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Abstract We present a new solution of embedding class I
describing the interior of a spherically symmetric charged
anisotropic stellar configuration. The exact analytic solu-
tion has been explored by considering Buchdahl type met-
ric potential grr . Using this analytic solution, we have dis-
cussed various physical aspects of a compact star. The so-
lution is free from central singularities. The solution also
satisfies WEC, SEC, NEC and DEC. The compactness pa-
rameter 2M/rb as obtained from the solution satisfies the
Buchdahl-Andreasson condition. Finally we have compared
the calculated masses and radii of well-known compact star
candidates like RX J1856.5-3754, XTE J1739-285, PSR
B0943+10 and SAX J1808.4-3658 with their observational
values.

Keywords General relativity · Exact solution · Embedding
class I · Anisotropy · Compact stars

1 Introduction

After the discovery of radio pulsars and X-ray sources, the
importance of studying compact stars like neutron stars (NS)
and quark stars (QS) become essential. However, the inter-
nal composition and nature of interactions are completely
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uncertain for compact stars. If somehow the equation of
state (EOS) is well known, one can easily investigate the
Tolman-Oppenheimer-Volkoff (TOV) equation to determine
the complete physical features of the star. Nevertheless their
EoSs can be explored via simple exact solutions. To make
the exact solutions physically feasible, one needs to impose
some physical restrictions as discussed in Sect. 2.

Most excitingly, on introducing electric charge one may
arises a new degree of freedom i.e. “anisotropy” (pt − pr ).
Today the study of anisotropic bounded configurations has
received widespread attention (Gron 1986; Ponce de Leon
1987; Roy 1996). There have been numerous studies to gen-
erate anisotropy by introducing solid core composed of type-
IIIA superfluid (Kippenhahn and Weigert 1990) or phase
transitions from normal states of pions to superconducting
states (Sokolov 1980; Sawyer 1972) or due to relativistic in-
teractions at very high density (Ruderman 1972). Most of
the discovered compact star candidates has a unique sig-
nature each for the presence of magnetic moment. There-
fore Weber (1999) pointed out the presence of anisotropy
in immense magnetic field. Even the transport coefficients
may become anisotropy and may lead to pressure anisotropy
(Yakovlev 1991, 1993).

Dev and Gleiser (2002) and Gleiser and Dev (2004) have
shown that the presence of anisotropic pressures in charged
matter enhances the stability of the configuration under ra-
dial adiabatic perturbations as compared to isotropic matter.
Herrera and Santos (1997) also discuss anisotropic stellar
configuration. There have been several recent investigations
of bounded fluid configuration using exact solutions (Singh
and Pant 2015a,b). Some solutions on embedding class I are
also presented in Gupta and Kumar (2011), Maurya et al.
(2015a,b,c,d).

Eddington (1924) had discussed about an idea that the
four dimensional spcetime can be considered embedded in
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higher-dimensional flat space. Randall and Sundram (1999),
Anchordoqui and Bergila (2000) had also discussed in more
details. Any manifold Vn can always be embedded in m =
n(n + 1)/2-dimensional Pseudo-Euclidean space Em. The
minimum extra dimension p of the Pseudo-Euclidean space
to embedded Vn in Em, is called the class of the manifold Vn

and must be less than or equal to the number (m − n) i.e.,
n(n− 1)/2. The embedding class p of relativistic spacetime
V4 is found to be VI. In particular, the class of spherical
symmetric spacetime is II and plane symmetric spacetime
is III.

Even the famous cosmological solution known as
Friedman-Robertson-Lemaitre (1933) is of class I. Indeed,
the first exact solution, the Schwarzschild’s exterior is of
class II and Schwarzschild’s interior solution of constant in-
terior density is of class I. Moreover, the famous and most
realistic exterior solution that described a spinning black
hole, the Kerr metric is of class V (Kuzeev 1980).

As we know that the general theory of relativity deals
only with four dimensional spacetime, however embedding
class solution may provide new characteristics to gravita-
tional field, as well to physics.

Rayski (1976) linked the internal symmetries of elemen-
tary particle physics with the group of motions on embed-
ded flat spacetime. Pavšič and Tapia (2001) have discussed
the applications of embedding to general relativity, extrinsic
gravity, strings and new brane world.

Many authors have discussed embedding class I solution
and used it in modeling compact stars, Gupta and Kumar
(2011), Maurya et al. (2015a, 2015b, 2015c, 2015d).

2 Conditions for well behaved solutions

For well-behaved nature of the solution for an anisotropic
fluid sphere the following conditions should be satisfied:

1. The solution should be free from physical and geometric
singularities, i.e. it should yield finite and positive val-
ues of the central pressure, central density and nonzero
positive value of eν |r=0 and eλ|r=0 = 1.

2. The causality condition should be obeyed i.e. velocity of
sound should be less than that of light throughout the
interior. In addition to the above the velocity of sound
should be decreasing towards the surface i.e. d

dr
dpr

dρ
< 0

or d2pr

dρ2 > 0 and d
dr

dpt

dρ
< 0 or d2pt

dρ2 > 0 for 0 ≤ r ≤ rb i.e.
the velocity of sound is increasing with the increase of
density and it should be decreasing outwards.

3. The adiabatic index, γ = ρ+pr

pr

dpr

dρ
for realistic matter

should be γ > 4/3.
4. The red-shift z should be positive, finite and monotoni-

cally decreasing in nature with the increase of the radial
coordinate.

5. The anisotropy factor � should be zero at the center.
6. For a stable anisotropic compact star, 0 < |v2

t − v2
r | ≤ 1

must be satisfied, Herrera and Santos (1997).

3 The Einstein-Maxwell field equations

The interior of the super-dense star is assumed to be de-
scribed by the line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) (1)

For our model the energy-momentum tensor for the stel-
lar fluid is

Tab = diag
(
ρ + E2,−pr + E2,−pt − E2,−pt − E2) (2)

where ρ, pr , pt and E2 = q2/r4 are the energy density, ra-
dial pressure, tangential pressure and electric field respec-
tively.

The Einstein field equations for the line element (1) are

8πρ = (1 − e−λ)

r2
+ λ′ e−λ

r
− E2 (3)

8πpr = ν′ e−λ

r
− (1 − e−λ)

r2
+ E2 (4)

8πpt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
− E2 (5)

σ(r) = e−λ/2

4πr2

(
r2E

)′ (6)

where primes represent differentiation with respect to the
radial coordinate r and σ(r) is the proper charge density.
In generating the above field equations we have utilized ge-
ometrized units where the coupling constant and the speed
of light are taken to be unity. Using (4) and (5) we get

� = 8π(pt − pr)

= e−λ

[
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r
+ eλ − 1

r2

]
− 2E2

(7)

If the metric given in (1) satisfies the Karmarkar (1948)
condition, it can represent an embedding class I space-
time i.e.

R1414 = R1212R3434 + R1224R1334

R2323
(8)

with R2323 �= 0 (Pandey and Sharma 1981). This condition
leads to a differential equation given by

2ν′′

ν′ + ν′ = λ′ eλ

eλ − 1
(9)
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On integration we get the relationship between ν and λ

as

eν =
(

A + B

∫ √
eλ − 1dr

)2

(10)

where A and B are constants of integration.
By using (10) we can rewrite (7) as

� = ν′

4eλ

[
2

r
− λ′

eλ − 1

][
ν′eν

2rB2
− 1

]
− 2E2 (11)

Here � = 8π(pt − pr) is the measure of anisotropy.

4 A new class of well-behaved embedding class-I
solution

To solve the above equation (10), we have assumed grr met-
ric potential of Buchdahl (1959) given by

eλ = 2(1 + ar2)

2 − ar2
(12)

where a is constant having a dimension of length−2.
Using the metric potential (12) in (10), we get

eν =
[
A −

√
3B√

a
√

2 − ar2

]2

(13)

Using (12) and (13), we can rewrite the expression of
density, pr , �, pt and σ(r) as

8πρ = a2(3r2 − 2kr6) + a(9 − 4kr4) − 2kr2

2(ar2 + 1)2
(14)

8πpr =
[
ar(

√
3Br

√
ar2

2−ar2 + A) − 2
√

3B

√
ar2

2−ar2

]−1

2(ar2 + 1)

√
ar2

2−ar2

× ar

[
a

{
A

√
ar2

2 − ar2

(
2kr4 − 3

) + √
3Br

(
5 − 2kr4)

}

+ 2kr2
(

A

√
ar2

2 − ar2
− √

3Br

)]
(15)

� = r2(ar2 + 1)−2

4
√

3B

√
ar2

2−ar2 − 2ar
{√

3Br

√
ar2

2−ar2 + A
}

×
[
a3r

{
4
√

3Br
(
kr4 − 1

)
√

ar2

2 − ar2
+ A

(
4kr4 − 3

)}

+ 4akr

{
A − 3

√
3Br

√
ar2

2 − ar2

}

+ 8a2
{√

3B

√
ar2

2 − ar2
+ Akr3

}

− 8
√

3Bk

√
ar2

2 − ar2

]
(16)

8πpt = 8πpr + � (17)

σ = 3
√

k

4π

√
2 − ar2

2(1 + ar2)
(18)

where we have assumed the charge distribution q(r)=√
kr3,

where k > 0, is the charge parameter.
Now the pressure and density gradients can be written as

8π
dρ

dr
= −(

1 + ar2)−3[
r
{
a3r2(2kr4 + 3

)

+ 3a2(2kr4 + 5
) + 6akr2 + 2k

}]
(19)

8π
dpr

dr
= − ar3

f5(r)(ar2 − 2)(ar2 + 1)2
√

ar2

2−ar2

×
[
a4f4(r)r

2 − a3f2(r) − 6a2f3(r)

+ 24B2k

√
ar2

2 − ar2
+ 4af1(r)k

]
(20)

8π
dpt

dr
= ar3

2f5(r)(ar2 − 2)(ar2 + 1)3
√

ar2

2−ar2

×
[
a5f9(r)r

5 − a4f8(r)r
2 − 2a3f10(r)

+ 4a2f7(r) + 48B2k

√
ar2

2 − ar2

+ 8af6(r)k

]
(21)

where

f1(r) = 2AkrA2

√
ar2

2 − ar2
+ 6B2r2

√
ar2

2 − ar2

− 2
√

3ABr (22)

f2(r) = −6A2

√
ar2

2 − ar2
+ 12B2r2

√
ar2

2 − ar2

(
kr4 + 5

)

+ 17
√

3ABr (23)
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f3(r) = −A2kr2

√
ar2

2 − ar2
+ B2

√
ar2

2 − ar2

(
3kr4 − 10

)

+ 2
√

3ABkr3 (24)

f4(r) =
√

ar2

2 − ar2

[
3B2r2(2kr4 + 5

) − A2(2kr4 + 3
)]

+ √
3ABr

(
4kr4 + 7

)
(25)

f5(r) =
[
ar

{√
3Br

√
ar2

2 − ar2
+ A

}

− 2
√

3B

√
ar2

2 − ar2

]2

(26)

f6(r) = A2

√
ar2

2 − ar2
+ 12B2r2

√
ar2

2 − ar2

− 2
√

3ABr (27)

f7(r) = 5A2kr2

√
ar2

2 − ar2
+ 3B2

√
ar2

2 − ar2

(
kr4 − 18

)

− 10
√

3ABkr3 (28)

f8(r) = [
4A2(kr4 − 3

) + 6B2r2(2kr4 + 5
)]

×
√

ar2

2 − ar2
+ √

3ABr
(
23 − 8kr4) (29)

f9(r) = 6B2r
(
2kr4 − 1

)
√

ar2

2 − ar2

+ √
3AB

(
8kr4 − 1

)

− 4A2kr3

√
ar2

2 − ar2
(30)

f10(r) = [
6B2r2(5kr4 − 16

) − 6A2(kr4 − 2
)]

×
√

ar2

2 − ar2
+ √

3ABr
(
12kr4 − 31

)
(31)

5 Properties of the new solution

The central pressure and density at the interior is given by

8πpr(r = 0) = 8πpt (r = 0) = 10
√

3aB − 3
√

2a3/2A

2
√

2aA − 4
√

3B
> 0

(32)

ρ(r = 0) = 9a

2
> 0, ∀a > 0 (33)

To satisfy Zeldovich’s condition at the interior, pr/ρ at
center must be ≤ 1. Therefore

10
√

3aB − 3
√

2a3/2A

9a(
√

2aA − 2
√

3B)
≤ 1 (34)

On using (32) and (34) we get a constraint on B/A given
as
√

6a

10
<

B

A
≤

√
6a

7
(35)

Now the velocity of sound inside the stellar interior can
be determined by using

v2
r = dpr/dr

dρ/dr
, v2

t = dpt/dr

dρ/dr
(36)

The relativistic adiabatic index is given by

Γ = ρ + pr

pr

dpr

dρ
(37)

For a static configuration at equilibrium Γ has to be more
than 4/3.

The modified Tolman-Oppenheimer-Volkoff (TOV) equa-
tion for anisotropic fluid distribution was given by Ponce de
Leon (1987) as

−Mg(ρ + pr)

r2
e(λ−ν)/2 − dpr

dr
+ 2�

r
+ σq

r2
eλ/2 = 0 (38)

provided

Mg(r) = 1

2
r2ν′ e(ν−λ)/2 (39)

The above equation (38) can be written in terms of bal-
anced force equation due to anisotropy (Fa), gravity (Fg),
hydrostatic (Fh) and electrostatic force Fe i.e.

Fg + Fh + Fa + Fe = 0 (40)

Here

Fg = −Mg(ρ + pr)

r2
e(λ−ν)/2 (41)

Fh = −dpr

dr
(42)

Fa = 2�

r
(43)

Fe = σq

r2
eλ/2 (44)

The TOV equation (40) can be represented by the figure
showing that the forces are counter balanced to each other
(Fig. 12).
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Fig. 1 Variation of metric potential with radius

6 Matching of interior and exterior spacetime

Assuming the exterior spacetime to be the Reissner-
Nordstrom solution which has to match smoothly with our
interior solution and is given by

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2

− r2
(

dθ2 + sin2 θdφ2
)

(45)

By matching the first and second fundamental forms the
interior solution (1) and exterior solution (45) at the bound-
ary r = rb (Darmois-Isreali condition) we get

eνb =
(

1 − 2M

rb
+ Q2

r2
b

)

=
[
A −

√
3B

√
a

√
2 − ar2

b

]2

(46)

e−λb =
(

1 − 2M

rb
+ Q2

r2
b

)
= 2 − ar2

b

2(1 + ar2
b )

(47)

pr(rb) = 0 (48)

where we set q(r = rb) = Q.
Using the boundary condition (46)–(48), we get

B

A
=

(
3a − 2akr4

b − 2kr2
b

)√
a

2−ar2
b

5
√

3a − 2
√

3 kr2
b − 2

√
3akr4

b

(49)

A =
√

2 − ar2
b

2(1 + ar2
b )

+
√

3B

√
a

√
2 − ar2

b

(50)

2M

rb
= 1 − 2 − ar2

b

2(1 + ar2
b )

+ kr4
b (51)

Fig. 2 Variation of density with radius

Now the gravitational red-shift at the surface and within
the interior of the stellar system are given by

zs = e−νb/2 − 1 =
√

2(1 + ar2
b )

2 − ar2
b

− 1 (52)

z =
[
A −

√
3B√

a
√

2 − ar2

]−1

− 1 (53)

The mass function of the solution can be determined us-
ing the equation given below:

m(r) = 1

2

∫ r

0

(
8πρr2 + E2r2)dr + q2

2r

= kr5

2
+ 3ar3

4(ar2 + 1)
(54)

7 Results and conclusion

It has been observed that the physical parameters (pr , p⊥,
ρ, pr/ρ, p⊥/ρ, v2

r , v2⊥, z, σ ) are positive at the center and
within the limit of realistic equation of state and monotoni-
cally decreasing outward (Fig. 2, 3, 4, 8, 9, 11). However the
metric potentials, Γ , E2 and mass function are increasing
outward which is necessary for a physically viable configu-
ration (Fig. 1, 6, 13, 15). The anisotropy possesses negative
value (i.e. pr > pt ) for 0 ≤ r ≤ 4.26 km and increases from
this point and beyond signifying that pt > pr (Fig. 5). The
decreasing nature of pressures and density are further veri-
fied by their negative values of pressure and density gradi-
ents as shown in Fig. 7.

Furthermore, our solution satisfies all the energy condi-
tions as required by a physically possible configuration. The
Strong Energy Condition (SEC), Weak Energy Condition
(WEC), Null Energy Condition (NEC) and Dominant En-
ergy Condition (DEC) are shown in Fig. 14. The stability
factor |v2⊥ − v2

r | must be in between 0 and 1, which is also
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Fig. 3 Variation of pressure with radius

Fig. 4 Variation of pressure to density ratio with radius

Fig. 5 Variation of anisotropy with radius

Fig. 6 Variation of adiabatic index with radius

Fig. 7 Variation of pressure and density gradients with radius

Fig. 8 Variation of red-shift with radius

Fig. 9 Variation of proper charge density with radius

Fig. 10 Variation of stability factor |v2⊥ − v2
r | with radius
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Fig. 11 Variation of velocity of sound with radius

Fig. 12 Variation of different forces acting on TOV-equation to main-
tain the hydrostatic equilibrium

Fig. 13 Variation of E2 with radius

Fig. 14 Variation of energy conditions with radius

Fig. 15 Variation of mass function with radius

satisfied by our presented solution (Fig. 10). The counter-
balancing of different forces acting on the fluid system is
represented by TOV equation and is also graphically shown
in Fig. 12. This signifies that our solution represents a stable
hydro-static equilibrium.

From the above analysis it is confirmed that the model
is physically viable and free from singularity. Therefore, we
use the solution to model some of the well known compact
star candidates by optimizing their masses and radii which
match with the observed values.

Plugging in G and c in the relevant equations, we have
found masses and radii of some compact stars. Numeri-
cal values for all cases are shown in Table 1 for different
stars. The mass and radius of SAX J1808.4-3658 matches
quite well as suggested by Bhattacharyya (2001) where it
was measured to be 2.27 M� and 9.73 km. According to
Kohri (2003) the mass and radius of RX J1856.5-3754 is
expected around 0.9 M� and 1.9–4.1 km. XTE J1739-217
and PSR B0943+10 are quark star candidates according to
Antoniadis et al. (2013), Zhang et al. (2007). Their observed
masses and radii are 1.51 M�, 10.9 km and 0.02 M�, 2.6 km
respectively. For all the presented compact star models,
the compactness parameter 2M/rb is within the Buchdahl
bound Fig. 16. As we know that the Buchdahl-Andreasson
limit is given by Andreasson (2008)

√
M ≤

√
R

3
+

√
R

9
+ Q2

3R
(55)

The above equation can be rearrange as given below

2M

R
≤ 4

9
+ 4

9

[
1 + 3Q2

R2

]1/2

+ 2Q2

R2
(56)

It is obvious that the right hand side of the above equa-
tion (56) is always greater than 8/9. Therefore, any solu-
tion satisfies Buchdahl condition will also satisfy Buchdahl-
Andreasson condition.
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Table 1 Masses and radii of
few well-known compact star
candidates

Stars k a (km) rb (km) M/M� 2M/rb zs Type

RX J1856.5-3754 0.2 0.144 3.1 0.9 0.581 1.782 SS

XTE J1739-217 0.01 0.00323 10.9 1.51 0.277 0.309 QS

PSR B0943+10 0.3 0.0023 2.6 0.02 0.015 0.012 QS

SAX J1808.4-3658 0.5 0.00924 9.73 2.27 0.467 0.825 NS

Fig. 16 Variation of compactness parameter and Buchdahl Limit with
radius
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