − b)r2
Σ)(3b + a(b − k)r2

Σ)

)]

(8.2)

where σ and P are respectively the surface stress energy and
surface pressure. Hence one can match the interior space-
time to the exterior Schwarzschild spacetime in presence of
a thin shell.

9 Relativistic adiabatic index and stability

The stability of a relativistic anisotropic sphere is related to
the adiabatic index Γ (the ratio of two specific heats) defined
by (Chan et al. 1993),

Γ = ρ + Pr

Pr

dPr

dρ
. (9.1)

It is well known that the collapsing condition for a New-
tonian isotropic sphere is Γ < 4/3 (Bondi 1964). For an
anisotropic general relativistic sphere the collapsing condi-
tion becomes

Γ <
4

3
+

[
4

3

(Pt0 − Pr0)

|P ′
r0|r

+ 1

2
κ

ρ0Pr0

|P ′
r0|

r

]

max
, (9.2)

where, Pr0, Pt0, and ρ0 are the initial radial, tangential, and
energy density in static equilibrium satisfying Eq. (2.10).
The first and last term inside the square brackets, the
anisotropic and relativistic corrections respectively, being
positive quantities, increase the unstable range of Γ (Her-
rera et al. 1979, Chan et al. 1993).

To study the stability of anisotropic stars under the ra-
dial perturbations Herrera (1992) introduced the concept of

Fig. 1 Behavior of energy density ρ (MeV fm−3) for the anisotropic
fluid sphere generated with a = 0.009 km−2, b = 0.1349565242 km−2,
and rΣ = 6.7 km

“cracking”, breaking of self-gravitating spheres, which re-
sults from the appearance of total radial forces of different
signs in different regions of the sphere once the equilibrium
is perturbed. The occurrence of such a “cracking” may be
induced by the local anisotropy of the fluid.

By this concept of cracking Abreu et al. (2007) proved
that the region of the anisotropic fluid sphere where −1 ≤
v2
st − v2

sr ≤ 0 is potentially stable but the region where 0 <

v2
st − v2

sr ≤ 1 is potentially unstable.
The radial and tangential speeds of sound of the strange

star are obtained as,

v2
sr = dPr

dρ
=

(
α1 − α2

ρ2

)
< 1, (9.3)

v2
st = dPt

dρ
= dPr

dρ
+ d�

dρ
. (9.4)

10 Physical analysis

To generate an anisotropic fluid sphere we set, a =
0.009 (km−2), b = 0.01349565242 (km−2), k = 0.0028 and
α1 = 0.066. By fixing the radius of the star is 6.7 km,
and by using the condition Pr(r = rΣ) = 0 we obtain
α2 = −5.4 × 10−8 These values correspond to the sur-
face density ρs = 1.22 × 1015 g cm−3 and central den-
sity ρc = 2.174 × 1015 g cm−3. The central pressure is
obtained as 0.88 × 1035 dyne/cm2. Correspondingly the
mass of the star is obtained as 0.97M�, which is very
close to the observational data of strange star Her X-1 (see
Table 1 of Thirukkanesh et al. 2015). For these choices
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Fig. 2 Behaviors of radial pressure in the unit of MeV fm−3 for the
stellar configuration as in Fig. 1

Fig. 3 Behavior of pressure anisotropy � in the unit of MeV fm−3 for
the stellar configuration as in Fig. 1

the maximum value of compactness parameter is obtained
(2M/rΣ)max = 0.213, lies in the Böhmer and Harko (2006)
and Andréasson (2009) limits. The surface redshift calcu-
lated to be zs = 0.319.

The profiles of ρ, Pr , anisotropic factor � = Pt −Pr , and
Pt are shown in Figs. 1, 2, 3, 4 which show the positivity of
those quantities inside the fluid sphere. Figure 3 indicates
that � ≥ 0 for our model. The energy conditions are pre-
sented in Fig. 5. The profiles of vsr and vst are presented in
Fig. 6, from which it is clear that the speeds are not super-
luminal for our model sphere and hence the causality condi-

Fig. 4 Behaviors of tangential pressure in the unit of MeV fm−3 for
the stellar configuration as in Fig. 1

Fig. 5 The energy conditions for the stellar configuration as in Fig. 1.
The solid (red) line corresponds to ρ − Pr , the dash-doted (blue) line
corresponds to ρ − Pt , and the long dashed (black) line corresponds to
ρ − Pr − 2Pt

tions are satisfied. The mass-radius relation M–R is given in
Fig. 7, which shows that the mass function is monotonically
increasing function of r and is positive inside the stellar in-
terior. The profile of |v2

st − v2
sr | is shown in Fig. 8. From the

figure it is clear that |v2
st − v2

sr | < 1,satisfies the condition
of Andréasson (2009). The adiabetic index Γ is plotted in
Fig. 9 and Γ > 4/3 for our model and hence stable.
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Fig. 6 The adiabatic speeds of sound for the same stellar configuration
as in Fig. 1. The solid (blue) line corresponds to vsr = √

dPr/dρ, the
long dashed (red) line corresponds to vsr = √

dPt /dρ

Fig. 7 The mass-radius relation for the same stellar configuration as
in Fig. 1

11 Concluding remarks

Under the ad hoc assumption on one of the metric po-
tentials e−λ together with the Chaplygin equation of state
we have solved Einstein–Maxwell field equations and pre-
sented a particular simple class of static spherically sym-
metric anisotropic charged stellar models.

One notable feature of this solution is that one can re-
gain the uncharged model by setting k = 0. Another inter-
esting property of our model is that if one puts α2 = 0 and
k = 0 then one can obtain the model of Lobo (2006) and by

Fig. 8 The difference |v2
st − v2

sr | for the same stellar configuration as
in Fig. 1

Fig. 9 The adiabetic index Γ for the same stellar configuration as in
Fig. 1

setting a = b and k = 0 we obtain a model of strange star
obtained earlier by Bhar (2015). In the construction of the
stellar models we further assumed Pt > Pr (� > 0). The sta-
bility is examined by the relativistic adiabatic index, and the
adiabatic radial and tangential sound speeds. Even though it
is yet unclear to what extent this metric can be applied to
describe strange quark stars but the stellar models obtained
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here with such physical features could play a significant role
in the description of internal structure of bare strange quark
stars.
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