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Abstract We present a detailed investigation of the stability
of anisotropic compact star models by introducing Matese
and Whitman (Phys. Rev. D 11:1270, 1980) solution in gen-
eral relativity. We have particularly looked into the detailed
investigation of the measurements of basic physical parame-
ters such as radial pressure, tangential pressure, energy den-
sity, red shift, sound velocity, masses and radii are affected
by unknown effects such as loss, accretion and diffusion
of mass. Those give insight into the characteristics of the
compact astrophysical object with anisotropic matter distri-
bution as well as the physical reality. The results obtained
for the physical feature of compact stars such as, Her. X-1,
RXJ 1856-37, SAX J1808.4-3658(SS2) and SAX J1808.4-
3658(SS1) are compared to the recently observed massive
compact object.
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1 Introduction

The spectacular discoveries made in the past few decades
shown that Relativity is a necessary feature for describing
astrophysical phenomena involving compact objects in con-
temporary cosmology and astrophysics. Recent observations
have shown that some of the phenomena are core collapse
supernovae, X-ray binaries, pulsars, coalescing neutron
stars, formation of black holes, micro-quasars, active galac-
tic nuclei, superluminal jets and gamma-ray bursts. A num-
ber of promising developments of astronomical instrumen-
tation in the last decade such as gravitational wave detec-
tors LIGO, LISA, VIRGO and Geo-600 currently under
mission will improve significant detection of gravitational
waves emitted from compact stellar objects such as compact
astrophysical objects and black holes. The Einstein equa-
tions for the structure of space-time theory is essential in
describing phenomena such as black holes, compact objects,
supernovae, and the formation of structure in the universe.

In general, gravitational self-collapsing body cannot be
properly explained by any post-Newtonian approximation
because their character is basically controlled by strong
gravity. These include the imploding cores of supernovae,
hybrid compact objects, the quasinormal-mode vibrations
of neutron stars and black holes and formation structure in
the universe. Phenomena such as these must be analyzed
using different techniques. Einstein numerical models are
a useful framework for analyzing astrophysical phenom-
ena around compact objects such as black holes and neu-
tron stars. Compact stars with a core consisting of quark
matter are dubbed hybrid stars. The physical basis for un-
derstanding hybrid stars containing both the hadrons and
quarks has been described with great clarity and a great de-
tail by many authors (Glendenning 1997; Steiner et al. 2000;
Hanauske et al. 2001; Schaffner-Bielich et al. 2002; Burgio
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et al. 2002). Compact stars which are entirely made a mix-
ture of free Fermi gases of u, d , s quarks, besides may be a
small layer of a crust of nuclei, are so called strange stars
which have been usually modeled by using the MIT bag
model and Nambu–Jona–Lasinio (NJL) model. In both the
hadronic and quark phases their contributions to energy den-
sity and pressure are given by the well-known formulae of
ideal Fermi gas. The system is supposed to be an uncharged
mixture nuclear matter containing nucleons, leptons, and hy-
perons.

The physical properties of matter at ultrahigh densities
are highly uncertain and the modes derived for the equation
of state of such matter differs considerably with respect to
the function dependence of pressure and density. The frame
work to the study nature of ultra-high nuclear density is
made by heavy-ion collision experiments which provide a
unique way to compress and heat up nuclear matter, and to
prove the existence of an exotic state of ultra-compressed
nuclear matter, called quark-gluon plasma, which is de-
scribed by the theory of strong nuclear interactions. They
recreate, within a tiny region of space, conditions similar to
those under which matter existed in the early universe, frac-
tions of a second after the big bang. Astrophysical compact
objects as the neutron stars and black holes may conceal the
quark-gluon nuggets in their dense centers.

The fabric of space-time of compact star may also change
depending on the inhomogeneity of matter distribution and
its evolution and development of anisotropy. At interior of
compact star two different kinds of pressure exists i.e., ra-
dial and tangential pressure. In order to understand the dy-
namics and evolution of such compact object system, as-
trophysicists usually resort to mathematical models which
incorporate anisotropic matter distribution as a key building
block.

The possible causes of anisotropy may be due to phase
transitions in dense nuclear matter such as pion, kaon and
hyperon condensation, super fluidity and quark matter. Ka-
plan and Nelson (1986) studied the Kaon condensation in
dense matter, and have been discussed in many recent pub-
lications (Brown et al. 1994; Waas et al. 1997).

The objective of present study the ways of incorpo-
rating anisotropy in stellar matter. Rather, we are inter-
ested in constructing models for relativistic anisotropic fluid
spheres of Mattese and Whiteman solution. Consenza et al.
(1981), Bayin (1982), Krori et al. (1984), Maharaj and
Maarten (1989) and Gokhroo and Mehra (1993), Maurya
and Gupta (2012a), Maurya et al. (2015a, 2015b, 2015c,
2015d, 2016), Malaver (2014, 2015a, 2015b), Pant et al.
(2015) have obtained different exact solutions of the Ein-
stein field equations describing the interior gravitational
fields of anisotropic fluid spheres. This solution can be used
as models of massive compact objects.

Motivated by the earlier work of Maurya and Gupta
(2012b), in this present paper we have developed a new

anisotropic strange star model by using the Matese and
Whitman (1980) interior solution. The paper has been or-
ganized as follows: In Sect. 2, we mentioned the Einstein’s
field equation for anisotropic star and Matese and White-
man transformations. However the solutions for anisotropic
compact star models and measure of anisotropy factor are
given in Sect. 3. In Sect. 4, we determined the arbitrary con-
stants by joining our metric with Schwarzschild’s metric at
the boundary of the star. The physical features of the models
like regularity at center, generalized TOV equation, energy
conditions, speed of sound and stability analysis of the star
are given in Sect. 5. The effective mass to radius ratio and
surface red-shift are present in Sect. 5.5. At last, we have
written the conclusion of the paper in Sect. 6.

2 Field equations and transformations

2.1 Einstein’s field equation

We assume the static spherically symmetric metric to de-
scribe the charged fluid spheres as

ds2 = −eλdr2 − r2(dθ2 + sin2 θdφ2) + eνdt2 (1)

where the functions λ(r) and ν(r) satisfy the Einstein–
Maxwell equations

−κGi
j = Ri

j − 1

2
Rδi

j = −κ
(
T i

j + Ei
j

)
(2)

where

T i
j = (

c2ρ + p
)
vivj − pδi

j , (3)

Ei
j = 1

4π

(
−F imFjm + 1

4
δi
jFmnF

mn

)
(4)

with κ = 8πG

c4 while ρ,p, vi,Fij denote energy density,
fluid pressure, flow vector and skew-symmetric electro-
magnetic field tensor respectively. Fij further satisfies the
Maxwell equations

Fik,j + Fkj,i + Fji.k = 0 (5)

In view of the metric (1), the field equation (2) gives (Diony-
siou 1982)

v′

r
e−λ − (1 − e−λ)

r2
= κp − q2

r4
(6)

[
v′′

2
− λ′v′

4
+ v′2

4
+ v′ − λ′

2r

]
e−λ = κp + q2

r4
(7)

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ + q2

r4
(8)

where, prime denotes the differentiation with respect to r .
On substituting e−λ = Z, eν = y2 and x = r2 in (6)–(8),

we get
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κc2ρ = 1 − Z

x
− 2

dZ

dx
(9)

κpr = 4Z

y

dy

dx
− 1 − Z

x
(10)

κpt = 4xZ

y

d2y

dx2
+ 2

x

y

dZ

dx
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dx
+ 4

Z

y
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dx
+ dZ
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(11)

Pressure isotropy condition gives:


 = (pt − pr)

= 1

κ

[
4xZ

y

d2y

dx2
+ 2

x

y

dZ

dx

dy

dx
+ dZ

dx
+ 1 − Z

x

]
(12)

2.2 Matese and Whitman (1980) transformation

Let us introduce the Matese and Whitman (1980) transfor-
mation as:

y = √
1 + axY (13)

The Eq. (12) reduces as:

d2Y

dx2
+ f (x)

dY

dx
+ g(x)Y = 0; (14)

where,

f (x) = 1

2

d

dx
log

[
(1 + ax)2Z|g|] (15)

g(x) =
[

(1 + 2ax)

2xZ(1 + ax)

dZ

dx
+ 1

4xZ

(
1 − Z

x
− κ


)

− a2

4(1 + ax)2

]
. (16)

Now introduce new independent variable

t =
∫

|g|1/2dx (17)

Then Eq. (8) read as:

d2Y

dt2
+ 1

2

d

dt
log

[
(1 + ax)2Z|g|]dY

dt
+ g

|g|Y = 0 (18)

For solving the Eq. (18) we put

(1 + ax)2Zg = K (19)

By using the Eq. (17) and (19), we get

t = |K|1/2
∫

1

(1 + ax)
√

Z
dx (20)

By using Eqs. (19), the Eq. (16) can be read as:

dZ

dx
− 1 + 2ax + 2a2x2

x(1 + ax)(1 + 2ax)
Z

= 4x(1 + ax)

(1 + 2ax)

[
K

(1 + ax)2
− 1

4x2
+ k


4x

]
. (21)

3 New solutions for anisotropic compact star
models

After solving the Eq. (21), we get

Z = x(1 + ax)

(1 + 2ax)

∫ (
4K

(1 + ax)2
− 1

x2
+ k


x

)
dx (22)

In order to integrate Eq. (22), we suppose the anisotropy
factor of the form


 = βa2x

k(1 + ax)2
, where β ≥ 0 (23)

It is observed from Fig. 1, the pressure anisotropy 
 is
regular and positive inside the star. However it is monotoni-
cally increasing with fractional radius r/R.

Using Eq. (22) and Eq. (23), we get:

Z = [a(1 + ax) − 4Kx − βa2x]
a(1 + 2ax)

; (24)

There are three cases: (i) K > 0, (ii) K = 0, (iii) K < 0.

Case 1: K is positive. Take K = a2

4 .
The Eqs. (24), (18) and (20) give respectively

Z = 1 − βax

1 + 2ax
(25)

y = √
(1 + ax)(A sin t + B cos t) (26)

t = 1√
2β

sin−1
[
β(1 + 4ax) − 2

(2 + β)

]

− 1

2
√

1 + β
cos−1

[−β − (2 + 3β)ax

(1 + ax)(2 + β)

]
; (27)

where A and B are arbitrary constants of integration.
The expressions for pressure and energy density can be

read as

Fig. 1 Variation of anisotropy factor (
i = 

a

) with respect to
fractional radius (r/R) for case-1. For the purpose of plotting this
graph, we have employed the data set of values as: (i) k = 0.90,
a = 4.7385 × 10−13 for Her X-1, (ii) k = 0.60, a = 7.2057 × 10−13

for RXJ 1856-37, (iii) k = 0.99, a = 8.7354 × 10−13 for SAX
J1808.4-3658(SS2), (iv) k = 0.953, a = 6.8093 × 10−13 SAX
J1808.4-3658(SS1)
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pr = a

8π

[
− (β + 2ax + 3βax)

(1 + 3ax + 2a2x2)

+ 2

(1 + ax)

√
(1 − βax)

(1 + 2ax)

(A cos t − B sin t)

(A sin t + B cos t)

]
, (28)

ρ = a

8π

[
(2 + β)(3 + 2ax)

(1 + 2ax)2

]
, (29)

Case 2: K = 0.
The Eqs. (24), (18) and (20) give respectively

Z = 1 + ax − βax

1 + 2ax
, (30)

y = √
(1 + ax)

[
CF(x) + D

]
(31)

F(x) =
√

2

(1 − β)
log

[
ax + (3 − β)

4(1 − β)
+ f1(x)√

2(1 − β)

]

+ 1√
β

sin−1
[

1 − β + (1 − 3β)ax

(1 + ax)f2(x)

]
; (32)

where, C and D are arbitrary constants of integrations and

f1(x) =
√

1 + (3 − β)ax + 2(1 − β)a2x2,

f2(x) =
√

1 + 2β + 17β2.

The following expressions for pressure and energy density
as

pr = a

8π

[
1 − β + ax − 3βax

(1 + 3ax + 2a2x2)

+ 4C
√

1 + (1 − α)ax

[CF(x) + D](1 + ax)
√

1 + 2ax

]
; (33)

ρ = a

8π

[
(1 + β)(3 + 2ax)

(1 + 2ax)2

]
. (34)

Case 3: K < 0.
The relation between the pressure and the energy den-

sity depends on the microscopic properties of matter and the
equation of state of the star. This case gives the unphysical
solution i.e. pressure or density is negative.

4 Matching conditions

Besides the above, the anisotropic fluid solution is expected
to join smoothly with Schwarzschild exterior solution:

ds2 =
(

1 − 2m

r

)
dt2 − r2(dθ2 + sin2 θdφ2)

−
(

1 − 2m

r

)−1

dr2, (35)

which requires the continuity of eλ and eν across the bound-
ary r = R (Misner and Sharp 1964).

Einstein’s field equation (32) yields the following set of
differential equations for the functions v(R) and λ(R):

e−λ(R) = 1 − 2M

R
, (36)

eν(R) = 1 − 2M

R
= y2

r=R (37)

pr(r = R) = 0. (38)

The conditions (36) and (38) give respectively the arbitrary
conditions as:
Case 1:

B =
√

(1 − βaX)

(A
B

sinT + cosT )
√

(1 + aX)(1 + 2aX)
(39)

A

B
= 2 tanT

√
(1 + 2aX)(1 − βaX) + (β + 2aX + 3βaX)

2
√

(1 + 2aX)(1 − βaX) − tanT (β + 2aX + 3βaX)
,

(40)

where,

T = 1√
2β

sin−1
[
β(1 + 4aX) − 2
√

4 + 6β − β2

]

− 1

2
√

1 + β
cos−1

[ −2aX − β(1 + 3aX)

(1 + aX)
√

4 + 4β + 9β2

]

Case 2:

D =
√

1 + aX − βaX

1 + 3aX + 2a2X2

[
1 + C

D
F(X)

]−1

, (41)

C

D
= 3βaX − aX + β − 1

4
√

(1 + 2aX)(1 − βaX) + F(X)(1 − β + aX − 3βaX)
,

(42)

where,

F(X) =
√

2

(1 − β)
log

[
aX + (3 − β)

4(1 − β)
+ f1(X)√

2(1 − β)

]

+ 1√
β

sin−1
[

1 − β + (1 − 3β)aX

(1 + aX)f2(β)

]
; (43)

with f1(X) = √
1 + (3 − β)aX + 2(1 − β)a2X2, f2(β) =√

1 + 2β + 17β2.

5 Physical features of anisotropic models

5.1 Regularity conditions

(A) The metric potentials eλ(r) and eν(r)must be positive and
finite at the center.

Case (i): From Eqs. (25) and (26), we obtain that
eλ(0) = 1 and eν(0) = [A sin(tr=0) + B cos(tr=0)]2.

Case (ii): From Eqs. (30) and (31), we obtain that
eλ(0) = 1 and eν(0) = [CF(0) + D]2.

We observe from above these cases that the metric poten-
tials are positive and finite at the center. The behavior can
see in Fig. 2.

(B) Density at center:
Case (i): ρ0 = 3a(2+β)

8π
, Case (ii): ρ0 = 3a(1+β)

8π
. Since β

is positive, this implies that a is also positive.
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Fig. 2 Variation of metric
potentials eλ and eν with respect
to fractional radius (r/R) for
case-1. The data values used in
this figure is same as of Fig. 1

Fig. 3 Variation of radial
pressure (left panel) and
transverse pressure (right panel)
with respect to fractional radius
(r/R) for case-1. The data
values used in this figure is
same as of Figs. 1 and 2

5.2 Generalized Tolman–Oppenheimer–Volkoff (TOV)
equation

The general-relativistic hydrostatic equations were derived
and applied to models of neutron stars already in 1939 by
Tolman (1939), Oppenheimer and Volkoff (1939). These
equations are derived from Einstein’s field equation under
the assumptions that the metric is static and isotropic, and
that matter is a perfect fluid. The latter assumption is ex-
pected to be a good approximation for the extremely dense
interior of a static compact star, because the strong gravita-
tional force is balanced by a huge pressure and rigid-body
forces have a negligible effect on the structure. In combina-
tion with the expression for the mass and a microscopic the-
ory for the relation between the pressure and the energy den-
sity, this equation gives the equilibrium solution for the pres-
sure in a compact star. These equations are the generaliza-
tions of the Newtonian hydrostatic equations for anisotropic
fluid distribution is given by

MG(ρ + pr)

r2
e

λ−ν
2 + dpr

dr
+ 2

r
(pr − pt ) = 0. (44)

We can write the above TOV equation as Varela et al. (2010):

−1

2
v′(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) = 0; (45)

where MG is the effective gravitational mass given by

MG(r) = 1

2
r2e

ν−λ
2 ν′ (46)

The Eq. (44) describes the equilibrium condition for an
anisotropic fluid distribution subject to gravitational force
(Fg), hydrostatic force (Fh), anisotropic stress (Fa) such
that:

Fg + Fh + Fa = 0, (47)

where,

Fg = −1

2
v′(ρ + pr), (48)

Fh = −dpr

dr
, (49)

Fa = 2

r
(pt − pr). (50)

The explicit form these forces can be expressed as:
Case (1)

Fg = − a2r

16π(1 + ax)

[
1 +

√
1 + 2ax

1 − βax
F1(t)

]

×
[

F2(x)

(1 + ax)(1 + 2ax)2

+ 2

(1 + ax)

√
(1 − βax)

(1 + 2ax)
F1(t)

]
(51)

Fh = −dpr

dr
; (52)

Fa = βa2r

4π(1 + ax)2
(53)
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where, F1(t) = A cos t−B sin t
A sin t+B cos t

, F2(x) = 6 + 8ax − 3βax(1 +
2ax) + β(2 + 3ax + 2a2x2).

We plotted the graph for generalized Tolman–Openhei-
mer–Volkoff equations in Fig. 5. Form this figure, we ob-
serve that the system is counter balance under the differ-
ent forces, i.e. the gravitational force, hydrostatic force and
anisotropic stress. Also the system attains a static equi-
librium. However hydrostatic force is dominated by grav-
itational force and it is balanced by the joint action of
anisotropic stress and hydrostatic force. As we can see from
Fig. 5, the anisotropic stress has a less role to the action

Fig. 4 Variation of energy density with respect to fractional radius
(r/R) for case-1. For the purpose of plotting this graph, we have em-
ployed the data set of values as: (i) k = 0.90, a = 4.7385 × 10−13

for Her X-1, (ii) k = 0.60, a = 7.2057 × 10−13 for RXJ 1856-37,
(iii) k = 0.99, a = 8.7354 × 10−13 for SAX J1808.4-3658(SS2),
(iv) k = 0.953, a = 6.8093 × 10−13 SAX J1808.4-3658(SS1)

of equilibrium condition. These physical features represents
that our compact star models are stable.

Case (2):

Fg = − a2r

16π(1 + ax)

[
1 + 2C

[CF(x) + D]F5(x)

]

×
[
F3(x)

F4(x)
+ 4CF5(x)

[CF(x) + D](1 + ax)
√

1 + 2ax

]
(54)

Fh = −dpr

dr
; (55)

Fa = βa2r

4π(1 + ax)2
; (56)

where, F3(x) = 4(1 + ax)2 + β(2 − 4a2x2), F4(x) = (1 +
ax)(1 + 2ax)2, F5(x) = √

1 + (1 − β)ax.

5.3 Energy conditions

For physically valid models, the following energy conditions
must be satisfied at each point inside the anisotropic stars:

Null energy condition (NEC): ρ ≥ 0
Weak energy condition (WECr ): ρ − pr ≥ 0
Weak energy condition (WECt ): ρ − pt ≥ 0
Strong energy condition (SEC): ρ − pr − 2pt ≥ 0.

5.4 Speed of sound and stability analysis of the models

In addition to the positivity of density and pressures profiles,
we shall pay special and particular attention to the condi-
tions bounding sound speeds (radial and tangential) within

Fig. 5 Variation of different
forces with respect to fractional
radius (r/R). (i) RXJ 1856-37
(top left), (ii) Her X-1 (top
right), (iii) SAX-1 (bottom left),
(iv) SAX-2 (bottom right) for
case-1. The data set of values a

and k are used in this figure
same as in Fig. 4
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Fig. 6 Variation of energy
conditions with respect to
fractional radius (r/R) for
case-1. The data set of values a

and k are used in this figure
same as in Figs. 4 and 5

Fig. 7 Variation of radial speed of sound (left panel) and transverse
speed of sound (right panel) with respect to fractional radius (r/R).
For the purpose of plotting this graph, we have employed the data
set of values as: (i) k = 0.90, a = 4.7385 × 10−13 for Her X-1,

(ii) k = 0.60, a = 7.2057 × 10−13 for RXJ 1856-37, (iii) k = 0.99,
a = 8.7354 × 10−13 for SAX J1808.4-3658(SS2), (iv) k = 0.953,
a = 6.8093 × 10−13 SAX J1808.4-3658(SS1)

the matter configuration. The speed of sound of the compact
star should be less that speed of light i.e. dpi/dρ should lies
between 0 and 1. From Fig. 7, it is clear that speed of sound
is monotonically decreasing and less than speed of light.

The stability of the models with internal pressure aniso-
tropy was also probed by Herrera (1992) and collaborators.
They have shown that, for particular dependent perturba-
tions, potentially stable regions within anisotropic matter
configurations could occur when there is no change in sign
of V 2

t −V 2
r and V 2

r −V 2
t i.e. radial velocity of sound should

always greater than the tangential velocity. It is also well
understood that stability of particular anisotropic configu-
rations is independent perturbation. We can observe from
Fig. 8 that our models are stable.

Fig. 8 Variation of absolute value of square velocity with respect to
fractional radius (r/R) for case-1. For the purpose of plotting this
graph, we have employed same data values as in Fig. 7
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Fig. 9 Variation of red shift with respect to fractional radius (r/R) for
case-1. For the purpose of plotting this graph, we have employed the
data set of values as: (i) k = 0.90, a = 4.7385 × 10−13 for Her X-1,
(ii) k = 0.60, a = 7.2057 × 10−13 for RXJ 1856-37, (iii) k = 0.99,
a = 8.7354 × 10−13 for SAX J1808.4-3658(SS2), (iv) k = 0.953,
a = 6.8093 × 10−13 SAX J1808.4-3658(SS1)

The radial and tangential sound speeds are calculated and
its difference is evaluated as shown below:
Case-1
∣
∣V 2

t − V 2
r

∣
∣ = β

(2 + β)

(1 + 2ax)3

(1 + ax)3
.

1

(5 + 2ax)
, (57)

Case-2
∣∣V 2

t − V 2
r

∣∣ = β

(1 + β)

(1 + 2ax)3

(1 + ax)3
.

1

(5 + 2ax)
. (58)

5.5 The effective mass and surface red-shift

The effective mass and surface red-shift of the compact star
is defined as:
Case-1:

Meff = R

2

[
(2 + β)aR2

1 + 2aR2

]
, Z =

√
1 − βaR2

1 + 2aR2
− 1 (59)

Case-2:

Meff = R

2

[
(1 + β)aR2

1 + 2aR2

]
,

Z =
√

1 + aR2 − βaR2

1 + 2aR2
− 1.

(60)

The red-shift is a consequence of gravitational time di-
lation. Time moves slowly in a strong gravitational field, as
measured by a remote observer. Redshift measurements of
neutron stars provide information about M/R. In combina-
tion with other observational techniques used to deduce M

and/or R, this information can be used to pinpoint the phys-
ical compact star sequence in the M–R plane. In addition,
high redshifts are difficult to explain with compact star mod-
els based on soft EOS. A measurement of a star with high
surface redshift would therefore rule out some microscopic
models.

We can determine the maximum mass for the models of
compact stars and realize that the differences between the

Table 1 Values of the model parameters of case (1) for different values
of aR2 and K

Anisotropic compact star M (M�) R (km) M/R aR2 K

Her. X-1 0.98 6.7 0.216 0.2122 0.90

RXJ 1856-37 0.9032 6.0 0.222 0.2594 0.60

SAX J1808.4-3658(SS2) 1.3232 6.33 0.308 0.3506 0.99

SAX J1808.4-3658(SS1) 1.4334 7.07 0.299 0.3404 0.953

models are not negligible. All the static solutions displayed
have radius and total masses, M� (in terms of solar mass M)
central density, surface density and central pressure that cor-
respond to typical values for expected astrophysical compact
objects. The boundary redshifts, surface and central densi-
ties, pressure and density emerge from our theoretical model
fit the typical values for these objects.

6 Physical analysis and conclusions

Our theoretical model shows a stability behavior in many
aspects similar that of present studies have done by a large
group workers (Mak and Harko 2003; Dev and Gleiser
2002). By suitably choosing values of the unknown param-
eters, it is possible to show that our model can describe real-
istic compact stellar objects (Tables 1 and 2). The behavior
of the energy density, two pressures and anisotropic parame-
ter, metric potential, red-shift, forces, energy conditions and
velocity of sound are shown in Figs. 1–9. We start with
Matese–Whiteman transformation and introduce anisotropic
factor 
. After that we obtained three distinct classes of so-
lutions are given by the following three cases. As case 1 and
2 are physically accepted however case 3 is unphysical. By
imposing an energy condition, the value for the maximum
possible redshift at the surface of the star can be obtained.
The stability of the models with internal pressure anisotropy
was also probed by Herrera and collaborators. They have
shown that, for particular dependent perturbations, poten-
tially stable regions within anisotropic matter configurations
could occur when the radial speed of sound, is greater than
tangential speed of sound. It is also well understood that
stability of particular anisotropic configurations is well be-
haved condition i.e., the velocity of sound is monotonically
decreasing away from the center and it is increasing with the
increase of density. These features can be seen in Fig. 7 and
Fig. 8. Also our obtained are satisfying the various energy
conditions everywhere inside the stars (Fig. 6).

On the ground of regular Oppenheimer–Volkoff solu-
tion the three important astrophysical concepts are based:
the Oppenheimer limit (1939) for the object mass, Buchdal
(1959) for mass to the radius ratio and the Bondi limit for
gravitational redshift. Bohmer and Harko (2006) provided
an exhaustive review on the subject of red-shift (Z ≤ 5) in
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Table 2 Energy densities,
central pressure and a for
different strange star candidates
for the above parameter values
of Table 1 (Case-1)

Anisotropic compact star Central density
(gm/cm3)

Surface density
(gm/cm3)

Central pressure
(dyn/cm2)

a

Her. X-1 2.2138 × 1015 1.2455 × 1015 2.9965 × 1035 4.7385 × 10−13

RXJ 1856-37 2.0121 × 1015 1.2117 × 1015 4.3340 × 1035 7.2057 × 10−13

SAX J1808.4-3658(SS2) 4.2077 × 1015 1.7937 × 1015 1.2620 × 1036 8.7354 × 10−13

SAX J1808.4-3658(SS1) 3.2394 × 1015 1.4069 × 1015 8.8870 × 1035 6.8093 × 10−13

the presence of cosmological constant. More recently a com-
prehensive work on surface redshift (Z ≤ 5.21) of compact
object has been studied by Ivanov (2002). In our present
models, the obtained red-shift is good agreement (Fig. 9).

A necessary, but not sufficient, condition for stability of
a compact star is that the total mass is an increasing func-
tion of the central density dM/dρc > 0 (Glendenning 1997).
This condition implies that a slight compression or expan-
sion of a star will result in a less favorable state, with higher
total energy. The features seem physically not realistic when
the anisotropic conditions are relaxed. Within our general-
ized theoretical model with Matese & Whitman solution the
maximum mass of anisotropic compact star is in the range
0.98M�–1.4M� for different strange star candidates for the
above parameter. In our present models, the comprehensive
physical analysis through graphical approach suggests that
the model for the compact star like Her. X-1, RXJ 1856-37,
SAX J1808.4-3658(SS2) and SAX J1808.4-3658(SS1) are
well behaved.
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