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Abstract We study scalar perturbations for a four-dimen-
sional asymptotically Lifshitz black hole in conformal grav-
ity with dynamical exponent z = 0, and spherical topology
for the transverse section, and we find analytically and nu-
merically the quasinormal modes for scalar fields for some
special cases. Then, we study the stability of these black
holes under scalar field perturbations and greybody factors.

Keywords Quasinormal modes · Greybody factors ·
Lifshitz black holes

1 Introduction

Lifshitz spacetimes have received considerable attention
from the condensed matter point of view due to the AdS/CFT
correspondence, i.e., searching for gravity duals of Lifshitz
fixed points for condensed matter physics and quantum
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chromodynamics (Kachru et al. 2008). From the quantum
field theory point of view, there are many invariant scale
theories of interest when studying such critical points. Such
theories exhibit the anisotropic scale invariance t → χzt ,
x → χx, with z �= 1, where z is the relative scale dimen-
sion of time and space, and these are of particular interest
in studies of critical exponent theory and phase transitions.
Systems with such behavior appear, for instance, in the de-
scription of strongly correlated electrons. The importance
of possessing a tool to study strongly correlated condensed
matter systems is beyond question, and consequently much
attention has focused on this area in recent years.

One of the most well studied systems in the context of
gauge/gravity duality is the holographic superconductor. In
its simplest form, the gravity sector is a gravitating system
with a cosmological constant, a gauge field and a charged
scalar field with a potential. The dynamics of the system
defines a critical temperature above which the system finds
itself in its normal phase and the scalar field does not have
any dynamics. Below the critical temperature the system un-
dergoes a phase transition to a new configuration. From the
gravity side this is interpreted as a black hole acquiring hair,
while from boundary conformal field theory site this is in-
terpreted as a condensation of the scalar field, and the sys-
tem enters a superconducting phase. In this sense, Lifshitz
holographic superconductivity has been a topic of numerous
studies, and interesting properties are found when one gen-
eralizes the gauge/gravity duality to non-relativistic situa-
tions (Hartnoll et al. 2010; Brynjolfsson et al. 2010; Sin et al.
2011; Schaposnik and Tallarita 2013; Momeni et al. 2015;
Bu 2012; Keranen and Thorlacius 2012; Zhao et al. 2014;
Lu et al. 2014; Tallarita 2014).

The Lifshitz spacetimes are described by the metrics

ds2 = − r2z

�2z
dt2 + �2

r2
dr2 + r2

�2
d �x2, (1)
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where �x represents a (D − 2)-dimensional spatial vector,
D is the spacetime dimension, and � denotes the length
scale in the geometry. If z = 1, the spacetime is the usual
anti-de Sitter metric in Poincaré coordinates. Furthermore,
all scalar curvature invariants are constant, and these space-
times have a null curvature singularity at r → 0 for z �= 1,
which can be seen by computing the tidal forces between in-
falling particles. This singularity is reached in finite proper
time by infalling observers, so the spacetime is geodesi-
cally incomplete (Horowitz and Way 2012). The metrics
of Lifshitz black holes asymptotically have the form (1);
however, obtaining analytical solutions does not seem to
be a trivial task, and therefore constructing finite tempera-
ture gravity duals requires the introduction of strange mat-
ter content with a theoretical motivation that is not clear.
Another way of finding such a Lifshitz black hole solution
is by considering carefully-tuned higher-curvature modifi-
cations to the Hilbert–Einstein action, as in new massive
gravity (NMG) in 3-dimensions or R2 corrections to general
relativity. This has been done, for instance, in Ayon-Beato
et al. (2009, 2010), Cai et al. (2009), Dehghani and Mann
(2010). A 4-dimensional topological black hole with z = 2
was found in Mann (2009), Balasubramanian and McGreevy
(2009) and a set of analytic Lifshitz black holes in higher
dimensions for arbitrary z in Bertoldi et al. (2009). Lifshitz
black holes with arbitrary dynamical exponent in Horndeski
theory were found in Bravo-Gaete and Hassaine (2014) and
nonlinearly charged Lifshitz black holes for any exponent
z > 1 in Alvarez et al. (2014). Thermodynamically, it is
difficult to compute conserved quantities for Lifshitz black
holes; however, progress was made on the computation of
mass and related thermodynamic quantities by using the
ADT method (Devecioglu and Sarioglu 2011a, 2011b) as
well as the Euclidean action approach (Gonzalez et al. 2011;
Myung and Moon 2012). Also, phase transitions between
Lifshitz black holes and other configurations with different
asymptotes have been studied in Myung (2012). However,
due to their different asymptotes these phases transitions do
not occur.

Conformal gravity is a four-derivative theory and is per-
turbatively renormalizable (Stelle 1977, 1978). Also, it con-
tains ghost-like modes in the form of massive spin-2 exci-
tations. However, a solution to the ghost problem in fourth
order derivative theories was shown in Mannheim (2007) by
using the method of Dirac constraints (Dirac 1964) to quan-
tize the Pais–Uhlenbeck fourth order oscillator model (Pais
and Uhlenbeck 1950). In this work, we consider a matter
distribution outside the event horizon of the Lifshitz black
hole in 4-dimensions in conformal gravity with a spheri-
cal transverse section and dynamical exponent z = 0. It is
worth mentioning that for z = 0 the previously mentioned
anisotropic scale invariance corresponds to space-like scale
invariance with no transformation of time. The matter is pa-
rameterized by scalar fields minimally and conformally cou-

pled to gravity. Then, we obtain analytically and numerically
the quasinormal frequencies (QNFs) (Regge and Wheeler
1957; Zerilli 1970a, 1970b; Kokkotas and Schmidt 1999;
Nollert 1999; Konoplya and Zhidenko 2011) for scalar
fields, after which we study their stability under scalar per-
turbations. Also, we compute the reflection and transmission
coefficients and the absorption cross-section.

The study of the QNFs gives information about the sta-
bility of black holes under matter fields that evolve pertur-
batively in their exterior region, without backreacting on the
metric. In general, the oscillation frequencies are complex,
where the real part represents the oscillation frequency and
the imaginary part describes the rate at which this oscil-
lation is damped, with the stability of the black hole be-
ing guaranteed if the imaginary part is negative. The QNFs
are independent of the initial conditions and depend only
on the parameters of the black hole (mass, charge and an-
gular momentum) and the fundamental constants (Newton
constant and cosmological constant) that describe a black
hole, just like the parameters that define the test field. On
the other hand, the QNFs determine how fast a thermal
state in the boundary theory will reach thermal equilib-
rium according to the AdS/CFT correspondence (Malda-
cena 1998), where the relaxation time of a thermal state
is proportional to the inverse of the imaginary part of the
QNFs of the dual gravity background, which was estab-
lished due to the QNFs of the black hole being related to
the poles of the retarded correlation function of the cor-
responding perturbations of the dual conformal field the-
ory (Birmingham et al. 2002). Fermions on a Lifshitz back-
ground were studied in Alishahiha et al. (2012) by using the
fermionic Green’s function in 4-dimensional Lifshitz space-
time with z = 2; the authors considered a non-relativistic
(mixed) boundary condition for fermions and showed that
the spectrum has a flat band. Also, the Dirac quasinormal
modes (QNMs) for a 4-dimensional Lifshitz black hole were
studied in Catalan et al. (2014). Generally, the Lifshitz black
holes are stable under scalar perturbations, and the QNFs
show the absence of a real part (Cuadros-Melgar et al. 2012;
Gonzalez et al. 2012a, 2012b; Myung and Moon 2012; Be-
car et al. 2013; Giacomini et al. 2012). The QNFs have been
calculated by means of numerical and analytical techniques,
some remarkably numerical methods are: the Mashhoon
method, Chandrasekhar–Detweiler, WKB method, Frobe-
nius method, method of continued fractions, Nollert, asymp-
totic iteration method (AIM) and improved AIM, among
others. In the context of black hole thermodynamics, QNMs
allow the quantum area spectrum of the black hole horizon,
as well as the mass and the entropy spectrum, to be studied
(Cuadros-Melgar et al. 2012).

On the other hand, knowledge of black holes’ pertur-
bations is also useful for studying the Hawking radiation,
which is a semiclassical effect and gives the thermal radia-
tion emitted by a black hole. At the event horizon, the Hawk-
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ing radiation is, in fact, blackbody radiation. However, this
radiation still has to traverse a non-trivial curved spacetime
geometry before reaching a distant observer that can detect
it. The surrounding spacetime thus works as a potential bar-
rier for the radiation, giving a deviation from the blackbody
radiation spectrum, seen by an asymptotic observer (Malda-
cena and Strominger 1997). Thus the total flux observed at
infinity is that of a D-dimensional greybody at the Hawking
temperature. The factors that modify the spectrum emitted
by a black hole are known as greybody factors and can be
obtained through the classical scattering (for a review, see
Harmark et al. 2010). In this sense, the scalar greybody fac-
tors for an asymptotically Lifshitz black hole were studied
in Gonzalez et al. (2012b), Lepe et al. (2012), and particle
motion on these geometries in Olivares et al. (2014, 2013),
Villanueva and Vasquez (2013).

The paper is organized as follows. In Sect. 2, we give a
brief review of the 4-dimensional Lifshitz black hole in con-
formal gravity. In Sect. 3, we calculate the QNFs of scalar
perturbations for the 4-dimensional Lifshitz black hole with
spherical topology and z = 0 for some special cases analyti-
cally and numerically by using the improved AIM. Then, in
Sect. 4, we study the reflection and transmission coefficients
and the absorption cross section. Finally, our conclusions are
in Sect. 5.

2 4-Dimensional asymptotically Lifshitz black
hole in conformal gravity

In this work, we consider a matter distribution described by
a scalar field outside the event horizon of a 4-dimensional
asymptotically Lifshitz black hole in conformal gravity with
z = 0 and spherical topology for the transverse section (Lu

et al. 2012). Conformal gravity is a limit case of Einstein–
Weyl gravity. The action of Einstein–Weyl gravity is given
by

S = 1

2k2

∫ √−g d4x

(
R− 2Λ + 1

2
α|Weyl|2

)
, (2)

where

|Weyl|2 = RμνρσRμνρσ − 2RμνRμν + 1

3
R2, (3)

R is the Ricci scalar and Λ is the cosmological constant.
When α goes to infinity, we have the special case of confor-
mal gravity, and the field equations in vacuum are given by
Bμν = 0, where Bμν is the Bach tensor defined by

Bμν =
(

∇ρ∇σ + 1

2
Rρσ

)
Cμνρσ , (4)

where Cμνρσ is the Weyl tensor. The following metric solves
the field equations (Lu et al. 2012):

ds2 = −f dt2 + 4�2 dr2

r2f
+ r2 dΩ2

2,k, (5)

f = 1 + λ

r2
+ λ2 − k2�4

3r4
. (6)

For k = ±1, there is an event horizon at the largest root of f ,
given by

r2+ = 1

6

(√
3
(
4�4 − λ2

) − 3λ
)
, (7)

and for k = 0 the singularity is naked. Note that the require-
ment r2+ > 0 implies that −2�2 ≤ λ < �2. When λ = −2�2

the solution becomes extremal, and for k = 1 the entropy
vanishes. The Kretschmann scalar (for k = 1) is given by

RμνρσRμνρσ = 9r8 + 6(λ − 4�2)r6 + (50�4 + λ(19λ − 24�2))r4 + 2(λ2 − �4)(21λ − 4�2)r2 + 25(λ2 − �4)2

12�4r8
, (8)

therefore, there is a curvature singularity at r = 0. In the next
section, we determine the QNFs by considering the Klein–
Gordon equation in this background and by establishing the
boundary conditions on the scalar field at the horizon and at
spatial infinity.

3 Quasinormal modes of a 4-dimensional Lifshitz
black hole

The QNMs of scalar perturbations in the background of a
4-dimensional asymptotically Lifshitz black hole in confor-

mal gravity with dynamical exponent z = 0 are given by
the scalar field solution of Klein–Gordon equation with suit-
able boundary conditions. This means there are only ingo-
ing waves on the event horizon and we consider that the
scalar field vanishes at spatial infinity, known as Dirichlet
boundary conditions. These fields are considered as mere
test fields, without backreaction over the spacetime itself.
Therefore, it is not necessary for such fields to have the same
symmetries as the background spacetime. On the other hand,
if one considers the backreaction of the matter fields over the
spacetime, in order to look for exact solutions to the field
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equations, the relation between symmetries of the spacetime
and the matter fields is not trivial; for a recent study about
symmetry inheritance of scalar fields, see Smolić (2015) and
references therein. In the case considered here, the gravi-
tational field equations imply that the trace of the stress-
energy tensor must vanish, due to the fact that the Bach
tensor is traceless; therefore, if one goes beyond the probe-
field approximation, this implies that the stress-energy ten-
sor of the matter fields must be traceless. Based on these ar-
guments, we will first consider a test scalar field minimally
coupled to curvature, then we will consider a test scalar field
conformally coupled to curvature, which have a traceless
stress-energy tensor, and we will find analytically and nu-
merically the quasinormal frequencies for scalar fields for
some special cases.

3.1 Scalar field minimally coupled to gravity

In this section, we calculate the QNMs of the z = 0 Lifshitz
black hole for a test scalar field minimally coupled to grav-
ity. The Klein–Gordon equation in curved spacetime is

1√−g
∂μ

(√−ggμν∂ν

)
ψ = m2ψ, (9)

where m is the mass of the scalar field ψ which is minimally
coupled to curvature. By means of the following ansatz

ψ = e−iωtR(r)Y (θ,φ), (10)

where Y(θ,φ) is a normalizable harmonic function on the
two-sphere which satisfies

∇2Y = −κY, (11)

with κ = l(l + 1) being the eigenvalues for the spheric man-
ifold, with l = 0,1,2, . . . , the Klein–Gordon equation re-
duces to

1

4r
∂r

(
r3f (r)∂rR

)+
(

ω2�2

f (r)
− κ�2

r2
−m2�2

)
R(r) = 0. (12)

Now, by considering R(r) = K(r)/r and by introducing
the tortoise coordinate r∗, given by dr∗ = 2�dr

rf (r)
, the latter

equation can be rewritten as a one-dimensional Schrödinger
equation
[
∂2
r∗ + ω2 − Veff (r)

]
K(r∗) = 0, (13)

where the effective potential is given by

Veff (r) = f (r)

4

[
f (r)

�2
+ rf ′(r)

�2
+ 4κ

r2
+ 4m2

]
. (14)

In Figs. 1 and 2, we respectively plot the effective potential
for κ = 2 and κ = 0, using different values of the parame-
ter λ. Note that when r → ∞, the effective potential goes to
1/(4�2) + m2.

Fig. 1 The effective potential as a function of r , for m = 1, � = 1 and
κ = 2

Fig. 2 The effective potential as a function of r , for m = 1, � = 1 and
κ = 0

3.1.1 Case κ = 0

In order to find analytical solutions to the radial equation
(12), we perform the change of variables y = r2 and get the
following equation:

y(y − y+)(y − y−)R′′(y) + y(2y + λ)R′(y)

+
(

ω2�2y3

(y − y+)(y − y−)
− κ�2 − m2�2y

)
R(y) = 0, (15)

where the prime denotes the derivative with respect to y, and
y+ and y− are the roots of

f (y) = 1 + λ

y
+ λ2 − �4

3y2
, (16)

given by

y± = −λ

2
±

√
−λ2

12
+ �4

3
. (17)

Additionally, performing another change of variable z =
1 − y+

y
and noting that λ = −(y+ + y−), we arrive at the

following expression:

z(z − 1)
(
z − (1 − Q)

)
R′′(z) − (z − 1)(1 − Q − 2z)R′(z)

+
(

ω2�2Q2

z(z − 1)(z − (1 − Q))
+ κ�2

y−
− m2�2Q

z − 1

)
R(z)

= 0, (18)
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Fig. 3 Q as a function of λ/�2

where we have defined Q = y+/y−, and now prime means a
derivative with respect to z. In Fig. 3, we plot Q as a function
of λ/�2 and we observe that Q can be positive or negative
depending on the values of the parameter λ:

Q > 1 for − 2�2 ≤ λ < −�2, (19)

Q < 0 for − �2 < λ < �2. (20)

On the other hand, Eq. (18) can be manipulated and put into
the following form:

R′′(z) +
(

1

z
+ 1

z − (1 − Q)

)
R′(z)

+
(

ω2�2Q2/(1 − Q)

z
+ Q(ω2�2 − m2�2)

z − 1
+ κ�2

y−

− Qω2�2/(1 − Q)

z − (1 − Q)

)
1

z(z − 1)(z − (1 − Q))
R(z) = 0.

(21)

We note that for κ = 0 this equation corresponds to a Rie-
mann differential equation, whose general form is (Abramo-
witz and Stegun 1970)

d2w

dz2
+

(
1 − α − α′

z − a
+ 1 − β − β ′

z − b
+ 1 − γ − γ ′

z − c

)
dw

dz

+
(

αα′(a − b)(a − c)

z − a
+ ββ ′(b − c)(b − a)

z − b

+ γ γ ′(c − a)(c − b)

z − c

)
w

(z − a)(z − b)(z − c)
= 0, (22)

where a, b and c are the singular points, and the exponents
α,α′, β,β ′, γ and γ ′ are subject to the condition

α + α′ + β + β ′ + γ + γ ′ = 1. (23)

The complete solution is denoted by the symbol

w = P

⎧⎨
⎩

a b c

α β γ z

α′ β ′ γ ′

⎫⎬
⎭ , (24)

and the Riemann P function can be reduced to the hyperge-
ometric function through

w =
(

z − a

z − b

)α(
z − c

z − b

)γ

× P

⎧⎨
⎩

0 ∞ 1
0 α + β + γ 0 (z−a)(c−b)

(z−b)(c−a)

α′ − α α + β ′ + γ γ ′ − γ

⎫⎬
⎭ ,

(25)

where the P function is now Gauss hypergeometric func-
tion (Abramowitz and Stegun 1970). We observe that, in the
radial equation (21), the regular singular points a, b and c

have the values

a = 0, b = 1 − Q, c = 1, (26)

and the exponents are given by

α = ± iω�y+
y+ − y−

, α′ = ∓ iω�y+
y+ − y−

, (27)

β = ± iω�|y−|
y+ − y−

, β ′ = ∓ iω�|y−|
y+ − y−

, (28)

γ = 1

2
±

√
1

4
− (

ω2 − m2
)
�2,

γ ′ = 1

2
∓

√
1

4
− (

ω2 − m2
)
�2.

(29)

Therefore, the solution to (21) can be written as

R(z) = C1

(
z

z − 1 + Q

)α(
z − 1

z − 1 + Q

)γ

× 2F1

(
A,B,C,

Qz

z − (1 − Q)

)

+ C2

(
z

z − 1 + Q

)α′(
z − 1

z − 1 + Q

)γ

× 2F1

(
A − C + 1,B − C + 1,2 − C,

Qz

z − (1 − Q)

)
, (30)

where we have defined the constants A, B and C as

A = α + β + γ,

B = α + β ′ + γ,

C = 1 + α − α′.

(31)
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In the near-horizon limit, the above expression behaves as

R(z → 0) = (−1)γ C1

(−1 + Q)α+γ
zα + (−1)γ C2

(−1 + Q)α
′+γ

zα′
. (32)

Now, we impose as a boundary condition that classically
nothing can escape from the event horizon. So, choosing the
exponent α as

α = − iω�y+
y+ − y−

, (33)

implies that we must take C2 = 0 in order to have only ingo-
ing waves at the horizon. Therefore, our solution simplifies
to

R(z) = C1

(
z

z − 1 + Q

)α(
z − 1

z − 1 + Q

)γ

× 2F1

(
A,B,C,

Qz

z − (1 − Q)

)
. (34)

Now, we implement boundary conditions at spatial infin-
ity. In order to do so, we employ the Kummer relations
(Abramowitz and Stegun 1970), and write the solution as

R(z) = C1

(
z

z − 1 + Q

)α(
z − 1

z − 1 + Q

)γ

× Γ (C)Γ (C − A − B)

Γ (C − A)Γ (C − B)

× 2F1

(
A,B,A + B − C,1 − Qz

z − (1 − Q)

)

+ C1(1 − Q)γ
′−γ

(
z

z − 1 + Q

)α(
z − 1

z − 1 + Q

)γ ′

× Γ (C)Γ (A + B − C)

Γ (A)Γ (B)

× 2F1

(
C − A,C − B,C − A − B + 1,

1 − Qz

z − (1 − Q)

)
. (35)

At the limit z → 1, the above solution becomes

R(z → 1) = C1

Qα+γ
(z − 1)γ

Γ (C)Γ (C − A − B)

Γ (C − A)Γ (C − B)

+ C1(1 − Q)γ
′−γ

Qα+γ ′ (z − 1)γ
′

× Γ (C)Γ (A + B − C)

Γ (A)Γ (B)
. (36)

Now, we choose the exponents γ and γ ′ as follows:

γ = 1

2
+

√
1

4
− (

ω2 − m2
)
�2,

γ ′ = 1

2
−

√
1

4
− (

ω2 − m2
)
�2.

(37)

So, imposing the condition that the scalar field be null at spa-
tial infinity, we can determine the QNFs. The second term
of (36) blows up when z → 1, unless we impose the condi-
tion A = −n or B = −n; therefore, we obtain the following
set of QNFs:

ω� = i(m2�2 − n(1 + n))

1 + 2n
. (38)

These QNFs are purely imaginary and negative for m = 0,
which guarantees that the Lifshitz black hole is stable un-
der massless scalar field perturbations for the mode with the
lowest angular momentum. For m > 0 there are QNFs with
imaginary and positive value, and the Lifshitz black hole is
unstable under scalar field perturbations. Also, we note that
if we interchange the values of the exponents in Eq. (37),
the same QNFs are obtained. It is worth mentioning that
Eq. (15) with κ = 0 can be written as

z(1 − z)R′′(z) + (1 − z)R′(z)

+
(

ω2�2(zy− − y+)2

(y+ − y−)2z(1 − z)
− m2�2

1 − z

)
R(z) = 0, (39)

under the change of variable z = y−y+
y−y− , and if we define

R(z) = zα(1 − z)βF (z), the above equation leads to the hy-
pergeometric equation

z(1−z)F ′′(z)+[
c−(1+a+b)z

]
F ′(z)−abF(z) = 0, (40)

where

α = ± iω�y+
y+ − y−

, (41)

β = 1

2

(
1 ±

√
1 + 4

(
m2 − ω2

)
�2

)
, (42)

and the constants are given by

a = α + β − iω�|y−|
(y+ − y−)

, (43)

b = α + β + iω�|y−|
(y+ − y−)

, (44)

c = 1 + 2α. (45)

The general solution of the hypergeometric equation (40) is

F(z) = c12F1(a, b, c; z)
+ c2z

1−c
2F1(a − c + 1, b − c + 1,2 − c; z), (46)
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and it has three regular singular points at z = 0, z = 1, and
z = ∞. 2F1(a, b, c; z) is a hypergeometric function, and c1

and c2 are integration constants. Note that the above QNFs
could be computed using the solution (46).

3.1.2 Case Q = ±∞

In this case, it is possible to obtain an analytical solution for
all values of the angular momentum κ . Thus, for λ = −�2,
or equivalently Q = ±∞, the radial equation (12) can be
written as

z(1 − z)∂2
z R(z) + (1 − z)∂zR(z)

+
[

ω2�2

z(1 − z)
− m2�2

1 − z
− κ

]
R(z) = 0, (47)

where we have considered z = 1 − �2/r2. Using the decom-
position R(z) = zα(1 − z)βK(z) with

α± = ±iω�, (48)

β± = 1

2

(
1 ±

√
1 + 4

(
m2 − ω2

)
�2

)
, (49)

we can write (47) as a hypergeometric equation for K

z(1 − z)K ′′(z) + [
c − (1 + a + b)z

]
K ′(z) − abK(z) = 0,

(50)

where the coefficients are given by

a = α + β ∓ √−κ, (51)

b = α + β ± √−κ, (52)

c = 1 + 2α. (53)

The general solution of the hypergeometric equation (50) is

K = C12F1(a, b, c; z)
+ C2z

1−c
2F1(a − c + 1, b − c + 1,2 − c; z), (54)

and it has three regular singular points at z = 0, z = 1, and
z = ∞. 2F1(a, b, c; z) is a hypergeometric function and C1

and C2 are constants. Thus, the solution for the radial func-
tion R(z) is

R(z) = C1z
α(1 − z)β2F1(a, b, c; z)

+ C2z
−α(1 − z)β

× 2F1(a − c + 1, b − c + 1,2 − c; z). (55)

So, in the vicinity of the horizon, z = 0 and, using the prop-
erty F(a, b, c,0) = 1, the function R(z) behaves as

R(z) = C1e
α ln z + C2e

−α ln z, (56)

and the scalar field ψ , for α = α−, can be written as follows:

ψ ∼ C1e
−iω�(t+ln z) + C2e

−iω�(t−ln z), (57)

in which the first term represents an ingoing wave and the
second an outgoing wave in the black hole. So, by imposing
that only ingoing waves existing at the horizon, this fixes
C2 = 0. The radial solution then becomes

R(z) = C1e
α ln z(1 − z)β2F1(a, b, c; z)

= C1e
−iω� ln z(1 − z)β2F1(a, b, c; z). (58)

To implement boundary conditions at infinity (z = 1), we
apply Kummer’s formula for the hypergeometric function
(Abramowitz and Stegun 1970),

2F1(a, b, c; z) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
F1

+ (1 − z)c−a−b Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
F2,

(59)

where

F1 = 2F1(a, b, a + b − c,1 − z), (60)

F2 = 2F1(c − a, c − b, c − a − b + 1,1 − z). (61)

With this expression, the radial function (58) reads

R(z) = C1e
−iω� ln z(1 − z)β

Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
F1

+ C1e
−iω� ln z(1 − z)c−a−b+β

× Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
F2, (62)

and at infinity it can be written as

Rasymp.(z) = C1(1 − z)β
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)

+ C1(1 − z)1−β Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
. (63)

So for β+ > 1, the field at infinity vanishes if (a)|β+ = −n

or (b)|β+ = −n for n = 0,1,2, . . . , and for β− < 0, the field
at infinity vanishes if (c − a)|β− = −n or (c − b)|β− = −n.
Therefore, the QNFs are given by

ω� = −i
−m2�2 + n + n2 + κ ∓ √−κ(1 + 2n)

1 + 2n ∓ 2
√−κ

, (64)
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where
√−κ = i

√
l(l + 1). This expression can be written

as1

ω� = ±
√

κ(−(1 + 2n)2 + 2(−m2�2 + n + n2 − κ))

(1 + 2n)2 + 4κ

− i
(1 + 2n)(−m2�2 + n + n2 + κ)

(1 + 2n)2 + 4κ
. (65)

Because not all the QNFs have a negative imaginary part,
we conclude that this black hole is not stable under scalar
field perturbations for the case when Q = ±∞.

3.1.3 Case Q = 1

In the extremal case λ = −2�2, or equivalently Q = 1, the
radial equation (18) reads

z(z − 1)R′′(z) + 2(z − 1)R′(z)

+
(

ω2�2

z3(z − 1)
+ κ

z
− m2�2

z(z − 1)

)
R(z) = 0, (66)

and its solution is given by

R(z) = C1e
iω�
z HeunC

(
−2iω�,

√
1 − 4

(
ω2 − m2

)
�2,1,

−2ω2�2,−κ + 1

2
+ 2ω2�2,

z − 1

z

)

× z− 3
2 − 1

2

√
1−4(ω2−m2)�2

(z − 1)
1
2 + 1

2

√
1−4(ω2−m2)�2

+ C2e
iω�
z

× HeunC

(
−2iω�,−

√
1 − 4

(
ω2 − m2

)
�2,

1,−2ω2�2,−κ + 1

2
+ 2ω2�2,

z − 1

z

)

× z− 3
2 + 1

2

√
1−4(ω2−m2)�2

(z − 1)
1
2 − 1

2

√
1−4(ω2−m2)�2

,

(67)

where HeunC is the confluent Heun function. Thus, when
z → 1, and in order to have a regular scalar field at spatial
infinity, we must set C2 = 0; therefore, the solution reduces
to

R(z) = C1e
iω�
z HeunC

(
−2iω�,

√
1 − 4

(
ω2 − m2

)
�2,1,

−2ω2�2,−κ + 1

2
+ 2ω2�2,

z − 1

z

)

× z− 3
2 − 1

2

√
1−4(ω2−m2)�2

(z − 1)
1
2 + 1

2

√
1−4(ω2−m2)�2

,

(68)

1The same QNFs can be obtained by imposing that only outgoing
waves exist at spatial infinity.

where the property HeunC(a, b, c, d, e,0) = 1 was used
(Fiziev 2010). However, we observe that when z → 1, the
scalar field is null R(z) → 0; therefore, there are no QNMs
in this case.

3.1.4 Numerical analysis

Now, we will perform numerical studies by using the im-
proved AIM (Cho et al. 2010), which is an improved ver-
sion of the method proposed in Ciftci et al. (2003, 2005)
and has been successfully applied in the context of QNMs
for different black holes’ geometries; see, for instance, Cho
et al. (2010, 2012), Catalan et al. (2014), Zhang et al. (2015),
Barakat (2006). So, in order to implement the improved
AIM, we make the consecutive change of variables y = r2

and z = y−y+
y−y− to Eq. (12). Then, the Klein–Gordon equation

yields

z(1 − z)R′′(z) + (1 − z)R′(z)

+
(

ω2�2(zy− − y+)2

(y+ − y−)2z(1 − z)
+ κ�2

zy− − y+
− m2�2

1 − z

)
R(z)

= 0. (69)

Now, we must consider the behavior of the scalar field on
the event horizon and at spatial infinity. Accordingly, on the
horizon, z → 0, the behavior of the scalar field is given by

R(z → 0) ∼ C1z
− iω�y+

y+−y− + C2y
iω�y+

y+−y− . (70)

So, if we consider only ingoing waves on the horizon, we
must impose C2 = 0. Asymptotically, from Eq. (69), the
scalar field behaves as

R(z → 1) ∼ D1(1 − z)
1
2 − 1

2

√
1−4(ω2−m2)�2

+ D2(1 − z)
1
2 + 1

2

√
1−4(ω2−m2)�2

. (71)

So, in order to have only outgoing waves at infinity, we must
impose D2 = 0. Therefore, taking into account these behav-
iors, we define

R(z) = z
− iω�y+

y+−y− (1 − z)
1
2 − 1

2

√
1−4(ω2−m2)�2

χ(z). (72)

Then, by inserting these fields into Eq. (69), we obtain the
homogeneous linear second-order differential equation for
the function χ(z)

χ ′′ = λ0(z)χ
′ + s0(z)χ, (73)

where

λ0(z) = − 2iω�y+
z(y− − y+)
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Table 1 First quasinormal frequencies (n = 0), � = 1, κ = 2, m = 0,1,2, and different values of λ

m λ = −1.9 λ = −1.3 λ = −1 λ = −0.7 λ = −0.3

0 0.63892 − 0.16944i 0.72656 − 0.19982i 0.78567 − 0.22222i 0.86263 − 0.25187i 1.01527 − 0.31102i

1 1.00705 − 0.01022i 1.05999 − 0.07524i 1.09994 − 0.11111i 1.15797 − 0.15222i 1.28692 − 0.22485i

2 2.00756 + 0.76075i 2.06339 + 0.40935i 2.04275 + 0.22222i 2.00487 + 0.07429i 2.02629 − 0.06647i

+ 1 + z(−2 + √
1 − 4�2(ω2 − m2))

z(z − 1)
,

s0(z) = − 1

2z(z − 1)

(
1 + 2�2

(
m2 + κ

y+ − y−z
(74)

+ 2y+ω2

y− − y+

)
−

√
1 − 4�2

(
ω2 − m2

)

− 2iω�y+(−1 + √
1 − 4�2(ω2 − m2))

y− − y+

)
.

Then, in order to implement the improved AIM, it is neces-
sary to differentiate Eq. (73) n times with respect to z, which
yields the following equation:

χn+2 = λn(z)χ
′ + sn(z)χ, (75)

where

λn(z) = λ′
n−1(z) + sn−1(z) + λ0(z)λn−1(z), (76)

sn(z) = s′
n−1(z) + s0(z)λn−1(z). (77)

Then, by expanding the λn and sn in a Taylor series around
the point δ, at which the improved AIM is performed,

λn(δ) =
∞∑
i=0

ci
n(z − δ)i, (78)

sn(δ) =
∞∑
i=0

di
n(z − δ)i, (79)

where the ci
n and di

n are the ith Taylor coefficients of λn(δ)

and sn(δ), respectively, and by replacing the above expan-
sions in Eqs. (76) and (77), the following set of recursion
relations for the coefficients are obtained:

ci
n = (i + 1)ci+1

n−1 + di
n−1 +

i∑
k=0

ck
0c

i−k
n−1, (80)

di
n = (i + 1)di+1

n−1 +
i∑

k=0

dk
0ci−k

n−1. (81)

In this manner, the authors of the improved AIM have
avoided the derivatives that contain the AIM in Cho et al.
(2010, 2012), and the quantization condition, which is

equivalent to imposing a termination to the number of it-
erations and given by

d0
nc0

n−1 − d0
n−1c

0
n = 0. (82)

We solve this equation numerically to find the QNFs. In Ta-
ble 1, we show several first QNFs for a scalar field minimally
coupled to curvature with κ = 2, � = 1, m = 0,1,2, and dif-
ferent values of λ. We observe that the imaginary part of the
QNFs is always negative for massless scalar field, whereas
for a massive scalar field there are some QNFs with a posi-
tive imaginary part.

3.2 Scalar field conformally coupled to gravity

In this section, we calculate the QNMs of the z = 0 Lif-
shitz black hole for a test scalar field conformally coupled to
gravity. The Klein–Gordon equation for a scalar field non-
minimally coupled to curvature is

1√−g
∂μ

(√−ggμν∂ν

)
ψ − ξRψ = m2ψ, (83)

where m is the mass of the scalar field ψ , ξ is the non-
minimal coupling parameter, and R is the Ricci scalar which
reads

R= �4 − λ2

2�2r4
+ 4�2 − λ

2�2r2
− 3

2�2
. (84)

For a conformally coupled scalar field case, we must take
m = 0 and ξ = 1/6. Now, by means of the following ansatz

ψ = e−iωtR(r)Y (θ,φ), (85)

where Y(θ,φ) is a normalizable harmonic function on the
two-sphere which satisfies Eq. (11), the Klein–Gordon equa-
tion reduces to

1

4r
∂r

(
r3f (r)∂rR

) +
(

ω2�2

f (r)
− κ�2

r2
− m2�2 − ξ�2R

)
R(r)

= 0, (86)

which can be written as a 1-dimensional Schrödinger equa-
tion with an effective potential that vanishes at spatial in-
finity. Therefore, we will consider only outgoing waves at
the asymptotic region as boundary condition. It is worth
mentioning that Eq. (86) has an analytical solution only for
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λ = −1 as we will show below. Therefore, we will perform
numerical studies for λ �= −1 by using the improved AIM
(Cho et al. 2010).

3.2.1 Numerical analysis

In order to implement the improved AIM, we make the
consecutive change of variables y = r2 and z = y−y+

y−y− to
Eq. (86), as we did in the previous sections. Then, the Klein–
Gordon equation yields

z(1 − z)R′′(z) + (1 − z)R′(z) +
(

ω2�2(zy− − y+)2

(y+ − y−)2z(1 − z)

+ κ�2

zy− − y+
− ξ(�4 − λ2)(1 − z)

2(zy− − y+)2
+ ξ(4�2 − λ)

2(zy− − y+)

+ 3ξ

2(1 − z)

)
R(z) = 0. (87)

Now, the behavior of the scalar field on the event horizon
(z → 0) is given by

R(z → 0) ∼ F1z
− iω�y+

y+−y− + F2y
iω�y+

y+−y− . (88)

So, if we consider only ingoing waves at the horizon,
we must impose F2 = 0. Asymptotically (z → 1), from
Eq. (87), the scalar field behaves as

R(z → 1) ∼ G1(1 − z)1/2−iω� + G2(1 − z)1/2+iω�. (89)

So, in order to have only outgoing waves at infinity, we must
impose G2 = 0. Therefore, taking into account these behav-
iors, we define

R(z) = z
− iω�y+

y+−y− (1 − z)1/2−iω�χ(z). (90)

Then, by inserting these fields into Eq. (87), we obtain
the following homogeneous linear second-order differential
equation for the function η(z):

η′′ = λ0(z)η
′ + s0(z)η, (91)

where

λ0(z) = − (y+ − y−)(1 − 2z) − 2iω�(y+ + y−z − 2y+z)

(y+ − y−)z(1 − z)
,

s0(z) = �4 + 3y2+ + z(−�4 + y−(−4�2 + 3y−z − 12κ�2)) + λy−z − λ2(1 − z) − y−(−4�2 + 6y−z − 12κ�2 + λ)

12z(1 − z)(y+ − y−z)2

+ 12iω�(y− − 2y+)(y+ − y−z)2 − 48ω2�2y+(y+ − y−z)2

12z(1 − z)(y+ − y−)(y+ − y−z)2
.

(92)

Thus, by performing the improved AIM method, we find
several lowest QNFs, for a scalar field conformally coupled
to curvature with κ = 0, � = 1 and different values of λ;
see Table 2. Then, in Table 3, we show some fundamen-
tal QNFs for a scalar field conformally coupled to curvature
with κ = 0,2,6,12, � = 1, and different values of λ. We ob-
serve that the QNFs have real and imaginary parts, with an
imaginary part that is negative, which ensures the stability
of the 4-dimensional Lifshitz black hole under scalar pertur-
bations.

Table 2 Quasinormal frequencies for κ = 0, � = 1 and different val-
ues of λ

n λ = −1.3 λ = −1 λ = −0.7

0 0.29170 − 0.22801i 0.32275 − 0.25000i 0.35757 − 0.27902i

1 0.27600 − 0.68476i 0.32275 − 0.75000i 0.34211 − 0.83763i

2 0.23817 − 1.14518i 0.32275 − 1.25000i 0.30647 − 1.39878i

3 0.13120 − 1.63955i 0.32275 − 1.75000i 0.22919 − 1.97158i

3.2.2 Case Q = ±∞

In this case (λ = −�2), due to the simplicity of the Ricci
scalar, it is possible to obtain an analytical solution. The ra-
dial equation (86) reads

1

4r
∂r

(
r3f (r)∂rR

) +
(

ω2�2

f (r)
− κ�2 + 5ξ�2/2

r2

− m2�2 + 3ξ

2

)
R(r) = 0. (93)

So, if we compare this equation with the analogous equation
of the minimal case (Eq. (12)), we see that is possible to ob-
tain (93) by means of the following substitutions in Eq. (12):

κ → κ + 5ξ

2
,

m2 → m2 − 3ξ

2�2
.

(94)
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Table 3 Fundamentals quasinormal frequencies (n = 0), � = 1 and different values of κ and λ

κ λ = −1.9 λ = −1.3 λ = −1 λ = −0.7 λ = −0.3

0 0.22840 − 0.20893i 0.29170 − 0.22801i 0.32275 − 0.25000i 0.35757 − 0.27902i 0.41878 − 0.33808i

2 0.60092 − 0.19838i 0.70778 − 0.22800i 0.77728 − 0.25000i 0.86642 − 0.27902i 1.04077 − 0.33703i

6 0.98966 − 0.19724i 1.15443 − 0.22800i 1.26656 − 0.25000i 1.41292 − 0.27902i 1.70231 − 0.33686i

12 1.38091 − 0.19692i 1.60635 − 0.22800i 1.76186 − 0.25000i 1.96592 − 0.27902i 2.37061 − 0.33682i

Thus, using the above substitutions in the QNFs (65), we
find

ω� = ±
√

κ + 5ξ
2 (−(1 + 2n)2 + 2(−m2�2 + n + n2 − κ − ξ))

(1 + 2n)2 + 4κ + 10ξ

− i
(1 + 2n)(−m2�2 + n + n2 + κ + 4ξ)

(1 + 2n)2 + 4κ + 10ξ
, (95)

and for a conformal scalar field (m = 0, ξ = 1/6) this equa-
tion yields

ω� = ±1

2

√
κ + 5

12

− i

4

1 + 6n + 12n2 + 8n3 + 4(κ + 5/12)(1 + 2n)

1 + 4n + 4n2 + 4(κ + 5/12)
,

(96)

implying that there are only outgoing waves at the asymp-
totic region; see footnote 1. Clearly, the imaginary part of the
QNFs is negative, which ensures the stability of this black
hole under conformally coupled scalar field perturbations.
These QNFs agree with the numerical results for λ = −1,
κ = 0 and � = 1 showed in Table 2.

4 Reflection and transmission coefficients
and absorption cross-section

In this section, we focus our attention to the minimally cou-
pled scalar field case. However, a similar analysis can be
performed for scalar fields conformally coupled to gravity,
and for λ = −�2 the results are straightforwardly obtained
from the minimal case by using the substitutions (94) and
taking m = 0, ξ = 1/6. The reflection and the transmission
coefficients are defined by

 :=
∣∣∣∣
F out

asymp

F in
asymp

∣∣∣∣ and T :=
∣∣∣∣ F in

hor

F in
asymp

∣∣∣∣, (97)

where F is the flux given by

F = 1

2i

√−ggrr
(
R∗∂rR − R∂rR

∗). (98)

So, in order to calculate the above coefficients, we need to
know the behavior of the radial function both on the horizon
and at asymptotic infinity.

4.1 Case κ = 0

In this case, the behavior at the horizon is given by Eq. (46)
with c2 = 0, and choosing the negative value of α and using
Eq. (98), we get the following flux on the horizon:

F in
hor = −ω sin θ |c1|2y+. (99)

On the other hand, by applying Kummer’s formula (59) for
the hypergeometric function in Eq. (46), the asymptotic be-
havior of R(z) can be written as

R(z → 1) = c̄1(z − 1)β + c̄2(z − 1)1−β, (100)

where

c̄1 = c1
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
,

c̄2 = c1
Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
.

(101)

Thus, using Eq. (98), we obtain the flux

Fasymp. = sin θ

�
(y+ − y−)

√(
ω2 − m2

)
�2 − 1

4

× (|c̄2|2 − |c̄1|2
)
, (102)

for β = β+, the reflection and transmission coefficients are
given by

 = |c̄2|2
|c̄1|2 , (103)

T= ω�|c1|2y+
(y+ − y−)|c̄1|2

√
(ω2 − m2)�2 − 1

4

, (104)

and the absorption cross-section, σabs, is given by

σabs = �|c1|2y+
(y+ − y−)|c̄1|2

√
(ω2 − m2)�2 − 1

4

. (105)
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Fig. 4 The reflection coefficient R (solid curve), the transmission co-
efficient T (dashed curve), R + T (thick curve) and the absorption
cross-section σabs (dotted curve) as a function of ω, for m = 1, � = 1,
and λ = −1.9

Fig. 5 The behavior of σabs as a function of ω, for λ = −1.9, � = 1,
and m = 1,1.5,2

Interestingly, the poles of the transmission coefficient
yield the same set of QNFs found in the previous section,
which is equivalent to imposing as a boundary condition
that only outgoing waves exist at asymptotic infinity. Now,
we perform a numerical analysis of the reflection coeffi-
cient (103), transmission coefficient (104) and absorption
cross-section (105) of the 4-dimensional Lifshitz black hole
with z = 0 for scalar fields. So, we plot the reflection and
transmission coefficients and the absorption cross-section in
Fig. 4 for scalar fields with m = 1. Essentially, we found
that the reflection coefficient is 1 at low frequency limit,
and for high frequency limit this coefficient is null, with
the behavior of the transmission coefficient being opposite
with R + T = 1. In addition, the absorption cross-section is
null in the low and high-frequency limit, but there is a range
of frequencies for which the absorption cross-section is not
null, and it also has a maximum value in the low-frequency
limit (see Fig. 5). Furthermore, we observe that the absorp-
tion cross-section can take higher values when the mass of
the scalar field decreases (Fig. 5) in the low frequency limit.
However, beyond a certain value of the frequency, the ab-
sorption cross-section does not depend on the mass of the
scalar field.

4.2 Case Q = ±∞

In this case, the behavior at the horizon is given by Eq. (56),
with C2 = 0, and using Eq. (98), we get the flux at the hori-

zon

F in
hor = −ω�2 sin θ |C1|2. (106)

On the other hand, the asymptotic behavior of R(z) is given
by Eq. (63), which can be written as

R(z → 1) = B1(z − 1)β + B2(z − 1)1−β, (107)

where

B1 = C1
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
,

B2 = C1
Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
.

(108)

Thus, using Eq. (98), we get the flux

Fasymp. = � sin θ

√(
ω2 − m2

)
�2 − 1

4

(|B2|2 − |B1|2
)
. (109)

Therefore, the reflection and transmission coefficients are
given by

 = |B2|2
|B1|2 , (110)

T= ω�|C1|2√
(ω2 − m2)�2 − 1

4 |B1|2
, (111)

and the absorption cross-section, σabs, is given by

σabs = T

ω
= �|C1|2√

(ω2 − m2)�2 − 1
4 |B1|2

. (112)

As in the previous case, the poles of the transmission coeffi-
cient yield the same set of QNFs found in the previous sec-
tion. Also, we observe the same behavior described in the
previous case for the reflection coefficient (110), transmis-
sion coefficient (111), and absorption cross-section (112),
i.e., we have found that the reflection coefficient is 1 at the
low frequency limit, and for the high frequency limit this
coefficient is null, with the behavior of the transmission co-
efficient being opposite with R + T = 1 (see Fig. 6). Also,
the absorption cross-section is null in the low and high fre-
quency limits, but there is a range of frequencies for which
the absorption cross-section is not null, and it also has a
maximum value in the low frequency limit (see Fig. 7). Fur-
thermore, we observe that the absorption cross-section can
take higher values when the mass of the scalar field de-
creases (Fig. 7) in the low frequency limit. However, beyond
a certain value of the frequency the absorption cross-section
does not depend on the mass of the scalar field. It is worth
noting that the absorption cross-section does not depend on
the angular momentum of the scalar field, being the same
for every value of κ .
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Fig. 6 The reflection coefficient R (solid curve), the transmission co-
efficient T (dashed curve), R + T (thick curve) and the absorption
cross-section σabs (dotted curve) as a function of ω, for m = 1, � = 1
and κ = 0

Fig. 7 The behavior of σabs as a function of ω, for κ = 0, � = 1 and
m = 1,1.5,2

5 Conclusions

In this work, we calculated the QNFs of scalar field pertur-
bations for the 4-dimensional asymptotically Lifshitz black
hole in conformal gravity with a spherical topology and dy-
namical exponent z = 0, where the anisotropic scale invari-
ance corresponds to a space-like scale invariance with no
transformation of time, for some special cases that depend
on Q, and by imposing suitable boundary conditions at spa-
tial infinity. These scalar fields are considered as mere test
fields, without backreaction over the spacetime itself. There-
fore, it is not necessary for such fields to have the same sym-
metries as the background spacetime. However, if one con-
siders the backreaction of the matter fields over the space-
time, the relation between the symmetries of the spacetime
and the matter fields is not trivial. For conformal gravity
the gravitational field equations imply that the trace of the
stress-energy tensor must vanish due to the fact that the Bach
tensor is traceless.

First, we analyzed massive scalar field perturbations min-
imally coupled to curvature, which does not have the same
symmetries as the background spacetime due to the trace
of stress-energy tensor being not null. The first case stud-
ied corresponds to a scalar field without angular momen-
tum (κ = 0), and we found that there is a spectrum of
quasinormal frequencies for which the scalar field becomes
null at spatial infinity. These frequencies are purely imag-

inary and negative for m = 0; however, for m �= 0 some
QNFs are imaginary and positive. Another case we ana-
lyzed corresponds to Q = ±∞, where we found a spec-
trum of QNFs that respect the Dirichlet boundary condi-
tion; however, some of them have a positive imaginary part.
Therefore, the black hole is unstable under massive scalar
field perturbations and stable under massless scalar field
perturbations. Also, we analyzed the extremal case Q = 1,
for which we found that there are no QNMs as in Crisos-
tomo et al. (2004), where the authors demonstrated the ab-
sence of QNMs in the extremal BTZ black hole. However,
it was shown that it is possible to construct the QNMs of
3-dimensional extremal black holes algebraically as the de-
scendants of the highest weight modes (Chen and Zhang
2011), with hidden conformal symmetry being an intrin-
sic property of the extremal black hole. Also, it is worth
mentioning that QNMs for extremal black holes are not al-
ways absent, for instance, see Afshar et al. (2010), where the
authors reported the presence of QNMs for extremal BTZ
black holes in topologically massive gravity. Additionally,
for different values of Q we have found the QNFs numeri-
cally and observed that the imaginary part of the QNFs is al-
ways negative for massless scalar field, whereas for massive
scalar field there are some QNFs with a positive imaginary
part; see Table 1.

On the other hand, because the gravitational field equa-
tions imply that the trace of the stress-energy tensor must
vanish, we also considered scalar field perturbations con-
formally coupled to curvature which have a traceless stress-
energy tensor, and we showed that the imaginary part of the
QNFs calculated is negative, which guaranties the stability
of the Lifshitz black hole under conformally coupled scalar
field perturbations, this was shown by using the improved
AIM and analytical solutions. This behavior is similar to the
studied in Catalán and Vásquez (2014) for a 3-dimensional
Lifshitz black hole in conformal gravity with null dynami-
cal exponent. This is due to the effective potentials having
a similar behavior, that is, for a minimally coupled scalar
field both potentials go to 1/(4�2) + m2, and for a confor-
mally coupled scalar field both potentials vanish asymptot-
ically. Also, the real part of the QNFs does not depend on
n for a conformally coupled scalar field and Q = ±∞, for
both dimensions. On the other hand, the QNFs of three-
dimensional case (Eq. (49) of Catalán and Vásquez 2014)
can be obtained from the 4-dimensional case, for a confor-
mally coupled scalar field and Q = ±∞, by doing the re-
definitions � → �/2 and

√
κ + 5/2 → κ

2
√

M
in Eq. (96). It

is worth mentioning that for other theories with a non-fixed
dynamical exponent, the behavior of the QNFs depends on
the dimension of the spacetime as well as on the dynamical
exponent (see Sybesma and Vandoren 2015), where the au-
thors have found that for D ≤ z + 2 the QNFs are always
overdamped, that is, the QNF has no real part so there is
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no oscillatory behavior of the perturbation, only exponential
decay, whereas for D > z+2 the system is not overdamped.
This is consistent with our results for a conformally cou-
pled scalar field and for a massless scalar field minimally
coupled to gravity. Additionally, it was shown that for the
Lifshitz black holes with hyperscaling violating factor, the
hyperscaling exponent modifies the above expression (Bé-
car et al. 2015; González and Vásquez 2015).

According to the gauge/gravity duality, the relaxation
time τ for a thermal state to reach thermal equilibrium in the
boundary conformal field theory is τ = 1/ωI , where ωI is
the imaginary part of the fundamental QNF. For stable con-
figurations it is possible to reach thermal equilibrium and,
as can be deduced from the tables, the relaxation time de-
creases when λ increases for all the cases analyzed, except
for a minimally coupled scalar field with κ = 0, where the
relaxation time is independent of λ.

Finally, we focused our attention on the minimally cou-
pled scalar field case, and we computed the reflection and
transmission coefficients and the absorption cross-section.
We showed numerically that the absorption cross-section
vanishes at the low and high frequency limits. Therefore,
a wave emitted from the horizon, with low or high fre-
quency, does not reach the spatial infinity and is totally re-
flected because the fraction of particles penetrating the po-
tential barrier vanishes. However, we have shown that there
is a range of frequencies where the absorption cross-section
is not null. The reflection coefficient is 1 at the low fre-
quency limit, and for the high frequency limit this coefficient
is null, with the behavior of the transmission coefficient be-
ing opposite with R + T = 1. Also, we have shown that the
absorption cross-section increases if the mass of the scalar
field decreases in the low frequency limit; however, beyond
a certain value of the frequency the absorption cross-section
does not depend on the mass of the scalar field. Furthermore,
we have shown that the absorption cross-section does not
depend on the angular momentum.
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