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Abstract In the current paper we have investigated a well-
behaved new model of anisotropic compact star in (3 + 1)-
dimensional spacetime. The exterior spacetime is described
by the Schwarzschild vacuum solution. The model is ob-
tained in the background of Tolman IV grr metric potential.
Our model is free from central singularities and satisfies all
energy conditions. The solution is compatible with observed
masses and radii of a few compact stars like Her X-1, PSR
J0737-3039A, PSR B1913+16, RX J1856.5-3754, Cyg X-2
and PSR J1903+0327.

Keywords General relativity · Anisotropy · Compact star ·
Adiabatic index

1 Introduction

From time immemorial, stars have captivated man’s imag-
ination. Stars are born in clouds of primordial dust and for
millions of years they lead an active life synthesizing their
store of hydrogen into heavier elements by nuclear fusion.
They die even spectacular deaths, causing an enormous ex-
plosion in the form of a supernova, dispersing the valuable
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elements far into the universe. Enriched by these elements
new stars are formed in the primordial clouds. Compact
stars are basically remnants of massive luminous stars. At
the time of stellar evolution an outward radiation pressure
from the nuclear fusions is created in its interior and it can
no longer resist the ever present gravitational force. As a
result the star collapses under its own weight and under-
goes the process of stellar death resulting in the formation
of these dense and compact stellar remnants such as white
dwarfs, neutron stars and black holes. These object have ex-
ceedingly high densities relative to normal stars. Compact
objects have much smaller radii and hence, much stronger
surface gravity.

White dwarfs are static stellar systems where the gravity
is counter-balanced by Fermi pressure of degenerate elec-
trons. They can support maximum mass up to 1.4 M� with
radii about 5000 km, mean densities of around 107 g cm−3

and surface potential GM/Rc2 ≈ 10−4. On the other hand,
neutron stars are supported by Fermi pressure of degen-
erate neutrons which can support a maximum mass of
1.4 M�–3 M�, having density equivalent to nuclear den-
sities ∼1015 g cm−3 and surface potential GM/Rc2 ≈ 10−1

(Shapiro and Teukolosky 1983). It is still a challenge to de-
scribe precisely the equation of state (EoS) of such exotic
phases in the interior of such stars. However under the clas-
sical theory of general relativity, the composition, nature
and physical features of compact stars might be described
via analytic EoSs. The recent discoveries of new fascinat-
ing observational data regarding the stellar objects Her X-1,
Cyg X-2, 4U 1820-30, SAX J 1808.4-3658, 4U 1728-34,
PSR 0943+10 and RX J185635-3754 have further enlight-
ened this arena of research with more theoretical and applied
issues.

In this paper we have constructed a model to discuss in
detail the physical properties of a compact star from the
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center to the surface of the star. Here we have considered
Tolman-IV Tolman (1939), Thirukkanesh and Ragel (2014)
form for the gravitational potential grr and have assumed the
matter to be anisotropy. In case of pressure anisotropy, ra-
dial pressure (pr ) differs from tangential pressure (pt ). This
brings a more physical situation, as pointed out by Ruder-
man (1972) that nuclear matter tends to become anisotropic
in nature at very high densities (1015 gm/cc). This may oc-
cur for various reasons like existence of solid core, in pres-
ence of type-III superfluid, rotation, magnetic field, mixture
of two fluid, existence of external field, phase transition,
presence of electromagnetic field etc.

In an earlier work, Ponce de Leon (1993) obtained two
new exact analytical solutions to Einstein’s field equations
for static fluid sphere with anisotropic pressures. In addition
to that, Herrera and Santos (1997) provided an exhaustive re-
view on the subject of anisotropic fluids. A comprehensive
work on the influence of local anisotropy on the structure
and evolution of compact object has been studied by Her-
rera and Santos (1997). Bounds on the basic physical pa-
rameters for anisotropic compact general relativistic objects
was proposed by Böhmer and Harko (2006). In a very recent
work Bhar et al. (2015a) provide a new class of interior so-
lutions for anisotropic stars admitting conformal motion in
higher dimensional non-commutative spacetime. Bhar et al.
(2015b) also obtained a model of compact star with Tol-
man VII metric potential and assuming a linear equation
of state between the radial pressure and matter density. Ra-
haman et al. (2014) obtained a new class of exact solutions
for the interior in (2 + 1)-dimensional spacetime for the per-
fect fluid model both with and without cosmological con-
stant Λ. Solutions without Λ were found to be physically
acceptable. The model of Dark energy star was proposed by
Bhar and Rahaman (2015c). The author also discussed the
stability analysis of the model. Tikekar superdense stars with
electric fields were proposed by Komathiraj and Maharaj
(2007), compact models with regular charge distributions
was studied by Takisa and Maharaj (2013), radial pulsa-
tions and stability of anisotropic stars with quasi-local EoS
was discussed by Horvat (2011). Singh et al. (2014) have
also discussed the important of charged anisotropic Tolman
IV solution in modeling compact stars. Bhar (2015d) ob-
tained a new model of singularity-free anisotropic strange
quintessence star. In most of the above mentioned articles,
authors either assumed one of the metric potentials and
anisotropy or EoS. However, the unique feature in this ar-
ticle is to assumed grr metric potential and radial pressure
pr , and rest of the physical variable is determined accord-
ingly.

The plan of the paper is as follows: Sect. 2 is devoted
to Interior Spacetime and Einstein field equations. New
anisotropic solution in details is obtained in Sect. 3. Follow-
ing that in Sect. 4 some properties of the solution and the

boundary conditions are investigated. Relativistic adiabatic
index and stability analysis are done in Sect. 5 and Sect. 6 re-
spectively. Energy conditions, compactness and surface red-
shift are checked in the next sections and finally some con-
cluding remarks are given in Sect. 9.

2 Interior spacetime and Einstein field equations

To describe a static spherically symmetry spacetime in
(3 + 1)-dimension the line element can be taken in the stan-
dard form as,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

Where λ and ν are functions of the radial coordinate ‘r’
only.

Let us assume that the matter within the star is anisotropic
in nature. Therefore the corresponding energy-momentum
tensor can be written as,

T μ
ν = (ρ + pr)u

μuν − ptg
μ
ν + (pr − pt)η

μην (2)

with uiuj = −ηiηj = 1 and uiηj = 0. Here the vector ui

is the fluid 4-velocity and ηi is the space-like vector which
is orthogonal to ui , ρ is the matter density, pr and pt are
respectively the radial and transverse pressure of the fluid
and pt is in the orthogonal direction to pr . 	 = pt − pr is
called the anisotropic factor which measures the anisotropy
and it leads to an anisotropic force which is acting inward
for 	 < 0 and outward for 	 > 0.

The Einstein field equations assuming G = 1 = c are
given by

e−λ

[
λ′

r
− 1

r2

]
+ 1

r2
= 8πρ (3)

e−λ

[
1

r2
+ ν′

r

]
− 1

r2
= 8πpr (4)

1

2
e−λ

[
1

2
ν′2 + ν′′ − 1

2
λ′ν′ + 1

r

(
ν′ − λ′)

]
= 8πpt (5)

Where ‘prime’ denotes differentiation with respect to radial
co-ordinate r . The mass function, m(r), within the radius ‘r’
is given by,

m(r) = 4π

∫ r

0
w2ρ(w)dw (6)

Using (6) Einstein field Eqs. (3)–(5) becomes,

e−λ = 1 − 2m

r
(7)

r(r − 2m)ν′ = 8πprr
3 + 2m (8)

4

r
(8π	) = 8π(ρ + pr)ν

′ + 2
(
8πp′

r

)
(9)
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3 The new anisotropic solution

To solve the above set of Eqs. (7)–(9), let us take the forth
metric potential grr as proposed by Tolman (1939) and is
given by,

e−λ = (1 + ar2)(1 − cr2)

1 + 2ar2
(10)

Where ‘a’ and ‘c’ are constants.
Substituting (10) into (3) the matter density can be ob-

tained as,

8πρ = 3c + a{3 + (2a + 7c)r2 + 6acr4}
(1 + 2ar2)2

(11)

Employing Eq. (10) into Eq. (7) the expression for mass
function can be obtained as,

m(r) = r3(a + c + acr2)

2(1 + 2ar2)
(12)

Using the expression of m(r) given in Eq. (12) into
Eq. (8) we obtain

ν′ = r(1 + 2ar2)(8πpr)

(1 + ar2)(1 − cr2)
+ r(a + c + acr2)

(1 + ar2)(1 − cr2)
(13)

Now to integrate Eq. (13) let us assume the radial pres-
sure in the form

8πpr = p0(1 − ar2)

(1 + 2ar2)2
(14)

The expression of pr is reasonable due to the fact that it
is monotonic decreasing function of ‘r’ and vanishes at
r = 1/

√
a which gives the radius of the star where radial

pressure vanishes. Moreover, it possess a finite value of cen-
tral pressure equal to p0/8π for all p0 > 0.

Substituting (14) into (13) we get,

ν′ = r

(1 + ar2)(1 − cr2)

p0(1 − ar2)

1 + 2ar2

+ r(a + c + acr2)

(1 + ar2)(1 − cr2)
(15)

On integrating Eq. (15) we get,

ν = a − 2p0

2(a + c)
log

(
1 + ar2) + 3p0

2(2a + c)
log

(
1 + 2ar2)

− log(1 − cr2)

2(a + c)

[
(2a + c) − p0(a + c)

2a + c

]
+ B (16)

Where B is the constant of integration, which will be deter-
mined later from the boundary conditions.

The anisotropic factor 	 = pt − pr is given by,

	 = r2

32π(1 + 2ar2)3
×

[
−4ap0

(
5 − 2ar2)

+ (C1 + C2r
2 + C3r

4)(D1 + D2r
2 + D3r

4)

(1 + ar2)(1 − cr2)

]
(17)

Where C1, C2, C3, D1, D2 and D3 are constants given by,

C1 = a + c + p0, C2 = a(2a + 3c − p0)

C3 = 2a2c, D1 = 3c + p0 + 3a

D2 = a(2a + 7c − p0), D3 = 6a2c

The transverse pressure pt is obtained as,

pt = p0(1 − ar2)

8π(1 + 2ar2)2
+ r2

32π(1 + 2ar2)3

×
[
(C1 + C2r

2 + C3r
4)(D1 + D2r

2 + D3r
4)

(1 + ar2)(1 − cr2)

− 4ap0
(
5 − 2ar2)

]
(18)

4 Properties of the solution and boundary
conditions

The following conditions are to be fulfilled by any solutions
in order to represent a physically viable configuration and
well-behaved.

1. The solution should be free from physical and geometric
singularities, i.e. it should yield finite and positive values
of the central pressure, central density and nonzero pos-
itive value of eν |r=0 and eλ|r=0 = 1. The profile of the
metric co-efficients are shown against r in Fig. 1.

2. To find the behavior of the matter density (ρ) and radial
pressure (pr ) inside the stellar interior, we have plotted
the profiles of ρ and pr in Fig. 2 and Fig. 3 respectively.
The profiles show that both ρ and pr are positive and
monotonic decreasing function of r inside the stellar in-
terior and at the boundary the radial pressure vanishes.
The transverse pressure pt is also plotted against r inside
the stellar interior in Fig. 4 and from the figure it is clear
that pt > 0 and monotonic decreasing function of r .

3. Both density and pressure gradients are negative (Fig. 6),
which once again verifies that both ρ and pr are mono-
tonic decreasing function of r .

4. For an anisotropic fluid sphere (pr + 2pt)/ρ < 1 sug-
gested by Bondi (1999). To check this condition for our
model we have plotted (pr + 2pt)/ρ vs r in Fig. 7. The
figure indicates that our model satisfies the condition of
Bondi (1999).
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Fig. 1 The metric potential eν and eλ are plotted against r inside the
stellar interior

Fig. 2 The matter density ρ is plotted against r inside the stellar inte-
rior

5. The speed of sound along radial and transverse direction
must obey causality condition and also has to decrease
outward.

6. The adiabatic index γ = ρ+pr

pr

dpr

dρ
must be greater than

4/3 for a static configuration.

Fig. 3 The radial pressure is plotted against r inside the stellar interior

Fig. 4 Transverse pressure pt is plotted against r inside the stellar
interior

7. The stability factor |v2
st −v2

sr| for a stable anisotropic con-
figuration must lies in between 0 and 1, Herrera and San-
tos (1997).

8. The redshift of all the physically viable models needed to
decreasing outward (Fig. 17).
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Fig. 5 The anisotropic factor 	 is plotted against r inside the stellar
interior

The central pressures and the density can be written as

pr0 = pt0 = p0

8π
> 0 (19)

ρ0 = 3(a + c)

8π
> 0 (20)

Further the Zeldovich’s condition pr0/ρ0 ≤ 1 is also
needed to satisfy within the interior of the stellar object lead-
ing to another constraint i.e.

0 < p0 ≤ 3(a + c) (21)

At the boundary, the exterior solution is assumed as the
Schwarzschild vacuum solution that matches exactly with
the interior solution. The exterior metric is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) (22)

At the boundary r = rb , the two metric given in (1) and
(22) are matching. Therefore we get

eνb = 1 − 2M

rb
(23)

e−λb = 1 − 2M

rb
= (1 + ar2

b )(1 − cr2
b )

1 + 2ar2
b

(24)

pr(r = rb) = 0 (25)

Fig. 6 The density and pressure gradients are plotted against r inside
the stellar interior

Fig. 7 pr+2pt

ρ
is plotted against r inside the stellar interior

On using the boundary conditions we get

B = log

(
1 − 2M

rb

)
− a − 2p0

2(a + c)
log

(
1 + ar2

b

)

− 3p0

2(2a + c)
log

(
1 + 2ar2

b

) + 1

2(a + c)
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Fig. 8 The adiabatic index γ (red curve) is shown against r inside the
stellar interior and the blue line corresponds to γ = 4

3

×
[
(2a + c) − p0(a + c)

2a + c

]
log

(
1 − cr2

b

)
(26)

2M

rb
= 1 − (1 + ar2

b )(1 − cr2
b )

1 + 2ar2
b

(27)

5 Stability condition

In this section we want to check the stability of our present
model. First of all we want to calculate the adiabatic index
(γ ) which can be obtained from the given formula

γ = ρ + pr

pr

dpr

dρ
(28)

For a newtonian isotropic sphere the collapsing condition
is given by γ < 4

3 and for an anisotropic collapsing stellar
configuration, it changes to (Bondi 1964)

γ <
4

3
+

[
4

3

pti − pri

r|p′
ri|

+ 8πr

3

ρipri

|p′
ri|

]

max
(29)

here pri, pti and ρi are initial values of radial pressure,
transverse pressure and density respectively. For a stable
anisotropic configuration, the limit on adiabatic index de-
pends upon the types of anisotropy i.e. either (pti < pri) or
(pti > pri). In our solution γ is always greater than 4/3 and
therefore stable (Fig. 8).

Next we want to check the subliminal velocity of sound
for our present model. Our proposed model of anisotropic

Fig. 9 The variation of radial velocity is shown against r inside the
stellar interior

compact star will be physically acceptable if the radial and
transverse velocity of sound should be less than 1 which
is known as causality conditions. Where the radial velocity
(v2

sr) and transverse velocity (v2
st) of sound can be obtained

as

v2
sr = dpr

dρ
(30)

v2
st = dpt

dρ
(31)

Due to the complex expressions of v2
sr and v2

st we are
avoiding to write their expressions, however they are shown
graphically in Figs. 9 and 10 respectively. From the figures
it is clear that our model satisfies the causality conditions.
Since 0 < v2

sr < 1, 0 < v2
st < 1 therefore according to An-

dréasson (2009) |v2
sr − v2

st| < 1 which is also satisfied by our
model (see Fig. 11).

6 Equilibrium condition

To check whether our model is in static equilibrium under
three different forces, we consider the generalized Tolman-
Oppenheimer-Volkov (TOV) equation which is represented
by the equation

MG(ρ + pr)

r2
e

λ−ν
2 − dpr

dr
+ 2

r
(pt − pr) = 0 (32)
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Fig. 10 The variation of transverse velocity is shown against r inside
the stellar interior

Fig. 11 |−v2
st + v2

sr| is shown against r inside the stellar interior

Where MG = MG(r) is the effective gravitational mass in-
side the fluid sphere of radius ‘r’ and is defined by

MG(r) = 1

2
r2e

ν−λ
2 ν′ (33)

The above expression of MG(r) can be derived from
Tolman-Whittaker mass formula. Using the expression of

Fig. 12 The variation of gravitational, hydro-statics and anisotropic
forces are shown against r inside the stellar interior

Eq. (33) in (32) we obtain the modified TOV equation as,

Fg + Fh + Fa = 0 (34)

Fg = −ν′

2
(ρ + pr) (35)

Fh = −dpr

dr
(36)

Fa = 2

r
(pt − pr) (37)

Fg , Fh and Fa are known as gravitational, hydro-statics
and anisotropic forces respectively. The profile of the above
three forces for our model of compact star is shown in
Fig. 12, which verifies that present system is in static equi-
librium under these three forces.

7 Energy conditions

In this section we want to check the energy conditions for
our present model. It is well known that for an anisotropic
compact star all the energy conditions namely Weak Energy
Condition (WEC), Null Energy Condition (NEC) and Strong
Energy Condition (SEC) are satisfied if and only if the fol-
lowing inequalities hold simultaneously for every points in-
side the stellar configuration.

NEC : ρ − pr ≥ 0 (38)

WEC : ρ − pr ≥ 0, ρ > 0 (39)

SEC : ρ − pr ≥ 0 ρ − pr − 2pt ≥ 0 (40)
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Fig. 13 Energy conditions are plotted against r inside the stellar inte-
rior

Fig. 14 The mass function is shown against r inside the stellar interior

Figure 13 verifies all the energy conditions for our present
model.

8 Compactness factor and surface redshift

The compactness factor, the ratio of mass to the radius of a
compact star, should satisfy 2M/rb < 8/9 known as Buch-
dahl (1959) condition. For our present model it is obtained

Fig. 15 The compactness factor is shown against r inside the stellar
interior

from the formula,

u = m(r)

r
= r2(a + c + acr2)

2(1 + 2ar2)
(41)

The profile of u(r) is shown in Fig. 15. The figure shows
that u(r) is a monotonic increasing function of r . The max-
imum possible ratio of mass to the radius for different com-
pact stars are shown in Table 1. It is clear from the table that
the values of compactness factor for different compact stars
lies in the proposed range of Buchdahl (1959).

Next we will find the surface redshift function zs and
gravitational redshift z for our model of compact star and
is obtained from the relationship,

1 + zs = (1 − 2ub)
− 1

2

=
√

1 + 2ar2
b

1 + (a − c)r2
b − acr4

b

− 1 (42)

z = e−ν/2 − 1 (43)

The profile of these redshifts are shown in Figs. 16
and 17. For our present model, zs is monotonic increasing
function of rb and z a monotonically decreasing function
of r . The value of surface redshift for various compact stars
are shown in Table 1. It is also clear from the table that the
value of surface redshift for these compact stars lies within
the range zs < 1.
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Table 1 Calculated masses and radii of few well-known compact star candidates

Objects a (km−2) c (km−2) rb (km) M/M� 2M/rb zs Type

Her X-1 0.022276676 0.0018087 6.67 0.88 0.3874626865 0.277714211 QS

PSR J0737-3039A 0.022887433 0.00258 6.61 1.35 0.408483745 0.30021945 NS

PSR B1913+16 0.022956841 0.00355 6.6 1.44 0.436425333 0.332061476 NS

RX J1856.5-3754 0.03968191 0.00221 5.02 0.93 0.370461923 0.26034371 QS

Cyg X-2 0.01448098 0.001856 8.31 1.74 0.418778748 0.311684109 NS

PSR J1903+0327 0.017042859 0.003026 7.66 1.73 0.451701577 0.350490401 NS

Fig. 16 The surface redshift is shown against rb

Fig. 17 The interior redshift z is shown against r inside the stellar
interior

9 Discussion and concluding remarks

We have successfully proposed a new model of anisotropic
compact star in (3 + 1)-dimensional spacetime using Tol-
man IV metric potential. To solve the field equations, we
have assumed grr metric potential and the radial pressure
and rest of the physical parameter are determined from
them. In the presented solution, all the physical quantities
(pr ,pt , ρ, vr , vt , z) are monotonically decreasing outward
(Figs. 2–4, 9, 10 and 17) and free from central singularities.
Furthermore, the metric potentials, γ , u(r), m(r) and zs are

increasing function with increase in radius (Figs. 1, 8, 14–
16). The decreasing nature of pressure and density is again
reconfirmed by Fig. 6. Here we have found an interesting re-
sult where the anisotropy is negative for 0 ≤ r ≤ 3.81 (core)
and positive for 3.81 < r ≤ 6.7 (outer shell) (Fig. 5). At
the core of the compact object, due the presence of exotic
phases the equation of state (EoS) is soften. This soften-
ing of EoS reduces the value of γ and this can be incor-
porated if the anisotropy is negative in (29). However, at
the outer shell the nucleon superfluid domination makes the
EoS stiffer thus making the value of γ higher. This can be
seen from (29) when pt > pr . Hence the present solution
may leads to physically possible configuration. The trace of
stress tensor to energy density ratio is less than unity and
thus satisfies Bondi (1999) condition (Fig. 7). Our presented
solution does satisfy the WEC, SEC and NEC (Fig. 13) as
well. |v2

sr − v2
st| is in between 0 and 1 (Fig. 11), thus satisfy

condition of Andréasson (2009). The TOV equation further
supports the stability of the presented models by balancing
all the three forces to maintain the hydro-static equilibrium
(Fig. 12).

Finally we calculated the compactness factor and surface
redshift of some well-known neutron star and quark star can-
didates. According to Freire et al. (2011), PSR J1903+0327
is a neutron star (NS) of mass 1.667 ± 0.021 M�. For the
quark star (QS) RX J1856.5-3754, the mass and radius are
bound within 0.5−1 M� and 3.8–8.2 km respectively, Kohri
(2003). The observed mass of PSR B1913+16 (NS) is about
1.4398 ± 0.0002 M�, Weisberg et al. (2010). The pulsar
object PSR J0737-3039A (NS) has an observed mass of
≤1.35 M� according Burgay et al. (2003). Cyg X-2 (NS)
mass was determined by Casares et al. (2010) and measured
to be about 1.71 ± 0.21 M�. As predicted by Abubekerov
et al. (2008), the X-ray pulsar Her X-1 has a mass around
0.85±0.15, which is in agreement with our calculated mass.

Our presented models of the above mentioned compact
star candidates fits very well with the observed values of
masses and radii. Above all, our solution does satisfy all
the energy conditions, well-behaved, obeyed causality con-
dition, stable and free from central singularities. Hence our
solution might have some astrophysical significance. How-
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ever the neutral analogue (i.e. when anisotropy is zero) of
the present solution doesn’t reduce to Tolman IV.
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