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Abstract We have investigated the stability of the La-
grangian solutions for the restricted four-body problem with
variable mass. It has been assumed that the three primaries
with masses m1, my and m3 form an equilateral triangle,
wherein my = m3. According to Jeans’ law (Astronomy
and Cosmogony, Cambridge University Press, Cambridge,
1928), the infinitesimal body varies its mass m with time.
The space—time transformations of Meshcherskii (Studies
on the Mechanics of Bodies of Variable Mass, GITTL,
Moscow, 1949) are used by taking the values of the param-
eters g = 1/2, k =0, n = 1. The equations of motion of the
infinitesimal body with variable mass have been determined.
The equations of motion of the current problem differ from
the ones of the restricted four-body problem with constant
mass. There exist eight libration points, out of which two are
collinear with the primary m and the rest are non-collinear
for a fixed value of parameters y(#m, O<y<l,
o (the proportionality constant in Jeans’ law (Astronomy
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and Cosmogony, Cambridge University Press, Cambridge,
1928), 0 < o <2.2) and p = 0.019 (the mass parameter).
All the libration points are found to be unstable. The zero
velocity surfaces (ZVS) are also drawn and regions of mo-
tion are discussed.
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1 Introduction

In the last few decades, hundreds of articles and reviews
have been published on the stability of the libration points
in the restricted three-body problem with variable mass.
Jeans (1928) has done the pioneer work and studied the
two body problem with variable mass. Later, Meshcherskii
(1949, 1952) has worked on the mechanics of bodies with
variable mass. Thereafter in a series of papers, Shrivastava
and Ishwar (1983), Singh and Ishwar (1984, 1985) have
done exhaustive work on the restricted three-body problem
with decreasing mass. They have determined the equations
of motion and investigated the effect of small perturbations
in the Coriolis and centrifugal forces on the stability of the
triangular libration points. Lu (1990) has extended the work
and introduced space—time transformations. He has shown
that the regions of stability of equilibrium points do not exist
in the restricted problem of three bodies with variable mass.
Singh (2003) has studied linear and non-linear stability of
the libration points in the restricted three-body problem with
variable mass. Singh and Leke (2010) have studied the sta-
bility of the photogravitational restricted three-body prob-
lem with variable mass of the primaries. They have found
that the triangular libration points are stable for 0 < u < ¢
and unstable for pu, < u < % The critical value p. of the
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mass parameter depends upon the radiation factor ¢; and
the constant due to the variation in mass 8. They further ob-
served that the collinear libration points are unstable. Lete-
lier and Silva (2010) have determined the particular solu-
tions to the restricted three-body problem where the bodies
are allowed to either lose or gain mass to or from a static
atmosphere. They have assumed that the masses of the pri-
maries are always in a constant ratio such that all the masses
are proportional to the same function of time. They have
found that there exist three collinear and two triangular so-
lutions with the relative distance of the bodies changes with
time at the same rate by which masses are increasing or
decreasing. Zhang et al. (2012) have investigated the trian-
gular libration points in photogravitational restricted three-
body problem with variable mass and proved that the mo-
tion around the triangular libration points become unstable
for the problem with constant mass evolves into the prob-
lem with decreasing mass. The photogravitational restricted
three-body problem in Zhang et al. (2012) corresponds to
the special case of non-isotropic variation of mass, i.e. the
mass that falls on (or is ejected from) the small body P
has zero momentum (Varvoglis and Hadjidemetriou 2012;
Zhang 2012). Recently, Abouelmagd and Mostafa (2015)
have studied the dynamics of the third body with change
in mass proposed by Jeans’ law. They have obtained an ap-
proximation for the locations of the libration points, which
are out-of-plane in the special case of a non-isotropic varia-
tion of the mass.

There are several celestial bodies which change their
masses with time continuously. There are a number of
factors which are responsible for this phenomenon like
isotropic radiation or absorption in stars which cause their
masses as variable. Literature has reported that the mass
of Jupiter is increasing gradually (Shrivastava and Ishwar
1983).

In the present scenario, the four-body problem is inter-
esting and important in the dynamical system. Three bodies
in co-planarity revolve around their centre of mass, having
orbits under the influence of their mutual gravitational at-
traction. The fourth infinitesimal body is attracted by the
above-mentioned three bodies but it never influences their
motion. The restricted problem of four bodies is to describe
the motion of the fourth body. The three bodies having fi-
nite masses are known as primaries. Many mathematicians
and astronomers have investigated the restricted four-body
problem and have examined the existence of the libration
points and their stability. Kalvouridis et al. (2007) have pre-
sented 14 families of simple periodic orbits in the restricted
four-body problem. They have found that all the orbits are
unstable. Papadakis (2007) has studied asymptotic solutions
of the restricted planar problem of four bodies. Further, they
found the invariant unstable and stable manifolds around the
hyperbolic Lyapunov periodic orbits which emanate from
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the four collinear equilibrium points as well as the invariant
manifolds from the triangular libration points. Later, Balt-
agiannis and Papadakis (2011) have investigated the stabil-
ity of the libration points in the restricted four-body prob-
lem. They have shown that ten libration points exist and
out of which two or four are collinear and the remaining
are non-collinear. They have also shown that all the equi-
librium points are unstable when all the primaries have
equal masses. For the case when two of the primaries with
equal masses, the equilibrium points are unstable except
the collinear libration point L3 and non-collinear libration
points Ls and Lg which are stable for a limited interval of
m3. Papadouris and Papadakis (2013) have studied the pho-
togravitational restricted four body problem (R4BP). They
have determined the in-plane and out-of-plane equilibrium
points and discussed their stability. They also showed that
out-of-plane equilibrium points lie in (x, z) plane in sym-
metrical position with respect to (x, y) plane. Chand et al.
(2015a,b) have studied the R4BP and the photogravitational
R4BP when the third primary is either an oblate or prolate
body, respectively. They showed that there exists eight li-
bration points or twelve libration points when the third pri-
mary is an oblate or prolate body, respectively. They also
discussed the stability of these libration points in both the
cases. Singh and Vincent (2015a) studied numerically the
R4BP under the influence of small perturbation in Corio-
lis and centrifugal forces. They have considered masses of
the primaries m, and mj3 to be equal. They showed that
their exists two collinear and six non-collinear equilibrium
points. All these equilibrium points were shown unstable ex-
cept two non-collinear equilibrium points. Singh and Vin-
cent (2015b) have determined numerically the location of
the out-of-plane equilibrium points in the photogravitational
R4BP. They have also studied their stability and found that
they are unstable. Singh and Vincent (2016) have studied
numerically the photogravitational R4BP. Further, they stud-
ied the existence of the equilibrium points and their linear
stability and found that all these points are unstable when
the masses of all these primaries are equal. Arribas et al.
(2016) have studied positions and stability of equilibria of
the symmetric collinear restricted four-body problem with
radiation pressure. None of the above research groups have
investigated the restricted four-body problem with variable
mass. This paper is an extension of the work of Zhang et al.
(2012) and Singh and Vincent (2015a). We have shown the
existence of the libration points and determined their loca-
tions numerically in the circular restricted four-body prob-
lem (CRFBP) with variable mass. Also, space—time inverse
transformations of Meshcherskii (1949) are used to inves-
tigate the linear stability of the libration points for o > 0.
Further, we have drawn ZVS for different values of the pa-
rameters and the energy constant C.
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Fig. 1 Geometry of the CRFBP when mass of the infinitesimal body
is variable

2 Equations of motion

Let there be three masses m1, m, and m3 (my > my = m3).
The bodies of masses m 1, m, and m3 are at the vertices of an
equilateral triangle ABC of length /. They revolve in circu-
lar orbits with the angular velocity  without rotation about
their centre of mass O. The angular velocity, w satisfies the
equation w?1? = G(my +ms + m3) (Mccuskey 1963).

The x-axis of the synodic system is always the line join-
ing the primary mj and the mid-point of the primaries my
and m3. The origin O is taken as the center of mass of the
primaries. The y-axis is the line perpendicular to the x-axis
through O in the plane of motion of the primaries. The z-
axis is the line perpendicular to the plane of motion of the
primaries through O (Fig. 1). We have taken the synodic
system of coordinates O—xyz; initially coincident with the
inertial system O—-XY Z, rotating with the angular velocity
w about z-axis (the z-axis is coincident with the Z-axis).

The methodology adopted by Abouelmagd and Mostafa
(2015) has been used to determine the following equations
of motion, for the infinitesimal variable mass m in the iner-
tial frame of reference under the assumptions that the mass
that falls on (or is ejected from) the small body has zero mo-
mentum and the variation of the mass originates from one
point:

. m . Gm (X —X Gmy(X — X
g4y Gl . ) Gma( . 2)
m T r
Gm3(X — X3)

r33 ’
.. n . G Y-Y G Y-Y.
ey 1%1(3 D mz(3 2)
m r r
Gm3(Y —Y3)
_emtE =) ()
73

. no. G Z—-Z G Z—-Z
sy m](3 ) mz(3 2)
m ri rp
Gm3(Z—Z3)

r33 ’
where

ri=X=X)2+ ¥ =Y +(Z - Z1),
ry=X =X+ (¥ -2’ +(Z - 2o)°,
ri=X =X+ -3’ +(Z - Z3)%
We now assume that W = u and choose units of
mass, length and time such that my +my +m3 = 1,1 =
1 and G = 1 respectively. Thus, angular velocity w = 1,
masses my = m3 = 0 and m| = 1 — 2. The co-ordinates
of the points A, B and C in dimensionless variables are
A(V31,0,0), B(—L(1 — 2u),—1,0) and C(—2(1 —
2u), % 0) respectively in the synodic system O—xyz.

Using the relations between the inertial and rotating co-
ordinates stated in Abouelmagd and Mostafa (2015), from
Eq. (1), we obtain the equations of motion in a rotating coor-
dinate system with dimensionless variables for an infinitesi-
mal variable mass m(x, y, z) as

mx —y) +mx —=2y) = Uy,
m(y +x) +m(y +2x) = Uy, 2)
mz+mz="U,

where

U:ﬂ(xz—i-yz)—i-m(

1-2
: ”+ﬁ+ﬁ)

ri ra r3

r? =0 —V3w?2+y + 22

3 2 1\?
r22:(x+§(1—2u)> +<y+§) +27,

2 2
r? = (x+ ?(1 —2#)) + (y— %) + 22

Equations (2) are the equations of motion of the restricted
problem of four bodies when the infinitesimal mass in-
creases or decreases with respect to time 7.

Using Jeans’ law (1928)

dm "
T —am”, 3)
where « is constant coefficient and the value of exponent n
is within the limit 0.4 < n < 4.4 (for the star of the main
sequence). For a rocket, n = 1 and the mass of the rocket
which varies exponentially is given by the expression m =
moe %, m=mgatt=0.
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We simplify the equations of motion by using the space—
time transformations

E=yix, n=yly, <¢=yl, dI =ytdr, )
“)
r=y p1, =y ip, =y 9ps,
where
m
V= (5)
mo

Now, following the procedure of Zhang et al. (2012) and
taking g = %, k =0, n =1, the equations of motion (2) after
using (3), (4) and (5) become

§— 20 =W,

426 =W, (6)
5=W§,

where

w=3(1+% ) @)
2 4 7

1-2 o?
+y3/2(—“+ﬂ+ﬂ)+—§2,
Pl P2 P3 8
2

p1? = (& —V3Buy'?) +n* + 2, )

\/g 2 1 2
p22=<$+7(1—2u)y”2> +(n+§y”2> +¢2,

ﬁ 2 1 2
p32=<s+7<1—2my”2> +(n—5)/1/2> +¢2.

From Egs. (6), it may be observed that
t

@i+ =aw-c-2 war ®)
0

where C is similar to Jacobi integral.

3 Libration points

The libration points with variable mass m are obtained by
solving the equations:

We =0,
W, =0,
W, =0,
where
2 _ _ 12
o (1 =2 (& —3Buy'’?
om (14 e ye] (o206
Py
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1
+M<s+“§<1—2myz>

p3
3 1
E+5(1-2pn)y2
+u< 2 y)} ©)
03
o? (1 =21 n+iy2
W,]=<1+Z)7}—V3/2{73+M<7§>
P 03
n—1iy2
)
03
2 1-2
W;:%{—y3/z{%+u—§+%}. 11
P %) 03

Here the values of p1, p2 and p3 are given by Egs. (7). When
a=0or y =1, Egs. (9) and (10) are the corresponding
ones when € = 0 and €’ = 0 presented in Singh and Vincent
(2015a). For « # 0, the positions of the libration points are
determined numerically for different values of o and y. As
mentioned in Singh and Vincent (2015a), we have used the
value of pu = 0.019 throughout this paper. We have calcu-
lated few of the libration points for different values of the
parameters (0 <o <2.2 and 0 < y < 1). We, now define
the collinear libration points, non-collinear libration points
and the out-of-plane libration points.

3.1 Collinear libration points

The collinear libration points are the ones lying on &-axis.
These libration points are obtained from Eqs. (9), (10) and
(11) by taking n = ¢ = 0. The abscissae of the collinear li-
bration points are the roots of the equation

o? (1 =2p)(& —3Buy'’?
,0,0)=(1+— )&~ 3/2{
8.0.0) <+4)§ Y & —Buyl/2|3

V3 1
+ 5= (1-2 2
T
(G +5 =2y +3¥)2

There exist two collinear libration points namely L; and
L>. In Tables 1, 2 and 3, we have presented the numer-
ical values of these collinear libration points for fixed
values of y = 0.1,0.4,0.9 and different values of o =
0.2,0.4,0.6,0.8,1,1.15,2.2and y = 1, « = 0, respectively.

3.2 Non-collinear librations points

The non-collinear libration points are the ones lying in
&n-plane but not on ¢-axis. The non-collinear libration
points are obtained from Egs. (9), (10) and (11) by tak-
ing £#£0, n # 0 and ¢ = 0. From Tables 1 and 2, we
observe that there exist six non-collinear libration points
namely L; (i =3,4,5,6,7, 8) for wide range of parameters
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Table 1 Libration points in £n-plane

y =0.1

o Ly Ly L34 Lsg L7s

0.2 (0.319143,0) (—0.308395, 0) (—=0.215600, £0.130121) (—0.061102, £0.305545) (—0.316683, +0.189656)
0.4 (0.316102, 0) (—0.305008, 0) (—0.215014, £0.129810) (—0.062146, £0.302149) (—0.315392, +0.188914)
0.6 (0.311286, 0) (—0.299655, 0) (—0.214018, £0.129286) (—0.063833, +0.296738) (—0.313407, +£0.187771)
0.8 (0.305017, 0) (—0.292713,0) (—0.212582, £0.128540) (—0.066091, +0.289633) (—0.310934, +0.186339)
1 (0.297661, 0) (—0.284618, 0) (—0.068840, £0.281196) (—0.210671, £0.127566) (—0.308183, +0.184740)
1.15 (0.291648, 0) (—0.278052, 0) (—0.208902, £0.126686) (—0.071177, £0.274206) (—0.306050, +0.183495)
2.2 (0.247237,0) (—0.231354,0) (—0.187706, £0.118563) (—0.092187, £0.218304) (—0.293056, +0.175831)
y =04

0.2 (0.638287, 0) (—0.616789, 0) (—0.431201, £0.260243) (—0.122204, £0.611091) (—0.633366, +0.379312)
0.4 (0.632205, 0) (—0.610017,0) (—0.124293, £0.604298) (—0.430029, +0.259621) (—0.630783, +0.377829)
0.6 (0.622571,0) (—0.59931, 0) (—0.428035, £0.258571) (—0.127665, +£0.593476) (—0.626815, £0.375542)
0.8 (0.610033, 0) (—0.585426, 0) (—0.425164, +£0.257079) (—0.132181, £0.579267) (—0.621868, £0.372678)
1 (0.595322,0) (—0.569236, 0) (—0.421341, £0.255131) (—0.137680, £0.562392) (—0.616365, £0.369479)
1.15 (0.583297, 0) (—0.556104, 0) (—0.417803, £0.253372) (—0.142354, +0.548413) (—0.612100, £0.366989)
2.2 (0.494474, 0) (—0.462709, 0) (—0.375411, £0.237126) (—0.184373, £0.436608) (—0.586111, £0.351661)

Table 2 Libration points in £n-plane

y =09

a Ly Ly L34 Ls L7s

0.2 (0.957430, 0) (—0.925183,0) (—0.646801, +£0.390363) (—0.183306, £0.916636) (—0.950048, £0.568968)
0.4 (0.948307, 0) (—0.915025, 0) (—0.645042, +0.389430) (—0.186438, £0.906446) (—0.946175, £0.566742)
0.6 (0.933856, 0) (—0.898964, 0) (—0.642053, +0.387857) (—0.191497, £0.890213) (—0.940222, +0.563312)
0.8 (0.915049, 0) (—0.878138,0) (—0.198271, +£0.868899) (—0.637746, £0.385618) (—0.932801, £0.559017)
1 (0.892983, 0) (—0.853854, 0) (—0.206521, +0.843588) (—0.632012, +£0.382697) (—0.924548, £0.554218)
1.15 (0.874365, 0) (—0.833525,0) (—0.626524, +£0.379969) (—0.213760, £0.821941) (—0.917949, £0.550366)
2.2 (0.74171, 0) (—0.694063, 0) (—0.563117, £0.355689) (—0.276560, £0.654912) (—0.879167, £0.527492)

Table 3 Libration points in £n-plane when y = 1 and @ = 0 (similar to Singh and Vincent (2015a) when ¢ = ¢’ = 0)

Ly Ly L34 Ls L7s

(1.01251,0) (—=0.978896, 0) (—0.682399, +£0.411805) (—0.192104, £0.969884) (—1.00286, +0.600559)

yand o, (0 <y <1 and 0 <« <2.2). In Table 3, we have e The non-collinear libration points L3 4, Ls ¢ and L7 g are
shown the libration points of Singh and Vincent (2015a). symmetric with respect to & -axis.

The locations of the collinear and non-collinear libra- e The libration points L3 and L7 are located near m3 on a
tion points are shown in Fig. 2 for various values of pa- dumbbell shaped curve with L3 and L7 vertically oppo-
rameters y and «. In Fig. 2, frame-(a), we have taken u = site to m3. Similar result is observed for L4 and Lg with
0.019,y = 0.1 and ¢ =0.2,0.4,0.6,0.8,1.0,1.15,2.2. In respect to m;.

Fig. 2, frame-(b) and (c), the values of y are taken as 0.4 ¢ [ is also observed from Fig. 2, frames-(a—c), that if « is
and 0.9 and « has the same values as in frame-(a). increased for fix values of & = 0.019 and y = 0.1, 0.4 and

Itis observed from Fig. 2 that: 0.9, the points Lg and Lg move towards the primary
and the points L5 and L7 move towards the primary m3.
The points L3 and L4 move away from the primaries m3
and m> respectively and moving towards the origin.

e In all the cases, libration point L is shifted from right to
left and the point L is shifted from left to right towards
the bigger primary m along the &-axis.

@ Springer
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Fig. 2 The location of eight equilibrium points in the CRFBP with
variable mass (a) for y = 0.1 (b) for y = 0.4 and (c) for y = 0.9 and
for different values of « = 0.2 (red, gray), 0.4 (blue, gray), 0.6 (black,

e It is further observed from Fig. 2 that the locus of L; (i =
3,4,...,8) are almost a straight line for different values
of the parameter «.

3.3 Out-of-plane libration points

The libration points which lie in £¢-plane (n = 0) are called
out-of-plane libration points. Moreover, we have determined
that the out-of-plane libration points also exist as mentioned
by Abouelmagd and Mostafa (2015), (Table 4). The out-of-
plane libration points are obtained from Egs. (9), (10) and

@ Springer

gray), 0.8 (green, gray), 1 (purple, gray), 1.15 (orange, gray), 2.2 (ma-
genta, gray). The blue dots show the position of three primaries and
black dots show the equilibrium points

(11) by taking & # 0, ¢ # 0 and n = 0. There exist two out-
of-plane libration points namely Lg and L ¢, which are sym-
metrical with respect to £n-plane. In Table 4, we have eval-
uated the numerical values of these out-of-plane libration
points for fixed value of y = 0.5 and different values of « =
0.2,0.4,0.6,0.8, 1, 1.15, 2.2. Further, we have plotted these
points for the above mentioned values of y and « in Fig. 3.

It has been observed that in all the above three cases there
is very good agreement between numerical and graphical
values.
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4

-4

(@) ¢

(b) ¢

Fig. 3 The location of the out-of-plane libration points Lg 19 in the CRFBP with variable mass y = 0.5 (a) for o« = 0.4 (b) for « = 0.2 (in black),
o =0.4 (in blue), « = 0.8 (in red), « = 1.0 (in green), o« = 1.15 (in magenta) and o = 2.2 (in purple)

Table 4 Locations of out-of-plane non-collinear libration points on
&¢-plane when y = 0.5

a Lo 10

0.2 (—0.000013986, £3.27942)
0.4 (—0.000131165, £2.06364)
0.6 (—0.000467309, £1.57308)
0.8 (—0.001119550, £1.29716)
1 (—0.002159510, £1.11674)
1.15 (—0.003223770, £1.01668)
2.2 (—0.018227200, £0.65670)

4 Zero velocity surfaces (ZVS)

Following the procedure given in Abouelmagd and Mostafa
(2015), the condition of motion can be written as

oW
W(y)>C(y) for— >0,
ay
oW
W(yo) = C(yp) for 5, = 0,
14

where
_VO2
Cy)= — + W (v, %0, 10, o),

22 -2
Vi=%" +10*+%

The subscript ‘g’ denotes the initial value of the correspond-
ing variables. It can be seen that the energy constant C de-
pends upon the value of y and initial conditions.

The quantity in left hand side of Eq. (8) is always non-
negative, so for a given value of C the quantity 2W —
C - 2f0t W;dt > 0 should satisfy for all values of time and
initial conditions. In Fig. 4, we have plotted the ZVS us-
ing the Eq. (8) for the different values of Jacobian con-
stant C and for fixed value of variable mass parameter y
and for fixed value of «. The ZVS are classified from the
larger to smaller value of Jacobian constant C. In Fig. 4,
the value of © = 0.019, y = 0.1 and o = 0.2 are fixed
in all the frames. Frame-(a), shows the ZVS for Jacobian
constant C = 0.17 and reveals that, there exists circular is-
land (in white colour) around each of the primaries and
the fourth particle is trapped in this small areas around
the primaries, where the motion is possible and the circu-
lar strip (in light blue colour) shows the forbidden region.
Thus, the fourth body can move around each of the pri-
maries and can not move from one primary to other primary.
In frame-(b), we have decrease the value of Jacobian con-
stant C = 0.161 and observed that the inner circular bound-
ary breaks at L3 and L4. Hence, the infinitesimal mass m
can move freely from one primary to other primary, but the
infinitesimal mass is restricted to move outside the outer
circular boundary. Frame-(c) is drawn for C = 0.160687
and observed that there exists two limiting situations and
cusps are formed at L7 and Lg. In frame-(d), the curves of
zero velocity constitute two branches for Jacobian constant
C = 0.157. The first branch contains L, Ls and Lg and
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Fig. 4 The ZVS of the CRFBP for different values of the energy con-
stant C and for fixed values of ¥y = 0.1 and o = 0.2. Here frame-(a)
C =0.17, frame-(b) C = 0.161, frame-(¢) C = 0.160687, frame-(d)

the other branch contains L,. We further, noticed that the
fourth body can move from one primary to other primary.
The corridor at m, and m3 are formed, so that it can move
out side the circular boundary as well. For C = 0.151968
in frame-(e), there exist a limiting situation and a cusp at
L1 and an island containing L, is formed and the fourth
particle is free to move everywhere in white region of the
plane. For C = 0.1509, in frame-(f), the curves split into
two parts at L and shrink to tadpole shaped curves around
Ls and Lg. Also an island type region containing L oc-
curs in the frame. In the last frame (g), the island type re-

@ Springer

C =0.157, frame-(e) C =0.151968, frame-(f) C = 0.1509 and frame-
(g) C =0.150. Here black dots represent the eight libration points and
the blue dots are the primaries

gion at L, disappears for C = 0.150. There is only for-
bidden region around Ls and L¢ in tadpole shaped region
and the fourth particle is free to move everywhere in the
plane.

In Fig. 5, we have determined the ZVS for fixed value
of Jacobian constant C = 0.6280687, « = (0.2 and different
values of y =0.1,0.4,0.9 in frames-(a, b, c) respectively.
In Fig. 6, we have determined the ZVS for fixed value of
Jacobian constant C = 0.6280687725, y = 0.4 and different
values of o = 0.2, 0.6, 0.8. There is substantial impact of o
and y on ZVS.
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Fig. 5 The ZVS for the energy constant C = 0.6280687 in the CRFBP with variable mass (a) for y = 0.1 (b) for y = 0.4 and (c) for y =0.9 and
for fixed value of o = 0.2. The blue dots show the position of three primaries and black dots show the libration points

Figure 7 illustrates the out-of-plane ZVS for different val-
ues of the energy constant C and for fixed values of @ = 0.2
and y =0.5. In Fig. 7, we have drawn ZVS for possible re-
gions of forbidden motion in &£ ¢-plane. Figures (7a, b, c) il-
lustrate the regions of forbidden motion for different values
of the energy constant C and fixed values of @ = 0.2 and
y = 0.5. For C = 1.258 (Fig. 7a), we observe that the in-
finitesimal mass can only move in the circular white region
around m, therefore infinitesimal mass can never approach
to the other primaries and vice-versa. For C = 0.757645
(Fig. 7b), we observe that there is a small opening to the

right side of the primary m1, so that the infinitesimal mass
can move from m to the other primaries and vice-versa. For
C = 0.7 (Fig. 7c), it is observed that the ZVS constitutes
two branches containing the libration points Lg and L1g, so
that the infinitesimal mass can move more freely through
the corridor around the primary m to the other primaries
and vice-versa.

In Fig. 8a, we have drawn ZVS for fixed value of energy
constant C = 0.757645, y = 0.5 and different values of « =
0.2,0.4,0.6,0.8. We have observed that o has significant
impact to the zero velocity surfaces in the £¢-plane. As we
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Fig. 6 The ZVS in the CRFBP
with variable mass for fixed
value of ¥ = 0.4 and the energy
constant C =C; =Cr =C3 =
0.6280687725 and for different
values of « = 0.2, 0.6, 0.8. Also
C =C4=0.6237501 with

o = 0.6. The blue dots show the
position of three primaries and
black dots show the libration
points

increase the value of «, the regions of motion also increase.
Figure 8b shows the zoom part of the Fig. 8a. It has been
observed that as we change o from 0.2 to 0.4 the corridor
exists around m1, so that the infinitesimal mass can move
freely from m to the other primaries.

S Stability of the libration points

Now, using the space-time inverse transformations of
Meshcherskii (1949) and following the procedure of Zhang
et al. (2012), we investigate the linear stability of the libra-
tion points.

Displacing (£o, 70, ¢o) as

§ =& +u,
=% +w,

n=no+v,
(12)
u,v,w<K1),

where (£o, 10, o) is the libration point for a fixed value of
time 7.

Using Egs. (12) in Egs. (6), the following variational
equations are obtained

ii =20 = (Weg)ou + (Wepov + (Werow,
U+ 20 :(WnS)OM"F(Wnn)OU"‘(Wn{)Ow, (13)
W= Wee)ou + (Wepov + (Weedow,

where the subscript ‘0’ in Eqgs. (13) indicates that the values
are to be calculated at the libration point (&g, 179, {o) under
consideration, where

2 s _ 1/242
Wee = (1 + %) +3y’2{(1 —2,1)%
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Fig. 7 The ZVS in the £¢-plane of the CRFBP with variable mass for
a =0.2, y =0.5 (a) for the energy constant C = 1.258 (b) for the en-
ergy constant C = 0.757645 and (c) for the energy constant C = 0.7.
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The blue dot shows the position of the primary m and black dots show
the libration points
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For o = 0, the system (13) corresponds to a system with
constant mass. For « > 0, the coordinates of the three pri-
maries vary with time 7 and their distances to the libration
point (&, no, o) decrease with time. Therefore, the linear
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15F°

¢

(@) -2 -1 0 1 2

Fig. 8 The ZVS in the £¢-plane of the CRFBP with variable mass for
the energy constant C = 0.757645, y = 0.5. (a) for different values of
o = 0.2 (black), 0.4 (blue), 0.6 (green) and 0.8 (magenta). The blue dot

stability can not be determined by ordinary method. That

is why the space—time inverse transformations of Meshch-

erskii (1949)ie. x =y~ 12, y =y~ V2pand z = y~1/%¢

have been used. The positions of the primaries are fixed so

that their distances to the libration points are invariable.
We, now, write Egs. (13) in phase-space as

u=ui, V=i, W= wi,
uy —2vy = (Weg)ou + (Weyov + (Wegow,
vl +2u = (Wye)ou + (Wypov + (Wye)ow,

w1 = (Wegdou + (Wepov + (Wee)ow.

15)

Using Meshcherskii (1949) inverse transformations, and
taking

X =y 2y —1/2

u' =y~ uy,
/ —1/2 / —1/2
Y=y V2, =y,
=y uw, w' =y,

the system (15) can be rewritten in the matrix form as fol-
lows:
dx’

a o 0 0 1 0 0
dy'
ai 0 a 0 0 1 0
d !
a || 0 0 @€ 0 0 1
du (Wegdo (Wepo 0 2 20
dv’ Wyedo (Wypdo 0 -2 % 0
& 0 0 (W 0 0 %
dr
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shows the position of the primary m; and black dots show the libration
points. (b) the zoomed part of (a) near primary m
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As the positions of the primaries are fixed and their distances
to the libration points are invariable, the stability of (16) and
(6) is consistent with each other. In the original null solution,
when « = 0, the solution get changed to a non-trivial solu-
tion (Lu 1990). Thus, the linear stability of this solution de-
pends on the existence of stable region of the libration point,
which in turn depends on the boundedness of the solution
of linear and homogeneous system of Egs. (16). Herein, we
have determined the linear stability of the libration points,
by finding the characteristic roots of the coefficient matrix
of Egs. (16) numerically.

The characteristic equation corresponding to the libration
point under consideration is

15 5
20— 3’ + (T“z + P),\“ - <§a3 + Pa>k3

— —P A
+<16oz +2 oz+Q>

> 54 L pat 4 0a )2
160{ ) o o

1 1 1
+ <—a6+ —Poz4+ZQa2+R> =0,

17
64 16 {17)
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where

P=4—Ws)o— Wypo — Wee)o,
0= Wee)oWer)o + WyoWerdo + (Wee)o(Wyno

— 4(Wee)o — [(Wendo]s
R = —(Wee)o(Wyo(We)o + (Wee o[ (Weyo] s

the values of (Weg)o, (Wyy)o, (Wer)o and (Wey)o are given
by Egs. (15).

The characteristic roots of Eq. (17) have been calcu-
lated at various libration points in the range 0 < y < 1,
0<a <22and u=0.019. It has been observed that there
always exist at least one positive real characteristic root at
each libration point. Hence, it can be concluded that all the
libration points are unstable for « > 0.

6 Conclusion

The existence and stability of the libration points in the re-
stricted four-body problem with variable mass and the pri-
maries with masses mp, mo and m3 (m; > my = m3) have
been investigated. It has been found that there exist eight li-
bration points, out of which L and L, are collinear with the
primary m and the rest L; (i =3, ..., 8) are non-collinear.
We have found that the out-of-plane libration points namely
Lo and Lo also exist which are symmetrical with respect
to £€n-plane (Table 4). We have also observed that the non-
collinear libration points are symmetric about &-axis (Ta-
bles 1-3). In all cases, all the libration points are unstable
for « > 0. For o > 0, the positions of all the libration points
L; (1,2,...,10) are shown in Figs. 2 and 3.

Our results are different from Zhang et al. (2012) in
some aspects like, (i) they have studied the existence and
the stability of the libration points in the photogravitational
restricted three-body problem with variable mass, whereas
we have studied the existence and the stability of the libra-
tion points in the restricted four-body problem with variable
mass; (ii) they have determined only non-collinear libration
points, whereas we have determined collinear, non-collinear
and out-of-plane libration points; (iii) they have determined
that there are two non-collinear libration points and these
points are time dependent, whereas in our case there are six
non-collinear libration points and these are also time depen-
dent; (iv) in their case, the libration points are symmetri-
cal about §-axis and approaches towards origin with the in-
crease of o or with the decrease of y. In our case, all the
libration points move towards the primaries except L3 and
L4 which move away from masses m3 and m» respectively.
However, all the libration points are found to be unstable in
restricted three-body problem (Zhang et al. 2012) and in our
restricted four-body problem for o > 0.

On comparing our results with the results of Singh and
Vincent (2015a), our results are different from their in sev-
eral aspects: (i) they have studied the restricted four-body
problem with constant mass, whereas we have studied the
restricted four-body problem with variable mass; (ii) they
have determined that there are eight libration points which
are independent of time, whereas we have also determined
that there exist eight libration points which are time depen-
dent; (iii) they have reported that there exist two collinear
and six non-collinear libration points, we have also observed
the same, but in our case the libration points are time de-
pendent; (iv) they have determined the linear stability of the
libration points and found that all the libration points are
unstable except two non-collinear libration points, while in
our case all the libration points are unstable due to variable
mass; (v) from the ZVS, we observe that lesser energy is
required in our case to achieve the same regions of motion.

The results of Singh and Vincent (2015a) can be verified
from our results by taking y = 1 or « = 0 in our case and
€ =0 and €/ = 0 in their case. It has been observed that the
problems with variable mass destroy the stability.

From the results in Fig. 4, we conclude that for different
values of the energy constant C, we have different trapped
areas in which the fourth body can move. Furthermore,
we observe that the fourth body can move free around the
primaries for smaller-and-smaller values of Jacobian con-
stant C. It is obvious that Jacobian constant C has substan-
tial impact on the areas where the fourth body can move.
From Fig. 5, it is evident that the variable mass parameter
y have significant impact on the topology of the ZVS in the
&n-plane. As we increase the value of y, the forbidden re-
gion decreases. Figure 6 reveals that the parameter « also
have significant impact on the topology of the zero veloc-
ity surfaces in the £n-plane. As we increase the value of «,
the forbidden region decreases. In Figs. 7 and 8, we have
plotted the ZVS in £¢-plane and observed that as the value
of the energy constant decreases, the region of possible mo-
tion increases (Fig. 7) and as the value of « increases the
regions of possible motion also increases (Fig. 8). We have
also observed that as we increase the values of «, the li-
bration points Lg and Ljo move towards the primary mj.
Therefore, we can conclude that variable mass parameter y
has substantial effect on the regions of motion.
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