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Abstract In this paper, we have obtained a new singular-
ity free charged anisotropic fluid solution of Einstein’s field
equations. The physical parameters as radial pressure, tan-
gential pressure, energy density, charge density, electric field
intensity, velocity of sound and red-shift are well behaved
everywhere inside the star. The obtained compact star mod-
els can represent the observational compact objects as PSR
1937+21 and PSR J1614–2230.

Keywords Einstein’s field equations · Radial pressure ·
Tangential pressure · Energy density · Anisotropic fluid ·
Compact star

1 Introduction

Since the inception of Einstein field equation, the research
workers are busy to obtain the compact star models such as
neutron star and strange star models. To avoid the gravita-
tional collapse, the presence of pressure with charge is more
useful in averting the gravitational collapse by virtue of out-
ward pressure with Columbian force. However the pressure
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anisotropy has also an important role to study of the com-
pact stellar objects. Ruderman (1972) investigated about the
realistic stellar models and conclude that the nuclear mat-
ter may be anisotropic at least very high density ranges of
order more than 1015 gm/cm3. Bowers and Liang (1974)
have given the equation of state for relativistic anisotropic
fluid sphere by generalizing the equation of hydrostatic
equilibrium which include the effects the anisotropy. Re-
cently Bhar and Ratanpal (2015) have obtained anisotropic
star of Matese-Whitman Mass Function. Also Pant et al.
(2016) obtained new charged anisotropic compact star mod-
els in isotropic coordinate system. In this connection Mau-
rya et al. (2015a) developed the general algorithm for all
spherically symmetric charged anisotropic solution. How-
ever the method for constructing the anisotropic factor by
help of metric potential is given by Maurya et al. (2015b,
2015c). Also Maurya et al. (2015d, 2015e) have given the
new approach to find the electromagnetic mass model in
embedding class one metric. In similar fashion many work-
ers have been obtained the anisotropic as well as charged
anisotropic fluid solutions in different approaches (Dev and
Gleiser 2002; Komathiraj and Maharaj 2007; Sunzu et al.
2014; Mak and Harko 2003; Mafa Takisa and Maharaj 2013,
Maurya and Gupta 2012, 2013, 2014; Feroze and Siddiqui
2011; Pant et al. 2014, 2015; Malaver 2014, 2015; Esculpi
et al. 2007; Herrera and Santos 1997; Herrera et al. 2004,
2008; Cosenza et al. 1981; Gokhroo and Mehra 1994; Mau-
rya et al. 2015f, 2016).

In the present article we have obtained the new model
for charged anisotropic solution. For this purpose we have

started the metric potential of the form eλ = 1+ar2

1−br2 . The
structure of the paper as follows: Sect. 2 contains the Ein-
stein field equations for charged anisotropic sphere. In
Sect. 3: we determine the mass function by considering the
electric intensity (E = q

r2 ) and metric potential eλ after that
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we obtained the metric function ν by taking physically valid
expression of radial pressure. However the anisotropy fac-
tor is determined by using the pressure isotropy condition.
In Sect. 4: we join the metric to Reissner-Nordstrom metric
at the surface of the star and obtained the arbitrary con-
stants. However the physical features of charged anisotropic
models are given in Sect. 5. Section 6 is containing the sta-
bility analysis, amount of the charge and surface red-shift
of the compact stars. We presented the maximum allowable
mass to radius ratio and validity of strange star candidates
in Sect. 7. At last the conclusion of the article is given in
Sect. 8.

2 The Einstein’s field equation for charged
anisotropic fluid distributions

Let us consider a static spherically symmetric metric for
charged anisotropic matter distribution as:

ds2 = eνdt2 − r2(dθ2 + sin2 θdφ2) − eλdr2 (1)

The Einstein-Maxwell field equations are given by

−κ
(
T i

j + Ei
j

) = Ri
j − 1

2
Rgi

j (2)

where κ = 8π is the Einstein constant with G = 1 = c in
relativistic geometrized unit. However G and c respectively
being the Newtonian gravitational constant and velocity of
photon in vacuum.

We assumed that the matter inside the star is to be lo-
cally anisotropic fluid. So the energy momentum tensor (T i

j )

and electromagnetic tensor (Ei
j ) are defined by (Dionysiou

1982):

T i
j = [

(pr − pt)θ
iθj − ptδ

i
j + (ρ + pr)v

ivj

]
(3)

Ei
j = 1

4π

(
−F imFjm + 1

4
δi
jF

mnFmn

)
(4)

where θi is the unit space like vector in the direction of
radial vector as θi = eλ(r)/2δi

1, vi is the four-velocity as
eλ(r)/2vi = δi

4, pr is the pressure in direction of θi (normal
pressure) and pt is the pressure orthogonal to θi (transversal
or tangential pressure) and ρ is the energy density.

For the spherically symmetric metric (1), the Einstein-
Maxwell field equations may be expressed as the following
system of ordinary differential equations (Dionysiou 1982):

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ + q2

r4
, (5)

v′

r
e−λ − (1 − e−λ)

r2
= κpr − q2

r4
, (6)

[
v′′

2
− λ′v′

4
+ v′2

4
+ v′ − λ′

2r

]
e−λ = κpt + q2

r4
, (7)

where the prime denotes differential with respect to ‘r’ and
E = 1

r2

∫ r

0 4πr2σeλ/2 = q

r2 . However σ is the charge den-
sity.

3 New charged anisotropic solution for compact
star

The mass function m(r) for electrically charged fluid sphere
can be defined in terms of metric function eλ(r) as:

m(r) = r

2

[
1 − e−λ(r) + r2E2] (8)

To determine the mass function m(r), we consider the metric
potential eλ(r) and electric intensity E of the form:

eλ = 1 + ar2

1 − br2
(9)

E2 = E0ar2

(1 + ar2)2
and

σ =
√

E0a

4π

[
(3 − ar2)

(1 + ar2)2

√
1 − br2

1 + ar2

] (10)

where a, b and E0 are positive constants.
We observe from Eq. (10), the electric intensity is zero

at the centre and monotonically increasing away from the
centre. However the charge density is singularity free at the
centre and monotonically decreasing. The behavior can be
seen in Fig. 1.

By plugging Eq. (9) and Eq. (10) into Eq. (8), we get:

m(r) = r

2

[
(a + b)r2(1 + ar2) + E0ar4

(1 + ar2)2

]
(11)

However from Eq. (5) and Eq. (6), corresponding the matter
density (ρ) and metric function (ν) are given as:

8πρ = −3b + a2r2 + 3a − abr2 + E0ar2

(1 + ar2)2
; (12)

ν′ = r

1 − br2

[
8πpr

(
1 + ar2) + (a + b) − E0ar2

1 + ar2

]
(13)

To integrate Eq. (13), we suppose the radial pressure of
the form:

8πpr = p0(1 − ar2)

(1 + ar2)2
(14)

where p0 is positive constant and the expression of pr is
physically valid as it is positive, finite and monotonically
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Fig. 1 Behavior of electric
intensity (E2) and charge
density (σ ) with respect to
radial coordinate r/R. We have
used the numerical values of the
parameters in this figure as:
(i) a = 0.00774, b = 0.0001,
p0 = 0.0028, E0 = 0.0001 for
PSR J1614–2230,
(ii) a = 0.007562, b = 0.00053,
p0 = 0.0035, E0 = 0.0008 for
PSR 1937+21

Fig. 2 Behavior of matter-energy density (ρ) with respect to radial
coordinate r/R. For purpose of plotting this graph, we have employed
the data set of values in this figure same as used in Fig. 1

decreasing function with increase of ‘r’. However it vanish
at r = 1√

a
, which gives the radius of the star.

After putting the value of pr in Eq. (13), we get:

ν′ = r[p0 − (p0 − E0)ar2]
(1 + ar2)(1 − br2)

+ r(a + b)

(1 − br2)
(15)

After integration, we get the metric function (ν) of the form:

ν = A ln
(
1 + ar2) + B ln

(
1 − br2) + lnC (16)

where

A = (2p0 + E0)

2(a + b)
, B = p0(a − b) + aE0 − (a + b)2

2b(a + b)

and C is arbitrary positive constants of integration.
Now the expression for anisotropy factor � = pt − pr

can be determined by using the pressure isotropy condition
as:

8π� = [(E0 − p0)ar2 + p0]
(1 + ar2)2

+ �1 + �2 + �3

(1 + ar2)3(1 − br2)
, (17)

where

�1 = −b
[
1 − br2 − B2br2 + B

(
2 − br2)],

Fig. 3 Behavior of anisotropic factor (�i = 8π�) with respect to ra-
dial coordinate r/R. For purpose of plotting this graph, we have em-
ployed the data set of values in this figure same as used in Figs. 1 and 2

�2 = a2r2[−1 − b(−1 + B)r2 + b2B2r2 + A2(1 − br2)2

+ A
(
1 − br2)(−1 − 2Bbr2)],

�3 = a
[−1 − 3Bbr2 + b2(1 + B + 2B2)r4

+ A
(
1 − br2)(2 − 3br2 − 2Bbr2)].

4 Matching conditions

We join smoothly the interior of metric (1) to an exterior
Reissner-Nordstrom metric:

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 − r2(dθ2 + sin2 θdφ2)

−
(

1 − 2M

r
+ Q2

r2

)−1

dr2 (18)

at the surface of spheres (r = R). This requires the conti-
nuity of the components gij at r = R. However the require-
ments of matching condition for metric (1) that the above
system of equations is to be solved subject to the boundary
condition that radial pressure pr = 0 at r = R, whose mass
is same as m(r = R) = M (Misner and Sharp 1964).
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Fig. 4 Behavior of metric
potentials eλ and eν for PSR
J1614–2030 (left panel) and
PSR 1937+21 (right panel)
with respect to radial coordinate
r/R. We have used the
numerical values of the
parameters in this figure as:
(i) a = 0.00774, b = 0.0001,
p0 = 0.0028, E0 = 0.0001 for
PSR J1614–2230,
(ii) a = 0.007562, b = 0.00053,
p0 = 0.0035, E0 = 0.0008 for
PSR 1937+21

Fig. 5 Behavior of radial and
tangential pressures pr (left
panel) and pt (right panel) with
respect to radial coordinate
r = R. For purpose of plotting
this graph, we have employed
the data set of values in this
figure same as used in Fig. 4

These conditions are as follows:

e−λ(R) = eν(R) = 1 − 2M

R
+ Q2

R2
(19)

q(R) = Q (20)

pr = 0 at r = R (21)

where M and Q are called the total mass and charge inside
the fluid sphere respectively. The conditions (19) and (21)
gives respectively:

C = (1 − bR2)1−B

(1 + aR2)1+A
(22)

and

R = 1√
a

(23)

5 Physical features of the charged anisotropic
models

(i) For physical acceptable charged anisotropic models, the
metric potentials eλ(r) and eν(r)should have non-zero posi-
tive values in the range 0 ≤ r ≤ R and free from singularity
at r = 0. At the origin Eqs. (9) and (16) provides eλ(0) = 1

and eν(0) = C. So it is clear that metric potentials are posi-
tive and finite at the centre of star (Fig. 4).

(ii) The radial pressure (pr ), tangential pressure (pt ), en-
ergy density (ρ) should be finite at the centre r = 0 and
monotonically decreasing throughout inside the star. These
behaviors can be seen in Figs. 2 and 5.

(iii) Inside the fluid sphere, the speed of sound should
be less than the speed of light, i.e., 0 ≤ Vr = √

dpr/dρ < 1
and 0 ≤ Vt = √

dpt/dρ < 1. However for well behaved na-
ture of the solution, both velocities should be monotonically
decreasing away from the centre to boundary of the sphere
which can be observed from Fig. 6.

6 Stability analysis, electric charge, charge density
and red-shift

6.1 Stability analysis

To verify the stability of our charged anisotropic models, we
plot the square of radial speed of sound (V 2

r ) and transverse
speed of sound (V 2

t ) in Fig. 7. As we note from Fig. 7 that
both of these parameters satisfy the inequalities 0 ≤ V 2

r < 1
and 0 ≤ V 2

t < 1 everywhere inside the star.
Now to determine the charged anisotropic matter distri-

bution is stable or not, for this we will use Herrera (1992),
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Fig. 6 Behavior of sound speed
Vr (left panel) and Vt (right
panel) with respect to radial
coordinate r = R. We have used
the numerical values of the
parameters in this figure as:
(i) a = 0.00774, b = 0.0001,
p0 = 0.0028, E0 = 0.0001 for
PSR J1614–2230,
(ii) a = 0.007562, b = 0.00053,
p0 = 0.0035, E0 = 0.0008 for
PSR 1937+21

Fig. 7 Behavior of the square
of the sound speed V 2

r and V 2
t

with respect to radial coordinate
r/R. For purpose of plotting this
graph, we have employed the
data set of values in this figure
same as used in Fig. 6

Fig. 8 Behavior of the
difference of sound speeds
V 2

r –V 2
t and V 2

t –V 2
r with respect

to radial coordinate r/R. For
purpose of plotting this graph,
we have employed the data set
of values in this figure same as
used in Figs. 6 and 7

cracking (or overturning) concept, which states that the po-
tentially stable region is that one where radial speed of sound
is greater than the transverse speed of sound. This implies
that there is no change in sign of V 2

r –V 2
t and V 2

t –V 2
r . This

can be seen from Fig. 8 that there is no change in sign of
above both conditions. So, it is clear that our models are
stable.

6.2 Electric charge and charge density

We observed that the electric charge on the boundary, in the
unit of Coulomb, is 7.5317×1019 Coulomb for PSR J1664–

2230 and 9.8951 × 1019 Coulomb for PSR 1937 + 21 and
at the centre both are as usual zero. In Table 1 we have
put the data for charge q in the relativistic unit km. How-
ever, to convert these values in Coulomb one has to multi-
ply every value by a factor 1.1659 × 1020. The graphical
plot is shown in Fig. 1 where charge profile is such that
starting from a minimum and it acquires maximum value
at the boundary. However the charge density is maximum
at center and monotonically decreasing outward. The plot
for charge density is given in Fig. 1 and numerical values in
Table 1.
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Table 1 Electric charge (q) and
charge density (σ ) for different
anisotropic stars

r/R Electric charge (q) Charge density (σ )

PSR J1614–2230 PSR 1937+21 PSR J1614–2230 PSR 1937+21

0.0 0.0000 0.0000 2.1014 × 10−4 1.8578 × 10−4

0.1 0.1279 0.1171 2.0428 × 10−4 1.8055 × 10−4

0.2 0.2485 0.2275 1.8792 × 10−4 1.6595 × 10−4

0.3 0.3556 0.3255 1.6423 × 10−4 1.4482 × 10−4

0.4 0.4455 0.4079 1.3712 × 10−4 1.2067 × 10−4

0.5 0.5168 0.4731 1.1009 × 10−5 9.6626 × 10−5

0.6 0.5700 0.5218 8.5531 × 10−5 7.4831 × 10−5

0.7 0.6070 0.5557 6.4671 × 10−5 5.6363 × 10−5

0.8 0.6302 0.5770 4.7795 × 10−5 4.1468 × 10−5

0.9 0.6424 0.5881 3.4621 × 10−5 2.9883 × 10−5

1.0 0.6460 0.5914 2.4604 × 10−5 2.1113 × 10−5

Fig. 9 Behavior of red-shift of the charged anisotropic model with
respect to radial coordinate r/R. The date values used in this fig-
ure as: (i) a = 0.00774, b = 0.0001, p0 = 0.0028, E0 = 0.0001
for PSR J1614–2230, (ii) a = 0.007562, b = 0.00053, p0 = 0.0035,
E0 = 0.0008 for PSR 1937+21

6.3 Surface red-shift

The effective gravitational mass in terms of the energy den-
sity can be written as

Meff = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = 1

2
R

[
1 − e−λ(R)

]
(24)

where e−λ(R) is given by Eq. (9).
Therefore the compactness of the star can be defined as:

u = Meff

R
= 1

2

(
1 − e−λ(R)

)
(25)

Now we define the surface red-shift for charged compact
star corresponding to the above compactness factor (u) as
follows:

Zs = [1 − 2u]−1/2 − 1 = eλ(R)/2 − 1 (26)

We plot Fig. 9 for surface red-shift and observe that it
is decreasing away from the centre. The maximum surface
red-shift attains at the centre and minimum at boundary. The
corresponding values are: (i) at centre: Z0 = 0.9003 for PSR
J164–2230 and Z0 = 1.0239 for PSR 1937+21, (ii) at sur-
face: ZR = 0.4234 for PSR J164–2230 and ZR = 0.4664 for
PSR 1937+21. In this connection, in absence of the cosmo-
logical constant the surface red-shift has constraint as Z ≤ 2
(Buchdahl 1959; Straumann 1984; Bohmer and Harko 2006)
for the isotropic case. However for an anisotropic star in the
presence of a cosmological constant the constraint on sur-
face redshift is Z ≤ 5 (Bohmer and Harko 2006) whereas
Ivanov (2002) has put the bound Z ≤ 5.211. Based on
the above discussion we therefore conclude that for an
anisotropic star without cosmological constant the values for
our models Z = 0.9003 and Z = 1.0239 are in good agree-
ment.

7 Mass-radius ratio and validity with strange star
candidates

7.1 Maximum allowable mass to radius ratio

The maximum mass for compact star cannot be arbitrary
large. Buchdahl (1959) has given an absolute constraint of
the maximally allowable mass-to-radius ratio (M/R) for
isotropic fluid spheres of the form 2M/R ≤ 8/9 (in the unit,
c = G = 1), which states that, for a given radius a static
isotropic fluid sphere cannot be arbitrarily massive. How-
ever Bohmer and Harko (2007) provided the lower bound
for the mass-radius ratio for a compact object with charge,
Q (< M), as:

3Q2

2R2

(1 + Q2

18R2 )

(1 + Q2

12R2 )
≤ 2M

R
(27)
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Table 2 Values of the model parameters for different charged anisotropic compact stars

Compact star candidate M(M�) R (km) a b p0 E0 M/R

PSR J1614–2230 1.9663 11.3665 0.007740 0.00010 0.0028 0.00010 0.2548

PSR 1937+21 2.0985 11.4995 0.007562 0.00053 0.0035 0.00008 0.2688

Table 3 Energy densities and central pressure for different charged anisotropic star candidates for the above parameter values of Table 2

Compact star candidate Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2)

PSR J1614–2230 1.2630 × 1015 4.1966 × 1014 1.3535 × 1035

PSR 1937+21 1.3036 × 1015 4.3346 × 1015 1.6919 × 1035

Also, Andreasson (2009) has generalized the mass-radius
ratio for charged compact star and prove that upper bound
of the mass satisfy the inequality:

√
M ≤

√
R

3
+

√
R

9
+ Q2

3R
(28)

After combining both of above inequalities, we get:

3Q2

4R2

(1 + Q2

18R2 )

(1 + Q2

12R2 )
≤ M

R
≤ 1

R

(√
R

3
+

√
R

9
+ Q2

3R

)2

(29)

7.2 Validity with strange star candidates

As proposed Tables 2 and 3, it is clear that the mass
and radius are exactly corresponding to the compact stars
RXJ1856–37 and PSR 1937 + 21. The details of the tables
are as follows: we consider the mass and radius of the above
mentioned stars and determine the data for the model pa-
rameters. In the next step we have calculated the data values
for different physical parameters like central density, surface
density and central pressure, of those compact stars. We can
observe that these physical data sets are in good agreement
with the available observational data.

8 Conclusions

In the present article, we have proposed new model for
charged anisotropic compact stars PSR 1937+21 and PSR
J1664–2230. For this purpose we started with the metric po-

tential eλ = 1+ar2

1−br2 and electric intensity E = r
√

E0a

(1+ar2)
. After

that we determine the mass function m(r). It is clear from
Eq. (18), the mass is zero at the centre and free from singu-
larity everywhere inside the star. Now our next aim to find
the metric potential ‘ν’. We suppose the radial pressure pr

of the form pr = p0(1−ar2)

8π(1+ar2)2 which is finite at the centre and

zero at r = 1√
a

. The obtained metric function ‘ν’ is given

by Eq. (16). However the pressure anisotropy factor ‘�’ has
been determined by using the pressure isotropy condition.
This ‘�’ is also zero at centre and monotonic increasing
with increase of ‘r’ (Fig. 3). In Sect. 4, we obtained arbi-
trary constants by using the boundary conditions.

The physical features of the models as follows:

(i) The behavior of metric potentials are given by Fig. 4,
from this figure it is clear that metric potentials are free
from singularity and finite everywhere inside the star.

(ii) The plot for electric charge (E) and energy density (ρ)
are shown in Figs. 1 and 2 respectively. From these fig-
ures, we observe that the electric charge is zero at cen-
tre and monotonically increasing away from the centre.
However the energy density is monotonically decreas-
ing away from the centre.

(iii) Inside the fluid sphere, the speed of sound is less the
speed of light, i.e. our charged anisotropic models are
well behaved (the plot for this feature can be seen from
Fig. 6).

(iv) Section 6 contains the stability analysis, electric charge
and red-shift of the compact star models. To verify the
stability of the models we determine the square of ra-
dial and tangential velocity of sound (Fig. 7). From
Fig. 7, we note that it is lies between 0 and 1. After
that we used Herrera (1992) cracking concept, for this
purpose we calculate the difference V 2

r –V 2
t and V 2

t –
V 2

r . As we can see from Fig. 8, there is no change in
sign of V 2

r –V 2
t and V 2

t –V 2
r . So our models are stable.

However the amount of charge of the compact star PSR
1937+21 and PSR J1664–2230 are shown in Table 1.

(v) We plotted the behavior of red shift in Fig. 9, which
shows that it is maximum at centre and monotonic de-
creasing with increase of radius ‘r’. The Maximum al-
lowable mass–radius ratio for PSR 1937+21 and PSR
J1664–2230 are given in Table 2.

Where the various symbols used in the figures and ta-
bles stand for the following physical entities Z0 = red
shift at the centre, ZR = red shift at the surface, Solar
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mass M� = 1.475 km, G = 6.673 × 10−8 cm3/gs2, c =
2.997 × 1010 cm/s.
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