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Abstract We examine the likelihood of the ion-acoustic
rogue waves propagation in a non-Maxwellian electronega-
tive plasma in the framework of the family of the Korteweg–
de Vries (KdV) equations (KdV/modified KdV/Extended
KdV equation). For this purpose, we use the reductive per-
turbation technique to carry out this study. It is known that
the family of the KdV equations have solutions of distinct
structures such as solitons, shocks, kinks, cnoidal waves,
etc. However, the dynamics of the nonlinear rogue waves
is governed by the nonlinear Schrödinger equation (NLSE).
Thus, the family of the KdV equations is transformed to
their corresponding NLSE developing a weakly nonlinear
wave packets. We show the possible region for the existence
of the rogue waves and define it precisely for typical pa-
rameters of space plasmas. We investigate numerically the
effects of relevant physical parameters, namely, the nega-
tive ion relative concentration, the nonthermal parameter,
and the mass ratio on the propagation of the rogue waves
profile. The present study should be helpful in understand-
ing the salient features of the nonlinear structures such as,
ion-acoustic solitary waves, shock waves, and rogue waves
in space and in laboratory plasma where two distinct groups
of ions, i.e. positive and negative ions, and non-Maxwellian
(nonthermal) electrons are present.
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1 Introduction

There are several non-linear evolution equations that gov-
ern the physics and dynamics of the non-linear structures
(Biswas 2009, 2010; Wazwaz 2008, 2015). The solitons
arise as a consequence of an exact balance between broad-
ening effects due to wave dispersion and wave steepening
effects of non-linearities, which can propagate steadily for
a long time. Moreover, another class of solutions, namely
breathers, are also of fundamental importance. Breathers
propagate steadily, and are localized in either time or
space or both of them. Due to their localization properties,
breathers have been invoked as models of rogue waves/freak
waves/monster waves/ or rogons (Mu et al. 2014). The
rogue waves (RWs) which have a peak amplitude generally
more than twice the significant wave height, appear from
nowhere and disappear without a trace (Akhmediev et al.
2009a, 2009b).

The family of Korteweg–de Vries (KdV) equations and
the non-linear Schrödinger equation (NLSE) along with
their variants, have been used to interpret and explore a va-
riety of non-linear phenomena observed in non-linear sys-
tems, such as ocean, water tank, space, and astrophysical
plasmas as well as in laboratory experiments (Gill et al.
2010; Lü 2015). The reductive perturbation technique has
been used to derive the KdV family of equations, which
describes the evolution of a non-modulated (non-envelope)
waves, i.e., a bare pulse with no fast oscillations inside the
packet. On the other side, the NLSE governs the dynamics
of a modulated (envelope) wavepacket (Lü et al. 2015) in
a way that the non-linearities are in balance with the wave
group dispersion, resulting in the stationary solutions with
an envelope structure. The mechanism of the freak waves
may arise from the instability of a certain class of initial
conditions that tend to grow exponentially and thus have the
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possibility of increasing up to very high amplitudes, due to
modulation instability (Priya et al. 2015). Experimental ob-
servations of the modulational instability of the monochro-
matic ion-acoustic wave was reported firstly by Watanabe
(1977). Many efforts have been devoted to the study of the
structural characteristics and dynamic properties of the ro-
gons. It has been found that the rational solutions of the
NLSE can describe the dynamics of the RWs. The Pere-
grine breather/or Peregrine soliton (Peregrine 1983) which
is a localized solution in both space and time is considered as
one of the rational solutions of the NLSE. Others solutions
associated with freak wave solution of the NLSE include
the Akhmediev breather (Akhmediev et al. 2009a, 2009b),
and the Kuznetsov–Ma breathers (KM) (Kuznetsov 1977).
The Akhmediev breather is periodic in space and localized
in time, while the KM is periodic in time and localized in
space, but the Peregrine breather/rogue wave is localized
in both time and space. Both Akhmediev breather and KM
solitons become the Peregrine breather in the limiting case
(Wang et al. 2015).

The generation of very large amplitude and highly ener-
getic RWs in plasmas has been a topic of important research.
Moreover, the RWs have been observed in many other fields
of science, such as, in fiber optics, optical systems, Bose–
Einstein condensates, capillary waves, superfluid helium,
atmosphere, and even in astrophysical environments (Rah-
man et al. 2013). Recently, the rogue waves are investi-
gated in a multicomponent plasma and have been experi-
mentally observed and modeled by using the NLSE (Bailung
et al. 2011; Sharma and Bailung 2013; Pallabi Pathak et al.
2016). Moreover, Peregrine- and KM-solitons have been ob-
served in non-linear fiber optics experiments and also mod-
eled by using the NLSE (Kibler et al. 2010, 2012). Clearly,
we cannot do much if we leave the creation of rogue wave
to chance. So, preparing special initial conditions and un-
derstanding the features of rogue wave could be useful ei-
ther to avoid it or to generate highly energetic pulses (El-
Labany et al. 2012). However, the physical mechanism be-
hind the formation of RWs is still under investigation; obser-
vations indicate that they are essentially non-linear objects.
Also, they are very steep and their steepness becomes infi-
nite, thus, forming a wall of water in oceans and seas.

The structure of the ion-acoustic (IA) waves is investi-
gated theoretically and experimentally in different plasma
models. For example, one of these models is negative ion
plasmas; a plasma that includes both negative- and positive-
ion species, as well as distributed electrons. Negative ion
plasmas are found near the Earth (Massey 1976), in the
coma of comet Halley (Chaizy et al. 1991), in plasma
processing reactors (Gottscho and Gaebe 1986), in neu-
tral beam sources (Bascal and Hamilton 1979), and in low-
temperature laboratory experiments (Jacquinot et al. 1977).
Also, Coates et al. (2007) reported the presence of the nega-
tive ions in Titan’s atmosphere. These ions are presented in

mass groups with high densities, and it is expected that these
ions have an important role in the ion chemistry and in form-
ing organic-rich aerosols, which are falling on the surface
(El-Labany et al. 2012). The simultaneous presence of pos-
itive and negative ions in a multi-component electron–ion
plasma introduces new aspects of the non-linear IA waves
(Das and Tagare 1975) (e.g. the coexistence of localized pos-
itive and negative potentials) depending upon the ratio be-
tween the negative and positive ion number densities. There
have been theoretical as well experimental studies on the
propagation of ion acoustic structures in negative-ion plas-
mas. In most of these investigations, the electrons are as-
sumed to be isothermal and therefore they follow the Boltz-
mann (Maxwellian) distribution (Ruderman et al. 2008).
However, in the case of deviation from isothermality, the
electrons do not follow the Boltzmann distribution; rather,
their velocity distribution may be represented by many non-
Maxwellian distributions such as, nonthermal distribution. It
has been found from both experimental observation and the-
oretical analysis that the presence of energetic nonthermal
electrons (Cairns et al. 1995), which occurs in many space
plasma situations, particularly, in upper part of ionosphere or
lower part of magnetosphere, the aurora acceleration region,
and in/around the Earth’s bow shock, significantly modifies
the basic features of IA structures or introduces new features
for them (Mamun and Shukla 2009). Motivated by the dif-
ferent spacecraft/satellite observations. Cairns et al. (1995)
introduced a distribution function representing the popula-
tion of the energetic or nonthermal particles, which is able to
explain some special features (particularly the existence of
rarefactive IA solitons that are observed by the Freja Satel-
lite and Viking spacecraft) of the IA solitary structures. After
this pioneer work of Cairns et al. (1995), a significant num-
ber of the theoretical investigations have been made on the
role of this nonthermal distribution of electrons in modify-
ing the basic features of the non-linear IA structures (Ma-
mun 1997).

Numerous theoretical and experimental investigations
have been reported for the study of RWs in various plasma
systems (Selim et al. 2015; Bacha et al. 2012; Irfan et al.
2014; El-Wakil et al. 2014a). By way of example, not ex-
haustive enumeration, the rogue wave in a collisionless, un-
magnetized electronegative plasma with Maxwellian elec-
trons is investigated El-Labany et al. (2012). Elwakil et al.
(2014b) examined the properties of non-linear electron-
acoustic rogue waves in an unmagnetized collisionless four-
component plasma system consisting of a cold electron
fluid, nonthermal electrons, an electron beam and stationary
ions. Shalini and Saini (2015) studied the dust ion-acoustic
rogue waves in an unmagnetized collisionless plasma sys-
tem composed of charged dust grains, superthermal elec-
trons and warm ions as a fluid. Rahman et al. (2013) inves-
tigated the propagation of IA solitary and rogue waves in
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a two-dimensional ultrarelativistic degenerate warm dense
plasma. Moreover, the existence of atmospheric rogue
waves is examined by Stenflo and Marklund (2010) using
the NLSE.

It may be worth to mention here that the origin and mech-
anism for the generation of nonthermal particles in space
plasma is still a central problem (Elwakil et al. 2010). There-
fore, it is of practical interest to examine the effect of non-
thermal electrons on the properties of the propagation of the
freak waves in a positive–negative ion plasma. In this paper,
the possibility of the propagation of the ion-acoustic RWs in
electronegative plasmas with nonthermal electrons will be
investigated. The paper is arranged in the following fashion:
In Sect. 2, the basic equations are presented for positive–
negative ions plasmas and the evolution equations, i.e. the
extended Korteweg–de Vries (EKdV)/Gardner equation and
NLSE, are derived. The appearance and disappearance of
freak waves (short-lived large-amplitude pulses) in a non-
linear long wave model is examined in the framework of
the NLSE derived from the Gardner equation. The analyt-
ical and numerical results are discussed in Sect. 3. Finally,
the results are summarized in Sect. 4.

2 Model equations and evolution equations

Let us consider the propagation of non-linear ion-acoustic
waves in an unmagnetized cold plasma whose constituents
are the positive and negative ions fluid, as well as non-
thermal electrons. At equilibrium, the quasineutrality con-
dition demands n

(0)
+ = n

(0)
− + n

(0)
e , where n

(0)
+i , n

(0)
−i , n

(0)
e

are the unperturbed positive-, negative-ions, and electron
number densities, respectively. We focus our attention on
the low frequency waves, so, the cold ion species is iner-
tial and the electron inertia is neglected by assuming that
the phase speed of the ion-acoustic waves is much smaller
(larger) than the electron (ion) thermal speed, i.e. υth(+)

and υth(−) � υph � υth(e), where υth(+), υth(−), and υth(e)

are, respectively, the positive, negative ion (electron) ther-
mal speed and υph is the ion acoustic phase velocity. With-
out repetition, we will follow the same normalized plasma
model used by Sabry et al. (2009) for studying the fully non-
linear ion-acoustic solitary waves. Thus, the non-linear dy-
namics of such electrostatic perturbation mode are governed
by the following dimensionless set of equations:

∂tnl+,− + ∂x(n+,−u+,−) = 0, (1)

(∂t + u+,−∂x)u+,− + s

q
∂xφ = 0, (2)

and

∂2
xφ = ne + n− − n+, (3)

where the subscripts denote the corresponding partial deriva-
tives. In Eqs. (1)–(3), n+,− and u+,− are the ions number
densities and ion fluid velocities, respectively, and φ is the
electrostatic potential. Here, q(= m−/m+) is the mass ratio
with m+ and m− being the positive ion mass and the neg-
ative ion mass and s = +1(−1) represents the polarity of
the positive (negative) ion fluids. One may also express the
neutrality condition as μ + α = 1 where α(= n

(0)
− /n

(0)
+ ) is

the ratio of the negative ions to the positive ions concentra-
tion and μ(= n

(0)
e /n

(0)
+ ) is the ratio of the electrons to the

positive ions concentration.
To model the effects of electron nonthermality, we will

pick out the nonthermal Cairns distribution function for the
electrons (Cairns et al. 1995). Thus, the normalized electron
charge density is given by (Pakzad and Tribeche (2010))

ne = μ
(
1 − βφ + βφ2) exp(φ). (4)

The macroscopic nonthermality parameter β = 4δ/(1+3δ),
determines the population of energetic nonthermal electrons
and it is a measure of nonthermality. The values of β are
chosen to lie in the physically important range 0 ≤ β < 0.57
(corresponding to 0 ≤ δ < 0.25). For reasons of physical
plausibility one cannot take large values of β , lest the Cairns
distributions in phase space develop bump-on-tail or beam
instabilities, which occur for β > 0.57 (Verheest 2010). In
the limiting case β = 0, the Cairns distribution loses its non-
thermal wings and the density of the nonthermal electrons
reduces to their well-known Maxwell–Boltzmann counter-
part.

We confine ourselves to study the small, but finite, am-
plitude ion-acoustic excitations in nonthermal plasmas. For
this purpose, we will use the reductive perturbation method
(Washimi and Taniuti 1966; Mishra et al. 2002). According
to this method, the following stretched space-time coordi-
nates are used as: ζ = ε(x − λt) and τ = ε3t , where ε is
a small parameter (0 < ε � 1) and λ is the wave propaga-
tion. Also, we expand the dynamic quantities in Eqs. (1)–(4)

about their equilibrium values as: Γ = Γ (0) +
∞∑

j=1
εjΓ (j),

where Γ = [n+, n−, u+, u−, φ]T and Γ (0) = [1, α,0,0,0]T
and T stands for the transpose of the matrix. By substitut-
ing the last expansions and stretching in Eqs. (1)–(4) and
after tedious calculations one finally obtains an extended
Korteweg–de Vries (EKdV)/Gardner equation as

∂τΦ + (
AΦ + CΦ2)∂ζ Φ + B∂3

ζ Φ = 0, (5)

with

A = 3B

(
1

λ4
− α

λ4q2
− μ

3

)
,

B = λ3q

2(q + α)
,
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C = 3B

2

(
5

λ6
− 5α

(λ6q)
− μ

3
(1 + 3β)

)
,

λ =
√

q + α

q + μ(1 − β)
,

where Φ ≡ φ(1) for simplicity.
It is clear from Eq. (5) that at A = 0, one can get on the

critical value of the plasma parameters, which in case gives
the parametric region of positive and negative potential of
solitary waves. One notes that the coefficient of the nonlin-
ear term A is a function of the negative ion relative concen-
tration α, the nonthermal parameter β , and the mass ratio q

for the model under consideration in this manuscript. Thus,
to find the parametric regions corresponding to A = 0, one
has to express one (e.g., the critical value of the nonther-
mality βc, let us say, βc) of these parameters in terms of
the others (viz. α and q). We will discuss this case, i.e. the
nonlinear phenomena at the critical value of the nonthermal-
ity βc , in details below.

It is known that the Gardner Eq. (5) has different nonlin-
ear solutions including solitary wave, shock wave, cnoidal
wave, freak wave, etc. Here, our study will be concentrated
on the possibility of the ion-acoustic freak waves propaga-
tion in the present system. Thus, we examine the modu-
lational instability of a weakly non-linear wavepackets de-
scribed by the Gardner Eq. (5). First, the dynamics of very
weak disturbances should be considered, i.e. the non-linear
terms in Eq. (5) are less importance than the dispersive
one. This situation produces the NLSE for the envelope of
quasi-sinusoidal waves. It is well-known that the behavior
of weakly non-linear wavepackets can be analyzed using
the NLSE, which can be obtained from the KdV family of
equations (Grimshaw et al. 2001; Ruderman 2010), using an
asymptotic method. Therefore, one considers the solution of
Eq. (5) in the form of a weakly modulated sinusoidal wave
by expanding Φ , as

Φ =
∞∑

m=1

εm

m∑

l=−m

Φ(l)
m (X,T ) exp

(
il(kζ − ωτ)

)
, (6)

where k and ω are the wavenumber and wave frequency
of the carrier ion-acoustic waves. We introduce the new
stretched variables X and T as

X = ε(ζ − vgτ) and T = ε2τ, (7)

where vg represents the group velocity of the basic wave
(to be determined later). It is convenient to note that all
the perturbed states depend on the fast scales through the
phase (kζ − ωτ), whereas the slow scales (X,T ) enter the
arguments of the mth harmonic amplitude Φ

(l)
m . Here the

quantity Φ
(l)
m must be real. Since the variables in Eq. (6)

must satisfy the condition that Φ
(l)
m is real, then one must

have Φ
(l)
−m = Φ

(l)∗
m , where (∗) stands for the complex conju-

gate. The derivative operators appearing in Eq. (5) are trans-
formed into

∂τ → ∂τ − ενg∂X + ε2∂T ,

∂ζ → ∂ζ + ε∂X.

}
(8)

Substituting Eqs. (6)–(8) in Eq. (5) and collecting terms of
the same powers of ε, one obtains a set of equations corre-
sponding to the different carrier harmonics. During our cal-
culations it is assumed that at m = 0, then Φ

(l)
0 = 0, because

there are no higher harmonic wave components. Moreover,
one can see from Eq. (6) that l = 0 when m = 0 implies that
the plane wave doesn’t exist in this case.

From the first-order with the first harmonic (m, l) =
(1,1), one can get i(ω + Bk3)Φ

(1)
1 = 0, which gives

ω = −Bk3. (9)

The second-order with the first-harmonic (m, l) = (2,1)

gives −i(ω + Bk3)Φ
(1)
2 − (vg + 3Bk2)∂XΦ

(1)
1 = 0, which

yields the group velocity vg as

vg = −3Bk2 ≡ ∂kω. (10)

For the second harmonic modes (m = 2 = l), one gets
iAkΦ(1)2

1 − 2i(ω + 4Bk3)Φ
(2)
2 = 0, so one can get Φ

(2)
2 as

Φ
(2)
2 = A

6Bk2
Φ

(1)2
1 . (11)

From the third harmonic with the zeroth order (m, l) =
(3,0), one obtains vg∂XΦ

(0)
2 + A∂X(Φ

(1)
1 Φ

(1)∗
1 ) = 0, which

gives Φ
(0)
2 as

Φ
(0)
2 = − A

vg

∣∣Φ(1)
1

∣∣2
. (12)

To the third-order with the first-harmonic (m, l) = (3,1),
a compatibility equation is obtained, by imposing the condi-
tion of annihilation of secular terms. This leads to the NLSE

i∂T ψ + 1

2
P∂2

Xψ + Q ψ2ψ∗ = 0, (13)

where, for simplicity, we introduced the notation ψ = Φ
(1)
1 .

The coefficients of the dispersion and non-linear terms are
given, respectively, by

P = −6Bk ≡ ∂2
k ω, (14)

and

Q = A2

6Bk
− Ck. (15)

Equation (13) describes the nonlinear evolution of the mod-
ulated amplitude ion-acoustic wave carrier. If we use the
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derivative expansion method to derive a NLSE form the
basic Eqs. (1)–(4), then we can obtain an equation sim-
ilar to Eq. (13), but with complicated expressions for P

and Q. In this case, equation is valid for a carrier wave
with an arbitrary wavelength (wavenumber). However, the
derivation of the Gardner Eq. (5) has its own value be-
cause this equation describes many wave phenomena in
plasmas as we mentioned before. After deriving the Gard-
ner equation, it is natural to study modulations of sinu-
soidal waves described by this equation. For this purpose
we derive the NLSE from the Gardner equation. Since the
Gardner equation only describes long waves, in this case
the NLSE can be only used to describe the nonlinear mod-
ulation of long sinusoidal waves (Ruderman et al. 2008;
Ruderman 2010).

The product PQ is an important quantity as it deter-
mines:

(i) the stability property of the ion-acoustic wavepackets,
i.e. the wavepacket becomes stable when PQ < 0, and
unstable when PQ > 0;

(ii) the nature of envelope excitations, i.e. bright solitons
can propagate in unstable regions, while dark solitons
propagate in stable regions;

(iii) the regions of the existence of the rogue waves.

Since the coefficient of the dispersion term P is always
negative (see Eq. (14)), the stability of monochromatic ion-
acoustic waves is completely determined by the sign of the
coefficient of the non-linear term Q. Thus, if Q < 0, then the
non-linearity and dispersion can balance leading to creating
an envelope modulated wave and vice versa. Moreover, the
modulational instability is possible when (Grimshaw et al.
2001; Ruderman 2010)

k > kc = |A|√
6BC

, (16)

where kc is the critical wavenumber and it represents to the
boundary between the stable and unstable regions.

3 Breather solutions and numerical results

One of the interesting results here is the modulational insta-
bility (MI) of the wavepackets resulting from the generation
of the breather solutions in the unstable region, i.e. in the
region PQ < 0. The modulational instability is considerably
examined within the NLSE that describes weakly non-linear
and dispersive waves. In this context, the non-linear stage of
the MI is described by an exact solution of the NLSE, known
as a breather wave. Breather waves have been considered as
prototypes of freak waves (Onorato et al. 2013). Thus, for
PQ < 0, the general breather solutions of the NLSE (10)

can be written compactly as follows (Kibler et al. 2012):

ψ(X,T ) = ψ0

[
1 + 2(1 − 2a) cosh[bPT] + ib sinh[bPT]√

2a cos(cζ ) − cosh[bPT]
]

× exp(iPT), (17)

where, ψ0 = √
P/Q and the single governing parameter

a determines the physical behavior of the solution through
the function arguments b = √

2ac and c = √
4(1 − 2a). It

is shown, for parametric investigation purposes, all phys-
ical information is contained within the coefficients P

and Q which are functions of relevant plasma parame-
ters.

In the following, we shall summarize the breather so-
lutions, regarding analytical rogue-wave-like (breather) so-
lutions of the NLSE (13), i.e. discussing briefly their rel-
evance in our current context. It is clear from the general
solution (17) that the parameter a determines the kind of
the breather wave. For a < 0.5, the solution describes the
Akhmediev breather (AB), and the parameters a and b are
real with physical significance as a modulation frequency
and exponential growth and decay rate. The AB is an exact
solution of the NLSE; it describes the modulational insta-
bility in its non-linear regime; it is periodic in space. Fig-
ure 1a demonstrates the growth and decay cycle of the ini-
tial weak periodic modulation. For lim

a→0.5
ψ(X,T ), the so-

lution describes the Peregrine soliton, also known as ra-
tional solution (rogue wave) corresponding to the low fre-
quency limit of the Akhmediev breather which in this case
is localized in both space and time dimensions, i.e. it ex-
hibits nontrivial behavior over a small region of (X,T );
see Fig. 1b. Most interestingly, a first experimental obser-
vation of Peregrine solitons in plasmas has been reported
(Bailung et al. 2011; Sharma and Bailung 2013), yet in re-
stricted conditions which are far from being thoroughly un-
derstood.

The Peregrine soliton/rogue wave reads (Kibler et al.
2012):

ψ(X,T )

= ψ0 lim
a→0.5

{[
1 + 2(1 − 2a) cosh[bPT] + ib sinh[bPT]√

2a cos(cζ ) − cosh[bT̃ ]
]

× exp(iPT)

}

= ψ0

[
−1 + 4(1 + 2iPT)

1 + 4X2 + 4(PT)2

]
exp(iPT). (18)

For a > 0.5 as in Fig. 1c, the solution describes the
Kuznetsov–Ma (KM) soliton where the parameters a and
b become imaginary such that the hyperbolic trigonometric
functions in solution (17) become ordinary circular func-
tions and vice-versa. The KM solution is periodic in time
only and decreases exponentially in space.
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Fig. 1 Comparison between the profiles of the breather solutions (a) Akhmediev breather, (b) Rogue waves (or Peregrine soliton), and
(c) Kuznetsov–Ma soliton. Here, k = β = 0.2 and α = 0.02

The scenario of generating rogue waves may be demon-
strated as, the instability of a moderate amplitude monochro-
matic wave leads first to the creation of a chain of solitons,
which merge due to inelastic interaction into one soliton of
large amplitude. This soliton sucks energy from neighboring
waves and becomes unstable and collapses, thus, producing
a rogue wave (Dyachenko and Zakharov 2005). The breather
solution (17) predicts the concentration of the ion-acoustic
wave energy into a small region due to the non-linear prop-
erties of the medium. This solution is able to concentrate a
significant amount of the ion-acoustic wave energy into a
small area in space.

It is interesting to investigate the effects of relevant physi-
cal parameters, namely, α, β , and q , of the positive hydrogen
and negative oxygen ions (H+ − O−

2 ), the positive hydro-
gen and negative hydrogen ions (H+ − H−), and the pos-
itive Argon and negative Flourine ions (Ar+ − F−) on the
generation and propagation of the ion-acoustic rogue waves
in unmagnetized nonthermal plasmas. The mass ratios of
these plasmas are, respectively, 32, 1, and 0.475. It is known
that the (H+ − H−) and (H+ − O−

2 ) plasmas occur in the
D- and F -regions of the Earth’s ionosphere, whereas the
(Ar+ − F−) plasma is used to study the ion-acoustic struc-

tures in laboratory experiment (Nakamura and Tsukabayashi
1984).

Let us assume that α or β are close to their critical values.
In this case we use Eq. (5) with Eqs. (13)–(15) to describe
the freak waves that can propagate in the present model.
Figure 2 shows how the maximum rogue wave amplitude
ψMax[≡ ψ(0,0) = √

9P/Q] depends on α, β , and q . It is
noteworthy from Figs. 2a and 2b that the critical values of αc

and βc , i.e. the values of α and β that make the amplitude of
the nonlinear phenomena such as rogue waves equals to zero
or make the coefficient of the quadratic nonlinear term of Eq.
(5) equals to zero; shrink with the enhancement of the non-
thermality β and the negative ions relative concentrations α.
In contrast, the critical value of αc shifts to higher values
with the increase of q as depicted in Fig. 2c. Moreover, in-
creasing q would lead to the reduction of the value of βc as
shown in Fig. 2d. One can find that for (α,β) < (αc,βc), the
rogue wave amplitude ψMax decreases with the increase of
α and β , but for (α,β) > (αc,βc), the rogue wave amplitude
ψMax has opposite behavior. Obviously, by increasing q , the
rogue wave amplitude is increased (see Figs. 2c and 2d).
Thus, the localized pulses of (H+ − O−

2 ) plasma are much
more spiky (taller amplitude) than (Ar+ − F−) plasma in-
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Fig. 2 Maximum amplitude of the rogue wave ψMax for the EKdV equation is plotted in the plane (a) k − α with different values of β , (b) k − β

with different values of α, (c) k − α with different values of q , (d) k − β with different values of q

dicating that q affects on the pulse profile (via, amplitude).
Furthermore, the electron nonthermality makes rogue pulses
taller, in comparison with the case of Maxwellian electrons
(see Fig. 2a). The behavior of higher or lower amplitude of
the rogue waves could be explained as follows. Increasing α

and β in the range (α,β) < (αc,βc) would lead to the reduc-
tion in the non-linearity and thus the rogue wave cannot suck
energy from the background waves, which makes the pulses
shorter. On the other side, in the range (α,β) > (αc,βc) and
with the increase of the mass ratio q , the rogue waves ampli-
tude increases due to the enhancement of the non-linearity
and the pulses suck more energy from the background.

It is important to note that the quadratic non-linear term
of Eq. (5) vanishes, i.e. A = 0 at the critical value of the
nonthermal parameter βc; which is given by

βc = 1 − (α + q)
√

3(α − 1)(3α − q2)
, (19)

and thus, Eq. (5) is reduced to the mKdV equation as

∂τΦ + CΦ2∂ζ Φ + B∂3
ζ Φ = 0. (20)

In this case, the coefficients of the dispersion and non-linear
terms of Eq. (13), respectively, are reduced to P = −6Bk
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Fig. 3 Maximum amplitude of the rogue wave ψMax of the mKdV
equation vs α and q

and Q = −Ck. The plane wave stability in this case de-
pends only on the sign of the coefficient of cubic non-linear
term C, i.e. the plane wave becomes stable if C < 0 and
unstable if C > 0, for any value of the carrier wavenum-
ber (see Eq. (16)). To see what happens when β is equal
to its critical value βc, we study numerically the behavior
of the ion-acoustic rogue wave amplitude and examine its
dependence on α as well as q . It is seen from Fig. 3 that
the rogue wave amplitude decreases with the increase of α

for the (Ar+ − F−) and (H+ − H−) plasmas, but for the
(H+ − O−

2 ) plasma, the rogue waves amplitude grows up
with the growth of α. Therefore, α and q play significant
roles in maximizing or minimizing the rogue wave energy.
Ruderman et al. (2008) and Ruderman (2010) found that the
rogue waves exist only for short periods of time and then
disappear. Also, they demonstrated that the main role of the
quadratic non-linearity is that it decelerates the wave evolu-
tion. As a result, the first rogue waves appearing in the case
of mixed non-linearity (Gardner equation) are larger than in
the case of purely cubic non-linearity (mKdV equation).

Moreover, if Eq. (5) is reduced to the KdV equation, i.e.
C = 0,

∂τΦ + AΦ∂ζ Φ + B∂3
ζ Φ = 0, (21)

the coefficients of the dispersion and non-linear terms of
the NLSE (13), respectively, become P = −6Bk and Q =
−A2/P . It is noted that P < 0 and 0 < Q; which means
that for KdV–NLSE, the plane wave is always stable and
does not support rogue waves generation.

4 Summary

Summing up, the effects of the nonthermal electrons on
the generation and propagation of ion-acoustic rogue waves
(IARWs) in a multifluid plasma consisting of positive–
negative ions have been investigated. The basic set of equa-
tions is reduced to Gardner equation using the reductive per-
turbation method. To examine the rogue wave generation in

the present model, a NLSE was derived from the KdV fam-
ily of equations (i.e. the KdV-, mKdV-, and EKdV-equation)
by using a standard perturbation method. The numerical in-
vestigations show that the IARWs need enough space and
special initial conditions to be generated. So, we defined
precisely the possible regions for the existence of the rogue
waves in the laboratory plasma (Ar+ − F−) as well as in
astrophysics plasmas (H+ − H−) and (H+ − O−

2 ). The
dependence of the rogue wave profile on the negative ion
concentration α, the nonthermality β , and mass ratio q is
numerically examined. Firstly, it is observed that the rogue
wave amplitude for the EKdV–NLSE is increased with the
enhancement of the mass ratio q , i.e. ψMax(Ar+ − F−) <

ψMax(H
+ − H−) < ψMax(H

+ − O−
2 ). This means that the

rogue wave can suck more energy from the background with
the increase of the mass ratio q . Moreover, it is found that for
(α,β) < (αc,βc), the rogue wave amplitude shrinks with the
increase of α and β but for (α,β) > (αc,βc), the rogue wave
amplitude grows with the enhancement of α and β . Sec-
ondly, for the mKdV–NLSE rogue solution, the rogue wave
amplitude of (Ar+ − F−) and (H+ − H−) plasmas shrinks
with the increase of α, but for the (H+ − O−

2 ) plasma,
the rogue wave amplitude grows up with the increase of α.
Finally, for KdV–NLSE, the plane wave is always stable
and does not support rogue waves. The present results can
contribute to the in-depth understanding of non-linear ex-
citations such as, the ion-acoustic rogue waves that may
appear in the laboratory (Sharma and Bailung 2013; Pal-
labi Pathak et al. 2016), Earth’s ionosphere (Nakamura and
Tsukabayashi 1984), and Titan’s atmosphere (El-Labany
et al. 2012).
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