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Abstract In this article, we are interested in studying some
dynamics aspects for the Armbruster Guckenheimer Kim
galactic potential in a rotating reference frame. We introduce
a non-integrability condition for this problem using Painlevé
analysis. The equilibrium positions are given and their sta-
bility is studied. Furthermore, we prove the force resulting
from the rotation of the reference frame can be used to stabi-
lize the unstable maximum equilibrium positions. The peri-
odic solutions near the equilibrium positions are constructed
by applying Lyapunov method. The permitted region of mo-
tion is determined.

Keywords Galactic dynamics · Integrability · Equilibrium
positions and stability · Periodic solutions

1 Introduction

One of the most important branches of Astrophysics is the
galactic dynamics that has been developed in the last six
decades or so,when most physicists and astronomers had a
view of the physical world dominated by integrable or near-
integrable systems (Contopoulos 2002). A large number of
papers concerning the dynamics of galaxies has been ap-
peared whose studied some dynamical aspects such as regu-
lar, chaotic behaviors of orbits, see, e.g.,(Caranicolas 1989,
1990a, 1990b, 2000; Caranicolas and Innanen 1991; Elipe
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et al. 1995; Calzeta and Hasi 1993; Habib et al. 1997; Kara-
nis and Caranicolas 2001; Saito and Ichimura 1979; Carl-
beg and Innanen 1987) and the existence of periodic orbits
and their linear stability, see for instance (Alfaro et al. 2013;
Llibre and Vidal 2012, 2014; Llibre and Makhlouf 2013;
Llibre 2002; Llibre et al. 2014; Llibre and Roberto 2013).
The Most of these studies include two types of models, one
of them characterizes the global motion in galaxies, for ex-
ample, the axially symmetric mass model that was utilized
by Caranicolas (1996). The other type of these models de-
scribes the local galactic motion (i.e. near an equilibrium
point) and it was made up of perturbed harmonic oscillators
(Innanen 1985). It is well known that, in order to study the
stellar orbits, the rotation of the galaxy must be taken into
account (Zeeuw and Merritt 1983). In spite of, the elliptical
galaxies rotate with small angular velocity, it is expected this
will affect some of the dynamics aspects of the problem (see,
e.g., Bertola and Capaccioli 1975; Caranicolas and Barbanis
1982; Illingworth 1977).

In the present work, we consider the motion on the plane
of rotation of a nearly axisymmetric galaxy which rotates
with a constant angular velocity ω around a fixed axis. With-
out loss of generality, we assume ω ≥ 0 because ω < 0 refers
only to the rotation in opposite direction. This motion is de-
scribed by the Hamiltonian

H = 1

2

(
p2

1 + p2
2

) − ω(xp2 − yp1) + V, (1)

where the potential V here considered is given by

V = 1

2

(
x2 + y2) − a

4

(
x2 + y2)2 − b

2
x2y2, (2)

where a and b are free arbitrary parameters. This potential is
known in literatures as the Armburster-Guckenheimer-Kim
potential and it was introduced by Armbruster et al. (1989).
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It is a 2D-perturbed harmonic oscillator and it characterizes
the local motion in the central area of a galaxy. This poten-
tial is obtained by expanding the global galactic potentials in
a Taylor series near a stable equilibrium point (for more de-
tails, see, e.g., Pucacco et al. 2008; Caranicolas 2002). The
Armburster-Guckenheimer-Kim potential in a non-rotating
reference frame was studied in many works (see, e.g., Llibre
and Roberto 2013; Habib et al. 1997; Kandrup 2001; Kan-
drup and Novotny 2004). Moreover, this potential is generic
in its basic properties and convenient computationally due
to a large number of computations could be performed.

Notice that the rotation of the reference frame leads to
the presence of the term ω(xp2 − yp1) which may also ap-
pear in various problems having different physical interpre-
tations. For instance, the Hamiltonian (1) can be employed
to describe the motion of a particle in the Euclidean plane
under the action of Armbruster Guckenheimer Kim galactic
potential in the presence of a constant magnetic field ω per-
pendicular on the plane of the motion. The Hamilton equa-
tions are expressed as

ẋ = p1 + ωy,

ṗ1 = ωp2 − x + ax
(
x2 + y2) + bxy2,

ẏ = p2 − ωx,

ṗ2 = −ωp1 − y + ay
(
x2 + y2) + byx2,

(3)

where dots denote differentiation with respect to time. The
Hamilton equations (3) admit the Jacobi integral:

I1 = 1

2

(
p2

1 + p2
2

) − ω(xp2 − yp1) + 1

2

(
x2 + y2)

− a

4

(
x2 + y2)2 − b

2
x2y2 = h, (4)

where h is free parameter characterizing the value of Jacobi
integral.

It is obvious, this problem has two degrees of freedom
and so it is called integrable in the sense of Liouville-Arnold
if it has one constant of the motion I2 besides the Jacobi in-
tegral (4) provided that they are linearly independent (i.e. the
gradients vectors of I1 and I2 are independent in all points
of the phase space except perhaps a set of zero measure)
and in involution (i.e. {I1, I2} = 0, where {., .} denotes the
Poisson brackets) (see, e.g., Abraham and Marsden 1978;
Arnold et al. 2006). Painlevé analysis, which relies on the
analysis of singularities of the solution in the complex plane
of time, is utilized to examine whether the problem under
consideration is integrable or not. The Hamilton equations
(3) are of Painlevé type if all movable singularities of its
solutions are poles. This study can be made by using the
ARS algorithm (see, e.g., Ablowitz et al. 1980; Bounits et al.
1982; Bountis 1995; Tabor 1988). This algorithm is briefly
introduced in the Appendix to possess a self-sustaining pa-
per. We will concentrate on the equilibrium points and study

their stability as various qualitative properties of the dy-
namics can be concluded. Indeed, trapped and escape dy-
namics are regulated by the presence of critical points with
special properties of stability. Furthermore, the presence of
stable equilibrium point is significant in establishing self-
consistent galaxy models from a given potential (Zeeuw and
Merritt 1983). We will also focus on the effect of the an-
gular velocity on the stability of the equilibrium points. We
will also clarify the size of the regions of linear stability re-
lies on the value of the angular velocity ω and this will be
graphically illustrated. The periodic, nearly equilibrium so-
lutions of the problem under consideration will be studied
by employing the Lyapunov method (Lyapunov 1956).

The present paper is organized as follows. In Sect. 2, we
study the integrability of the problem using Painlevé ap-
proach. In Sect. 3, we find the equilibrium points. Next, in
section 4, we study the stability of these equilibrium point
using linear approximation. Section 5 contains the study of
the periodic nearly equilibrium solutions using Lyapunov
theorem. In Sect. 6, we determine the permitted regions. Fi-
nally, some concluding remarks are introduced.

2 Integrable cases

Indeed, in general, the Hamiltonian systems are non-integr-
able and integrable ones of them represent a rare excep-
tion. In this section, we aim to study the integrability of the
present problem by using Painlevé analysis. The Hamilton
equations (3) can be written in the form

ẍ = −(
1 − ω2)x + 2ωẏ + bxy2 + ax

[
x2 + y2],

ÿ = −(
1 − ω2)y − 2ωẋ + bx2y + ay

[
x2 + y2].

(5)

Now, we apply the Painlevé analysis to (5) by following the
ARS algorithm that is briefly introduced in Appendix A. The
analysis begins with the leading order behavior. We look for
the parameters in the leading order behavior of x(t) and y(t)

in (5) by writing

x = ατp, y = βτq, τ = t − t0, (6)

where α, β , p and q are constants to be evaluated. Inserting
(6) into (5), we obtain the following pairs of leading order
equations

αp(p − 1)τp−2

= −(
1 − ω2)ατp + 2ωβqτq−1 + bαβ2

× τp+2q + aατp
[
α2τ 2p + β2τ 2q

]
,

βq(q − 1)τ q−2

= −(
1 − ω2)βτq − 2ωαpτp−1 + bα2β

× τ 2p+q + aβτq
[
α2τ 2p + β2τ 2q

]
.

(7)
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From (7), the leading order behavior is given by p = q =
−1. Thus, the coefficients of τ−3 in the two equations (7)
are

2α = aα
[
α2 + β2] + bαβ2, (8)

2β = aβ
[
α2 + β2] + bβα2. (9)

Solving the two equations (8) and (9) for α and β , we have

α = β = ±
√

2

2a + b
and α = −β = ±

√
2

2a + b
, (10)

where b + 2a > 0. Thus, we have the following two leading
order:

Case 1: x = ±
√

2

2a + b
τ−1, y = ±

√
2

2a + b
τ−1;

Case 2: x = ±
√

2

2a + b
τ−1, y = ∓

√
2

2a + b
τ−1.

In order to find the resonances at which the required ar-
bitrary constants appear, we put

x = ατ−1 + σ1τ
−1+r , y = βτ−1 + σ2τ

−1+r , (11)

where σi and r are constants. Inserting the expressions (11)
in (5) and equating the coefficients of τ r−3 in both sides, we
obtain

A1σ1 + 2αβ(a + b)σ2 = 0,

2αβ(a + b)σ1 + A2σ2 = 0.
(12)

where A1 and A2 are given by

A1 = [
3aα2 + β2(a + b) − r2 + 3r − 2

]
,

A2 = α2(a + b) + 3aβ2 − r2 + 3r − 2.
(13)

The linear system (12) has non-trivial solutions if

∣∣∣∣
A1 2αβ(a + b)

2αβ(a + b) A2

∣∣∣∣ = 0. (14)

Now, let us individually study each case. Taking into ac-
count (13)and considering case 1, (14)takes the form

(r + 1)(r − 4)

(
r2 − 3r + 4b

2a + b

)
= 0. (15)

As we know the complex resonances lead to the appear-
ance of movable algebraic branch singularities which are
not compatible with the integrability. Thus, the existence
of such resonances proves the non-integrability of the prob-
lem. It is easy to prove that the resonances become com-
plex if b

a
∈ ]−∞,−2[ ∪ ] 18

7 ,∞[. Taking into account the
condition b + 2a > 0, the Hamilton equations (3) become

Table 1 Admissible values of b
a

that lead to an integer resonances

Conditions Resonances

1. b
a

= 2 −1, 1, 2, 4

2. b
a

= 0 −1, 0, 3, 4

3. b
a

= −1 −1, −1, 4, 4

non-integrable if b
a

∈ ] 18
7 ,∞[. We select certain values of

b
a

∈ ]−2, 18
7 ] that imply to an integer resonances. To avoid

ambiguity, we summarize that in Table 1.
The same calculations corresponding to the case 2 give

the same conditions on the two parameters a, b as in Table 1.
Therefore, we omit this case from our consideration. Now,
we study the case in which b = 2a in details and give the
final results for the other cases b = 0 and b = −a without
details as a result of their computations are similar to those
in the case that will be studied.

Taking into account b = 2a, the resonances become −1,
1, 2 and 4. It is well known the resonance r = −1 indicates
to the free location of the singularity t0. To verify the pres-
ence of a sufficient number of arbitrary constants, let us as-
sume

x = ±
√

2

2a + b
τ−1 +

4∑

k=1

nkτ
−1+k,

y = ±
√

2

2a + b
τ−1 +

4∑

k=1

mkτ
−1+k,

(16)

where mk and nk are constants. Inserting the expressions
(16) into (5), and comparing the coefficients of powers of τ ,
we obtain

The coefficients of τ−2: 3m1 + 3n1 −
√

2

a
ω = 0,

3m1 + 3n1 +
√

2

a
ω = 0.

(17)

In order to have one of the two constants m1 or n1 be ar-
bitrary, ω must equal zero, i.e. ω = 0. Thus the solution of
(17) is m1 = −n1.

The coefficients of τ−1: m2 + n2 − 1

6

√
2

a
= 0,

m2 + n2 − 1

6

√
2

a
= 0.

(18)

It is obvious the two equations in (18) are the same and thus,
one of the two constants m2 or n2 is arbitrary. Consequently,
we get

m2 = −n2 + 1

6

√
2

a
, n2 is arbitrary. (19)
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The coefficients of τ 0: 3m3 + n3 = −4an3
1 + n1,

m3 + 3n3 = 4an3
1 − n1.

(20)

The solution of these equations is expressed as

m3 = −2an3
1 + 1

2
n1, n3 = 2an3

1 − 1

2
n1.

The coefficients of τ 1:

3m4 − 3n4 = − 1

12
√

a

[
144

√
a3n2

1n2 − 12an2
1

√
2

− 12n2
√

a + √
2
]
,

3m4 − 3n4 = − 1

12
√

a

[
144

√
a3n2

1n2
√

2 − 12an2
1

− 12n2
√

a + √
2
]
.

(21)

It is easy to show that one of the two constants m4 or n4 is
an arbitrary constant. Hence, the system (5) possesses the
Painlevé property if ω = 0, b = 2a. This gives the necessary
conditions for the integrability and thus, the complementary
integral must be constructed to guarantee the integrability.
On another side, the problem is also integrable when b = 0
and b = −a in non-rotating frame i.e. ω = 0 and they were
introduced by Armbruster et al. (1989).

2.1 The integrable case ω = 0, b = 2a

It is clear that this integrable case corresponds the Arm-
bruster Guckenheimer Kim galactic potential in non-rotating
frame as a result of ω = 0. The Hamiltonian (1) takes the
form

H = 1

2

(
p2

1 + p2
2

) + 1

2

(
x2 + y2) − a

4

(
x2 + y2)2 − b

2
x2y2.

(22)

This Hamiltonian is separable if the coordinates axes are ro-
tated by angle π

4 , i.e., the new variables (u, v,pu,pv) are
given by

px = 1√
2
(pu − pv), py = 1√

2
(pu + pv),

x = 1√
2
(u − v), y = 1√

2
(u + v).

(23)

Inserting the transformation (23) into the Hamiltonian (22),
we obtain

H = 1

2

(
p2

u + p2
v

) + a

4

(
u4 + v4) − 1

2

(
u2 + v2). (24)

Consequently, the problem becomes separable and its inte-
grals of motion are

1

2
p2

u + a

4
u4 − 1

2
u2 = c1 and

1

2
p2

v + a

4
v4 − 1

2
v2 = c2,

(25)

where c1 and c2 are arbitrary constants. The general solu-
tion of the problem can be obtained by using the integrals of
the motion (25). From the Hamilton equations correspond-
ing the Hamiltonian (24), we have pu = u̇, pv = v̇. Inserting
those in the integrals of motion (25) and separating the vari-
ables, we obtain

∫ t

0
dt = ±

∫ u

u0

du
√

−au4 + 2u2 + 4c1

= ±
∫ v

v0

dv
√

−av4 + 2v2 + 4c2

, (26)

where u(0) = u0 and v(0) = v0 are admissible initial condi-
tions. Depending on the values of the coefficients and cho-
sen interval of motion, these integrals in (26) can be in-
verted, expressing in terms of Jacobi’s elliptic functions.

It should note that when ω = 0 and b = −a, the problem
becomes separable in its coordinates. On another side, when
ω = 0 and b = 0, it is more suitable to use polar coordinates
(R,ϕ) which make ϕ cyclic variable and hence, the cor-
responding angular momentum represents the complemen-
tary integral which is called in literature as a cyclic integral.
These two cases were previously discovered by Armbruster
et al. (1989).

The following theorem summarizes the above results and
the related results that were presented by Llibre and Roberto
(2013)

Theorem 1 The Hamilton equations (3) corresponding to
the Hamiltonian (1) with (2) are

(a) non-integrable in a rotating references frame ω �= 0 if
b
a

∈ ] 18
7 ,∞[.

(b) non-integrable in a non-rotating references frame ω = 0
(for more details, see Llibre and Roberto 2013) except
three cases (b = 0, b = −a and b = 2a) in which the
potential is separable.

As a result of non-integrability of the problem under con-
sideration, we can derive some conclusions about its dynam-
ics. For instance, the motion has a chaotic behavior, the tra-
jectories of motion are irregular. Furthermore, it can be con-
sidered a perturbation of integrable systems near to them and
thus it can be studied through various perturbations theories
(see, e.g., Tabor 1988).
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3 Equilibrium points

The equilibrium positions of the system (1) can be deter-
mined by equating Hamilton equations (3) to zero. Thus, we
have

p1 = −ωy, p2 = ωx, (27)

ωp2 − x + ax
(
x2 + y2) + bxy2 = 0,

ωp1 + y − ay
(
x2 + y2) − byx2 = 0.

(28)

Inserting (27) in (28), we get

x
[
a
(
x2 + y2) + by2 + ω2 − 1

] = 0,

y
[
a
(
x2 + y2) + bx2 + ω2 − 1

] = 0.
(29)

The two equations (29) can be easily solved and the results
are summarized in the following

Theorem 2 Let us consider the Hamilton equations (3) that
are defined by the Hamiltonian (1), then there are at most
nine equilibrium points. Moreover,

(i) If ω = 1 and b(2a + b) �= 0 or ω �= 1 and a = b = 0,
E1 = (0,0) is the unique equilibrium point.

(ii) If ω < 1, a > 0 or ω > 1, a < 0, there are five Equi-

librium points: E1, E2,3 = (0,±
√

1−ω2

a
) and E4,5 =

(±
√

1−ω2

a
,0).

(iii) If ω < 1, b > −2a or ω > 1, b < −2a there are

five equilibrium points: E1 and E6,7,8,9 = (±
√

1−ω2

b+2a
,

±
√

1−ω2

b+2a
).

Notice, the equilibrium positions are expressed as (x, y)

and the corresponding values of p1 and p2 can be directly
calculated from equation (27). It is evident if ω < 1, a > 0
or ω > 1, a < 0 there is a limiting case when a tends to
zero. If a tends to zero, the equilibrium points E2,3 blow up
to infinity through the positive or negative Y axis depending
on the sign of Y -component of E2,3 while the equilibrium
positions E4,5 blow up to infinity through the positive or
negative X-axis relying on the sign of the X−components
of E4,5. If ω < 1, b > −2a or ω > 1, b < −2a, there are
limiting case when b tends to −2a. If b tends to −2a, the
equilibrium positions E6,7,8,9 blow up to infinity through the
one of the lines x = y or x = −y depending on the sign of
the coordinates of the equilibrium position. If both a and b

are zero, the dynamics of reduces to that of a linear system
and can be effortlessly comprehended. On another hand, if
a and b are not zero at the same time, the dynamics is more
problematic due to the nonlinear terms make modifications
the behavior of the system.

There are two approaches that can be used to describe
the nature of the equilibrium points. On the one hand, their

linear stability can be studied by computing the Jacobian
matrix for the system (3). On the other hand, the equilibrium
positions can be viewed as the critical point of the effective
potential and thus, we can determine their natural. To obtain
the effective potential for the problem, it is more suitable to
rewrite the Hamiltonian (1) in terms of generalized velocity
corresponding to the generalized coordinates instead of the
conjugate momenta p1 and p2. Consequently, we have

H = 1

2

(
ẋ2 + ẏ2) + 1

2

(
1 − ω2)(x2 + y2) − a

4

(
x2 + y2)2

− b

2
x2y2. (30)

The effective potential U is given by

U = H − 1

2

(
ẋ2 + ẏ2)

= 1 − ω2

2

(
x2 + y2) − a

4

(
x2 + y2)2 − b

2
x2y2. (31)

Let us now start with the second approach as it also gives in-
formation about the trapping and the escape dynamics. Con-
sequently, we can formulate the following theorem:

Theorem 3 For the Armbruster Guckenheimer Kim Hamil-
tonian (1) in rotating reference frame:

(i) E1 is a minimum of the effective potential if ω < 1 and
a maximum if ω > 1.

(ii) The equilibrium points E2,3,4,5 are minimum of the ef-
fective potential if ω > 1, a < 0, b < 0, maximum if
ω < 1, a > 0, b > 0 and saddle points if ab < 0.

(iii) The equilibrium points E6,7,8,9 are minimum if ω > 1,
0 < b < −2a, a < 0, maximum if ω < 1, −2a < b < 0,
a > 0 and saddle points if b(2a + b) > 0.

Proof The critical points for the effective potential (31) can
be obtained by solving ∂U

∂x
= ∂U

∂y
= 0. Notice, these equa-

tions give the same equations as in (29) and so, the criti-
cal points for the effective potential (31) are the equilibrium
points that are listed in Theorem 2. Now, let us determine
the character of the critical points by employing the Hessian
matrix of the effective potential which is expressed as

H =
[

M −2(a + b)xy

−2(a + b)xy N

]
. (32)

where M , N are given by

M = 1 − ω2 − 3ax2 − (a + b)y2,

N = 1 − ω2 − 3ay2 − (a + b)x2.
(33)

• For E1, the Hessian matrix becomes

H1 =
[

1 − ω2 0
0 1 − ω2

]
,
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Table 2 The conditions for the existence of equilibria and the character of the critical points for effective potential (31)

Equilibrium points The existence of equilibrium points The character of the critical points for effective
potential (31)

Maximum Minimum Saddle

E1 = (0,0) It is a unique if

i. ω = 1, b(b + 2a) �= 0 or

ii. ω �= 1, a = b = 0. ω > 1 ω < 1

E2,3 = (0,±
√

1−ω2

a
) if ω < 1, a > 0 or b > 0 ba < 0

E4,5 = (±
√

1−ω2

a
,0) if ω > 1, a < 0 b < 0

E6,7,8,9 = (±
√

1−ω2

b+2a
,±

√
1−ω2

b+2a
) i. if ω < 1, 2a + b > 0 or i. b < 0, a > 0 b(b + 2a) > 0

if ω > 1, b + 2a < 0 b > 0, a < 0

and therefore, the critical point E1 is maximum if ω > 1
and minimum if ω < 1.

In the following, we will take into account the conditions
guaranteeing the existence of the equilibrium points as it il-
lustrated in Theorem 2.

• For E2,3,4,5, the Hessian matrix (32) reduces to

H2,3 =
[− b

a
(1 − ω2) 0

0 −2(1 − ω2)

]
,

H4,5 =
[−2(1 − ω2) 0

0 − b
a
(1 − ω2)

]
.

(34)

Using the two Hessian matrices H2,3, H4,5, we find the
nature of the critical points E2,3,4,5 depends on the sign
of ab and 1 − ω2. If 1 > ω, a > 0 (these conditions refer
to the existence of E2,3,4,5) and b > 0, the critical points
are maximum, minimum if 1 < ω, a < 0 (these conditions
indicate the existence of E2,3,4,5), b < 0 and saddle points
if ba < 0.

• For E6,7,8,9, the Hessian matrix is

H6,7,8,9 =
[ − 2a

2a+b
(1 − ω2) − 2(a+b)

2a+b
(1 − ω2)

− 2(a+b)
2a+b

(1 − ω2) − 2a
2a+b

(1 − ω2)

]

,

The determinant of Hessian matrix H6,7,8,9 is − 4b
2a+b

(1−
ω2)2 and thus, the critical points E6,7,8,9 are maximum
if ω < 1, b < 0, a > 0, 2a + b > 0, minimum if ω > 1,
2a + b < 0, b > 0, a < 0 and saddle if b(b + 2a) > 0.

�

It is evident that, in the case ω = 1, no information can
be deduced for the unique critical point E1 if b(b + 2a) �= 0
due to the Hessian matrix becomes null matrix. Therefore,
hereinafter, we will exclude from our consideration the case
ω = 1 because this situation needs a special treatment and it
is out the scope of the paper.

The results that are contained in Theorems 2 and 3 are
summarized and collected in Table 2. Furthermore, Fig. 1
illustrates and clarifies the character of the critical points for
the effective potential (31) in the plane of the two parame-
ters a, b.

4 Linear stability

It is well known that the linear stability for an equilibrium
points (x0, y0) can be studied by using the eigenvalues of the
Jacobian matrix associated to the Hamilton equations (3).
The Jacobi matrix takes the form

J (x0, y0) =

⎡

⎢⎢
⎣

0 ω 1 0
−ω 0 0 1
l1 2(a + b)x0y0 0 ω

2(a + b)x0y0 l2 −ω 0

⎤

⎥⎥
⎦

(35)

where l1 and l2 are given by

l1 = −1 + 3ax2
0 + (a + b)y2

0 ,

l2 = −1 + 3ay2
0 + (a + b)x2

0 .
(36)

It is easy to show the eigenvalues of Jacobi matrix (35) can
be given by

λ1,2,3,4 = ±1

2

√
P ± 2

√
Q, (37)

where P and Q are given by

Q = 4a2(x2
0 + y2

0

)2 − 4ab
(
x4

0 − 10x2
0y2

0 + y4
0

) − 8ω2

× [
(b + 4a)

(
x2

0 + y2
0

) − 2
]

+ b2(x4
0 + 14x2

0y2
0 + y4

0

)
,

P = 2(4a + b)
(
x2

0 + y2
0

) − 4
(
1 + ω2).

(38)
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Fig. 1 Parameter plane with the bifurcation lines for the critical points of the effective potential: a = 0, b = 0, 2a + b = 0

Indeed, the equilibrium point (x0, y0) will be unstable if at
least one of the corresponding eigenvalues (37) has a posi-
tive real part. On another side, this position will be stable in a
linear approximation if all eigenvalues (37) are purely imag-
inary. Now, the stability of the equilibrium positions in each
case mentioned above is investigated. Moreover, the linear
stability gives the necessary condition for stability and suf-
ficient for instability. This means, according to the theorem
of Lyapunov (see, e.g., Chetaev 1961), the equilibrium po-
sitions that are unstable in the linear approximation remain
unstable when the nonlinear terms in system (3) is taken into
account. On another side, the equilibrium positions that are
stable in the linear approximation, in general, requires fur-
ther analysis of nonlinear terms in (3).

Following Chetaev (1961), the equilibrium positions that
are minimum for the effective potential (31) are stable.
Therefore, we focus our attention on equilibrium positions
characterizing the maximum critical points for the effective
potential.

Theorem 3 provides us that the equilibrium position E1

is maximum critical point for the effective potential (31)
if ω < 1 and the eigenvalues (37) corresponding to E1 are
±(ω − 1)i and ±(ω + 1)i. Hence, E1 is linearly stable. For
the equilibrium positions E2,3,4,5 that are maximum for the
effective potential (31) if ω < 1, b > 0 and a > 0, we have

P1 = 4 − 12ω2 + 2b

a

(
1 − ω2),

Q1 =
(

36 + 4b

a
+ b2

a2

)
ω4 − 2

(
12 + b2

a2

)
ω2 (39)

+
(

2 − b

a

)2

.

It is clear, these equilibrium points are linearly stable when
all eigenvalues (37) are pure imaginary. This occurs when
P 2

1 − 4Q2
1 > 0, P1 < 0 and Q1 > 0. Direct calculations

give, P 2
1 − 4Q2

1 = 32b
a

(1 − ω2)2 and hence it is always pos-
itive since a > 0, b > 0. The inequality P1 < 0 implies 0 <
b
a

< −4+12ω2

1−ω2 and thus, −4 + 12ω2 must be positive. There-

fore, we have ω ∈ ] 1√
3
,1[. After some manipulations, the

inequality Q1 > 0 holds if 0 < b <
2(1+ω2)−4ω

√
2(1−ω2)

1−ω2 a.
Thus, we can conclude the effect of the force appearing as a
result of the rotation of the reference frame can act as a sta-
bilizer for the unstable maximum equilibrium points in the
present case. The boundaries of the region of the linear sta-
bility corresponding to E2,3,4,5 are delimited by two straight
lines, in the plane ab, one of them is b = 0 and another one

is b = m1(ω)a, where m1(ω) = 2(1+ω2)−4ω
√

2(1−ω2)

1−ω2 repre-
sents the slop of the second straight line and it is a function
of ω. Consequently, when the value of ω increase (decrease),
the size of region of linear stability increase (decrease) and
this is clarified in Fig. 2. Moreover, when ω is closed to 1,
the region of linear stability cover the whole region where
E2,3,4,5 are maximum see Fig. 2(c) while when ω tends to

1√
3

, the region of linear stability is empty.
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Fig. 2 The regions of linear stability corresponding to the equilibrium positions E2,3,4,5 in the plane of the two parameters a, b

Fig. 3 The regions of linear stability corresponding to the equilibrium positions E6,7,8,9 in the plane of the two parameters a, b

In a similar way, we can prove the maximum equi-
librium points E6,7,8,9 are linear stable if ω ∈ ] 1√

3
,1[,

ω2(3−4ω2)+ω(1−ω2)
√

2(1−ω2)−1
2ω4−2ω2+1

a < b, b > −2a. Thus, the
boundaries of the region of linear stability for those equi-
librium points are delimited by the straight lines in the plane
ab. They are b = −2a and the another one is b = m2(ω)a,

where m2(ω) = ω2(3−4ω2)+ω(1−ω2)
√

2(1−ω2)−1
2ω4−2ω2+1

represents
the slop of this line. It is evident the size of the region of
linear stability depend on ω due to the slop of the second
line is a function of ω. It is more important to note if ω in-
creases (decreases) the size of region of linear stability cor-
responding to the maximum equilibrium points E6,7,8,9 in-
crease(decrease). This is clarified in Fig. 3. Moreover, when
the value of ω tends to 1, the region of linear stability cover
the whole region where those maximum equilibrium points
exist and this is illustrated in Fig. 3(c). On the contrary, if
ω tends to 1√

3
the region of linear stability is empty. These

results can be stated as the following:

Theorem 4 E1 is linear stable maximum if and only if
ω < 1, E2,3,4,5 are linear stable maximum if only and only if

ω ∈ ] 1√
3
,1[, 0 < b <

2(1+ω2)−4ω
√

2(1−ω2)

1−ω2 and E6,7,8,9 are

also linear stable maximum if only and only if ω ∈ ] 1√
3
,1[,

ω2(3−4ω2)+ω(1−ω2)
√

2(1−ω2)−1
2ω4−2ω2+1

a < b, b > −2a.

5 Periodic solution

Lyapunov (1956) presented a theorem that can be employed
to construct periodic solutions about the equilibrium point
of certain mechanical system. This theorem was previously
applied in many problems see, e.g., Yehia (1977), El-Sabaa
(1992). In the present section, we will apply this theorem to
study the presence of the periodic solutions near the equilib-
rium points for the present problem. The equations of mo-
tion for the present problem can be expressed as

ẍ − 2ωẏ + Ux = 0, ÿ + 2ωẋ + Uy = 0, (40)
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where U is the effective potential (31). These equations ad-
mit the Jacobi integral

I1 = 1

2

(
ẋ2 + ẏ2) + U = h. (41)

Moreover, we assume the equilibrium points are (x0, y0)

which satisfy

Ux(x0, y0) = Uy(x0, y0) = 0 and U(x0, y0) = h0, (42)

where h0 is the value of the Jacobi integral (41) correspond-
ing to the equilibrium points (x0, y0). It is evident that
the first two equations in (42) characterize the equilibrium
points. Let us put x = x0 + ξ, y = y0 + η in the equation
(40), we obtain after some manipulations

ξ̈ − 2η̇ + αη + βξ = 0, η̈ + 2ξ̇ + δη + αξ = 0, (43)

where α = Uxy(x0, y0), β = Uxx(x0, y0), δ = Uyy(x0, y0).
Performing the time transformation

u = νt (44)

to (40), we get

ν2 d2ξ

du2
− 2νω

dη

du
+ αη + βξ = 0,

ν2 d2η

du2
+ 2νω

dξ

du
+ δη + αξ = 0,

(45)

where ν is an arbitrary parameter. We construct the periodic
solutions of system (45) utilizing the Lyapunov theorem on
holomorphic integral (Lyapunov 1956), and obtain them in
the form of series in powers of the parameter ε which in the
present case depend on h. The solution sought becomes zero
when ε = 0 and then h = h0. Let us assume

ξ =
∞∑

i=1

εixi, η =
∞∑

i=1

εiyi, h = h0 +
∞∑

i=2

εihi

(46)

where hi are constants while xi , yi are T -periodic functions
of t with period ν that can be expressed as

T = 2π

ν
= 2π

ν0

(

1 +
∞∑

i=2

εiTi

)

. (47)

Inserting the expressions (46) and (47) in (45) and taking
into account the first approximation, we have

ν2
0
d2x1

du2
− 2ων0

dy1

du
+ αy1 + βx1 = 0,

ν2
0
d2y1

du2
+ 2ν0ω

dx1

du
+ δy1 + αx1 = 0.

(48)

To achieve our aim, we seek solutions for (48) in the form

x1 = a0 + a1 cosu + a2 sinu,

y1 = b0 + b1 cosu + b2 sinu,
(49)

where ai and bi are free parameters. Inserting the expres-
sions (49) in (48), we obtain the following

x = x0 + ε
[
Aα0 cosu + (

2ων0A + B
(
ν2

0 − δ
))

sinu
]
,

y = y0 + ε
[(

A
(
ν2

0 − β
) + 2ων0B

)
cosu + Bα sinu

]
,

h = h0 + ε2

4

{(
A2 + B2)ν6

0 + 8ABων5
0

+ [
A2(4ω2 − 2β + δ

) + B2(4ω2 + β − 2δ
)]

ν4
0

+
[
A2(4βω2 + 3α2 + β2 − 2βδ

)
(50)

− 2

[
−δ2 + δ

(
β − 2ω2) − 3

2
α2

]
B2

]
ν2

0

− 8ABων0
(
βδ − α2) + (

βδ − α2)(A2β + B2δ
)}

,

where A and B are free parameters while ν0 is the frequency
and it is given by

ν0 =
√

4ω2 + β + δ ± √
4α2 − 4βδ + (4ω2 + β + δ)2

2
.

(51)

Now, let us classify the different values of the frequencies
depending on the values of ω, β , δ, α:

• If βδ − α2 = Uxx(x0, y0)Uyy(x0, y0) − U2
xy(x0, y0) > 0

(this means the effective potential has an extremal value
at (x0, y0)), we have two different frequencies when the
inequality

ω2 >
1

4

[
2
√

βδ − α2 − β − δ
]

(52)

holds. Consequently, each value of those frequencies cor-
responds to a family of periodic solutions relying on the
parameter ε. The condition (52) represents the condition
for the stability of the equilibrium points (x0, y0) as a re-
sult of the effective potential (31) has (x0, y0) as mini-
mum critical point.

• If βδ − α2 = Uxx(x0, y0)Uyy(x0, y0) − U2
xy(x0, y0) < 0,

this indicates the point (x0, y0) represents a saddle point
for effective potential (31). And so, there is a single one
frequency obtained by the formula (51) with the plus sign.

Hence, there are two periodic solutions about the stable
equilibrium point while there is one periodic solution near
the equilibrium point characterizing a saddle point for the
effective potential (31)
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Fig. 4 Hill’s region for different values of the parameters ω, b, a and h, where shading are possible region of motion and the solid lines are the
ZVCs

6 Permitted region of motion

The phase space of this problem is four dimensional due to it
has two degrees of freedom. Taking into account the integral
I1 := H = h, where H is given by (30), we can restrict our
consideration to study the flow on the hypersurface

Γh = {
(x, y) ∈R : H = h

}
. (53)

The projection of Γh on the position plane (x, y) is the per-
mitted region of motion and it is also called Hill’s region.
Consequently, the region of possible motions is specified by

Rh : h − 1

2

(
1 − ω2)(x2 + y2) + a

4

(
x2 + y2)2 + b

2
x2y2 ≥ 0

(54)

Notice that the curve h − 1
2 (1 − ω2)(x2 + y2) + a

4 (x2 +
y2)2 + b

2x2y2 = 0 which separates the position plane (x, y)

into regions and it is named as zero velocity curve (ZVC). It
is obvious that the radius of S1 in the first part of Γh is given
by
√

2

[
h − 1

2

(
1 − ω2

)(
x2 + y2

) + a

4

(
x2 + y2

)2 + b

2
x2y2

]

and also note that Γh is compact. It is evident when h > 0,
ω > 1, a > 0, b > 0, the permitted region of motion covers
the whole position plane (x, y). On the contrary, if h < 0,
ω < 1, a < 0, b < 0, the permitted region of motion is
empty. The topological type of Γh varies only at the critical
points of the Hamiltonian (see Milnor 1970, Theorem 3.1,
p. 12). Figure 4 illustrates different Hill’s regions for differ-
ent values of the parameters h, a, ω and b. It is more suitable
to note that the trajectories of the motion exist in these re-
gions of possible motions.

7 Conclusion

In the present paper, we have studied the dynamics of Arm-
bruster Guckenheimer Kim galactic potential in a rotating
reference frame. This problem has been proved to be non-
integrable if b

a
∈ ] 18

7 ,∞[ using Painlevé analysis. Further-
more, we have pointed out it has Painlevé property in a non-
rotating reference frame with certain conditions on the two
parameters a, b for which the separation of variable can be
performed. The equilibrium points which also represent the
critical points for the effective potential have been found.
The stability of these equilibrium points has been studied
and we have also proved the force appearing due to the ro-
tation of a reference frame can be considered a stabilizer
for maximum equilibrium points. In other words, the stabi-
lization happens for certain value of the angular velocity ω

satisfying the condition ω ∈ ] 1√
3
,1[. The regions of linear

stability have been graphically clarified in Figs. 2 and 3 and
we have also illustrated that the size of the regions of linear
stability becomes large or small depending on the value of
the angular velocity is large or small, respectively. We have
used the Jacobi integral to determine the permitted regions
of motion. Finally, we have utilized the Lyapunov theorem
(Lyapunov 1956) to construct the periodic solutions near the
equilibrium points. Moreover, we have shown there are two
periodic solutions near the stable equilibrium point and only
one periodic solution near the saddle point of the effective
potential of the problem.
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Appendix A: Painlevé analysis

The Painlevé property is based on the fact that the system of
non-linear ordinary differential equations has singularities in
the complex domain which are not detected from a direct in-
spection. These singularities depend on the initial conditions
are named as movable singularities. The so-called Painlevé
property conjectures that a system of differential equations
is integrable when all these singularities are simple poles.
This remarkable observation was first pointed out by the fa-
mous mathematician Sophia Kowalevski. She was able to
approach the problem of a rigid body rotating around a fixed
point finding out a new solution. Ablowitz et al. (1980) an-
nounced an algorithm (coined as ARS) capable of detect-
ing particular cases satisfying the Painlevé property. This
approach has been used to determine whether a non-linear
system is integrable or not in a very systematic way (see,
e.g., Bounits et al. 1982; Tabor 1988; Bountis 1995). Let us
now briefly give the ARS algorithm.

ARS algorithm

Consider a system of ordinary differential equations of the
form

dxi

dt
= Gi(x1, x2, . . . , xn), i = 1,2, . . . , n, (A.1)

where Gi are rational in the variables xi and analytic in t .
The dynamical system is called of Painlevé type if all mov-
able singularities of its solution is poles. Indeed, if the so-
lution in the neighborhood of an arbitrary singularity t0 can
be written as (t − t0)

p where p is an integer determined
from the leading order, the movable algebraic or logarithmic
branch points as well as essential singularities are excluded.
Thus, the necessary condition for the ODEs (A.1) possesses
Painlevé property is that its solution can be expressed as a
pure Laurent series with n − 1 arbitrary coefficients. This
analysis can be preformed in three steps. They are:

1. Dominant behaviors In this step, we seek to find the
leading order behaviors of xi in the form xi = αiτ

pi , where
τ = t − t0 and αi =constants. If all pi are negative integer,
the solution may corresponds to generic Laurent series. On
another side, if any of pi is a rational with special type, we
will deal with weak Painlevé. In both cases the solution can
be expressed in the form of Laurent series

xi(t) = τpi

∞∑

k=0

bikτ
k, (A.2)

where bik is constants.

2. Resonances In this step we find the resonances which
are defined as the value of the power at which arbitrary con-
stants enter in the expansion of the solution near the singu-
larity t0. We initiate by taking only into account the leading
terms in the original equations, inserting

xi = αiτ
pi

(
1 + σiτ

r
)
, r > 0, i = 1,2, ..., n (A.3)

in (A.1) and collecting the linear terms in σi which we write
as

Q(r).σ = 0, σ =(σ1, σ2, ..., σn), (A.4)

where Q(r) is n×n matrix. In order some of σi be arbitrary,
the matrix Q(r) must be singular matrix i.e.,

detQ(r) = 0. (A.5)

Notice, r = −1 must be a root for (A.5) and it indicates to
the free location of the singularity t0. Moreover, any negative
resonance will be ignored.

3. Constant of integration In this step we investigate the
existence of non-dominate logarithmic branch points. To
preform this, we insert the following expression into the full
system (A.1)

xi = αiτ
pi +

rs∑

j=1

ρj τ
pj +j , (A.6)

where rs is the largest positive root of (A.5). At the res-
onance, one usually finds conditions named compatibility
conditions that have to be satisfied in order to ensure the
arbitrariness of the coefficients.

Finally, if the problem under consideration is of Painlevé
type, the complete set of first integrals of motion must be
constructed to insurance the integrability.
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