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Abstract The purpose of this paper consists in construct-
ing the near-equilibrium model of the dwarf planet Haumea
and developing the latent mechanism of accumulation of
icy masses at sharp ends of the rapidly rotating planet. The
model can be introduced by combining the ellipsoidal stone
core with confocal icy shell and represents a non-uniform
figure of rotating gravitating mass with superficial tension
from the icy layer. We thoroughly study its dynamic proper-
ties and achieve that the gravitational potential on an exter-
nal and intermediate (between the core and the mantle) sur-
faces was square-law function from coordinates. Using the
new rigorous method we found that the thickness of an ice
shell is equal to h ≈ 30 km, and its mass makes only 6.6 %
from mass of a stone core. In absence of coherence between
two surfaces of level, there is a growth of stresses and re-
structuring the core and the shell. It is found that the dif-
ference between angular velocities on both surfaces doesn’t
exceed 6 %, which activates a special mechanism of relax-
ation. The relaxation may lead to considerable (up to 10 %)
lengthening the equatorial size of the body. This restructur-
ing the shell leads to accumulation of icy masses at the sharp
ends of the planet, which then separate from Haumea. For
formation of two satellites of the planet Haumea it has been
spent only 8 % from the mass of a shell. Before separation of
satellites the planet Haumea was in near-equilibrium state,
and its angular momentum was at 1.13 more, and the pe-
riod of rotation was 16m shorter and made T ≈ 3.64 h. The
mechanism predicts that the orbits of satellites can not devi-
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ate much from the equatorial plane of Haumea. This is con-
sistent with observations: indeed, the orbit of Namaka is al-
most in the equatorial plane, and the orbit of massive Hi’iaka
deviates only on 13°. The new mechanism can be useful
also for studying the evolution of other ice-cover planets and
satellites.
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1 Introduction

The dwarf planet Haumea was discovered in the Kuiper Belt
in 2005 (Brown et al. 2005) and is one of the largest objects
beyond the Neptune. It revolves around the Sun with pe-
riod 281.83 years and has the orbital resonance 12 : 7 with
Neptune. The main surprise was the fact that for its impres-
sive size (∼1000 km) Haumea has a very fast rotation. In-
deed, rotation period of Haumea was less than four hours
and equal to

T = 3.915483113 h. (1)

Among the currently known objects in Solar system, which
large across 100 km, Haumea rotates faster than anyone
(Ćuk et al. 2013; Lockwood et al. 2014). Therefore, it is
desired to construct the equilibrium figure of Haumea.

According to the articles (Rabinowitz et al. 2006; Fraser
and Brown 2009; Lacerda 2009), the light curve of this
object has two unequal to each other maxima. Analyz-
ing the light curve, the authors (Rabinowitz et al. 2006;
Lykawka et al. 2012) concluded that Haumea has an elon-
gated ellipsoidal shape. However, yet no direct evidence
about orientation of rotation axis of Haumea, so it is con-
venient to assume that this axis is perpendicular to line of
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sight of the observer. Assuming that the Haumea has equi-
librium form of the Jacobi ellipsoid, then its semiaxes are
equal to (Rabinowitz et al. 2006)

a1 = 980 km,

a2 = 759 km,

a3 = 498 km,

R = (a1a2a3)
1
3 ≈ 718.178 km,

(2)

where R is the average radius of the planet.
Next, Haumea has two small satellites (Ragozzine and

Brown 2009) that has allowed to determine its mass

M = 4.006 · 1024 g (3)

and average density

ρ = 2.582 g/cm3. (4)

Besides, studying the reflection spectrum showed that the
surface of Haumea is covered with almost pure water crys-
tal ice, with insignificant content of impurity of more dif-
ficult substances. It is important that the similar spectrums
have also its satellites. This suggests that the satellites were
formed of substance of the outer layer of Haumea.

About satellites of Haumea we know the following
(Ragozzine and Brown 2009). The largest and most bright
is the outer satellite Hi’iaka. It has the mass m1 = 1.79 ·
1019 kg (0.00451M) and the diameter of about 310 km.
The Hi’iaka’s orbit is almost circular (e = 0.0513) with
the semi-major axis a1 = 49880 km and the orbital pe-
riod T1 = 49.462 d. The second satellite (Namaka) re-
volves around Haumea for T2 = 18.2783 d. on highly el-
liptical orbit with e = 0.249 and a2 = 25657 km. Namaka
has the small mass m2 = 1.79 · 1018 kg and the diame-
ter of about 170 km. The size and mass of the satellites
is calculated under the assumption that their albedo coin-
cides with the albedo of Haumea. The orbit planes of the
satellites are inclined to each other at an angle 13.2°. Ac-
cording to hypothesis of impact (Rabinowitz et al. 2006;
Leinhardt et al. 2010), the satellites appeared as a result of
collision of Haumea with another asteroid. The collision
occurred in early history of the Solar system for billions
of years ago and the Hi’iaka’s orbit gradually widened.
The Namaka’s orbit highly disturbed by the orbital reso-
nance 8 : 3 with more massive Hi’iaka. Both satellites are
gradually removed from Haumea due to the tidal accelera-
tion.

By the above remarks we turn to the formulas for the
triaxial Jacobi ellipsoids (see Appel 1932; Chandrasekhar
1969):

Ω2

2πGρ
= A1a

2
1 − A2a

2
2

a2
1 − a2

2

;

a2
1a2

2
A2 − A1

a2
1 − a2

2

= A3a
2
3,

(5)

where

I = a1a2a3

∫ ∞

0

du

�(ai, u)
,

Ai = a1a2a3

∫ ∞

0

du

(a2
i + u)�(ai, u)

,

�(ai, u) =
√

(a2
1 + u)(a2

2 + u)(a2
3 + u).

(6)

By using these equations and exact value of the rotation
period (1), we can specify the shape of Haumea:

a1 = 978 km,

a2 = 757.61 km,

a3 = 496 km,

R = (a1a2a3)
1
3 = 716.29 km,

(7)

and its average density

ρ = 2.602 g/cm3. (8)

Further, we use these values as basic parameters to calculate
the refined model of Haumea.

In this paper we eliminate some gaps in research of 3D
internal gravitational potentials of the inhomogeneous triax-
ial ellipsoidal model and also find its rotational and gravi-
tational energy. We apply this model for studying the inter-
nal structure and near-equilibrium form of the dwarf planet
Haumea. In Sect. 2 we carefully study its dynamic prop-
erties, and we achieve, that the gravitational potential on an
external and an intermediate (between the core and the man-
tle) surfaces was square-law function from coordinates. In
Sect. 3 we study the level surfaces in this model and develop
necessary mathematical tools. In Sects. 4 and 5 the formu-
las are used for calculations of the refined Haumea model.
We come to conclusion that the Haumea may not be in ex-
act equilibrium, since the angular velocity of outer surface
is slightly greater than the angular velocity of a core. This
fact is very important for the considered process of secular
evolution of the Haume’s model, which leads to separating
the masses of ice and to formation of the satellites. In Sect. 6
we study the parameters of rotation of Haumea, which this
planet had before separation from it two satellites Hi’iaka
and Namaka. In Sect. 7 we present some additional argu-
ments in favor of physical reality of the latent mechanism of
stresses between a stone core and an ice shell. Other appli-
cations of this mechanism we consider in Sect. 8.

2 Statement of the problem and gravitational
potential of inhomogeneous triaxial ellipsoidal
model

We suppose that the figure of inhomogeneous planet con-
sists of two subsystems: from the internal homogeneous el-



The near-equilibrium figure of the dwarf planet Haumea and possible mechanism of origin of its satellites Page 3 of 9 169

lipsoidal stone core with the density ρcore and the surface S′

x2
1

a′2
1

+ x2
2

a′2
2

+ x2
3

a′2
3

= 1, a′
1 > a′

2 > a′
3, (9)

on which is superimposed a layer of ice in the form of ho-
mogeneous ellipsoidal shell with the outer surface S

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1 (10)

with the semiaxes a1 > a2 > a3 and the density ρsh. For sta-
bility of this figure it is necessary to accept ρcore > ρsh.

Consider the equilibrium equation of a liquid mass, rotat-
ing around the axis Ox3 with the angular velocity Ω

gradp = ρ gradΦ, (11)

where p(x) is the pressure in liquid, and total potential Φ(x)

is equal to the sum of gravitational ϕ(x) and centrifugal po-
tentials

Φ(x) = ϕ(x) + 1

2
Ω2(x2

1 + x2
2

)
. (12)

According to (11), for equilibrium of a rotating configura-
tion is necessary, that the surfaces of equal pressure p(x) =
const and density ρ(x) = const coincided with the level sur-
faces

Φ(x) = ϕ(x) + 1

2
Ω2(x2

1 + x2
2

) = const. (13)

Therefore, for equilibrium of the model you must require
that the gravitational potential on outer S and inner S′ sur-
faces of icy shell was a quadratic function of coordinates x.
This condition imposes strong limitations on the model.
First of all, the shell may not be a classic homeoid. This
follows from the fact that the external potential of homoge-
neous ellipsoidal core in the points of icy layer

ϕ(x) = πGρcore

∫ ∞

λ

du

�(a′
i , u)

(
1 − x2

i

a′2
i + u

)
, (14)

where �(a′
i , u) from (6), isn’t the square function from co-

ordinates. Here the ellipsoidal coordinate λ(x) is a positive
root of the cubic equation

x2
1

a′2
1 + λ

+ x2
2

a′2
2 + λ

+ x2
3

a′2
3 + λ

= 1. (15)

In accordance with general theory, the potential is quad-
ratic function only in the case when the outer ellipsoidal
shell is confocal with the elliptical core. In other words,
the homogeneous outer layer in this model must be the
focaloid. This requirement is not trivial and is associated
with some specific gravitational properties of homogeneous
and heterogeneous focaloids, which were studied in the clas-
sical works (Maclaurin and Laplace; Hamy (see Todhunter
1973); Pizzetti 1933), and nowadays more thoroughly in
Kondratyev (1989, 2003, 2007). For existence of a focaloid

the focal points of the all three elliptic cross-sections S′ and
S must match:

a′2
1 = a2

1 − λ, a′2
2 = a2

2 − λ, a′2
3 = a2

3 − λ, (16)

where λ is the largest root of cubic equation (15).
Now find the potentials of our combined model. First, we

consider the potential at the points xi of the outer surface S,
which consists of two members:

Φ(x) = ϕsh(ρsh) + ϕcore(ρcore). (17)

Here ϕsh(ρsh) is contribution to the potential from the shell,
which according to the modified theorem of attraction of
focaloids (Kondratyev 2007, p. 146), will be equal to

ϕsh(ρsh) =
(

1 − a′
1a

′
2a

′
3

a1a2a3

)
ϕcore(ρsh), (18)

and ϕcore(ρsh) is the internal potential of homogeneous el-
lipsoid with the surface S and the density ρsh

ϕcore(ρsh) = πGρsh
(
I − Aix

2
i

)
, (19)

where the coefficients are defined in (6).
The second member in (17) represents the potential on

external point from the ellipsoid with density ρcore. Accord-
ing to the classical Maclaurin–Laplace theorem, ϕcore(ρcore)

can be expressed through the known potential ϕsh(ρsh):

ϕcore(ρcore) = a′
1a

′
2a

′
3

a1a2a3

ρcore

ρsh
ϕsh(ρsh). (20)

As a result, the potential (17) on outer surface it is possible
to write down in the form

Φ̃ = πGρm

(
I − Aix

2
i

)
, (21)

where we introduced the “average” density ρm

ρm = ρsh + (ρcore − ρsh)
a′

1a
′
2a

′
3

a1a2a3
. (22)

Thus, introducing the average density (22) we achieve that
the potential (21) on the outer surface S was indeed a
quadratic function of coordinates.

Besides, the potential at surface S′, which separates the
stone core from the icy shell must also be a quadratic func-
tion of coordinates xi . This potential can also be represented
as a sum of two terms (compare with (17))

Φ̃ ′(x) = ϕ′
sh(ρsh) + ϕ′

core(ρcore). (23)

However, unlike (17), the first member ϕ′
sh(ρsh) in (23)

presents now the potential of the shell on its inner surface.
The second term in (23) ϕ′

core(ρcore) presents the contribu-
tion from the core

ϕ′
core(ρcore) = πGρcore

(
I ′ − A′

ix
2
i

)
, (24)

where

A′
i = a′

1a
′
2a

′
3

∫ ∞

0

du

(a′2
i + u)�(a′

i , u)
,

�(a′
i , u) =

√
(a′2

1 + u)(a′2
2 + u)(a′2

3 + u).

(25)
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In turn, the shell’s potential ϕ′
sh(ρsh) we present now as a

difference of the potentials of two ellipsoids with the same
density ρsh:

ϕ′
sh(ρsh) = πGρsh

[(
I − Aix

2
i

) − (
I ′ − A′

ix
2
i

)]
. (26)

Taking into account (24), the formula (23) gives

Φ̃ ′(x) = πG(ρcore − ρsh)
(
I ′ − A′

ix
2
i

)
+ πGρsh

(
I − Aix

2
i

)
. (27)

To convert the coefficients A′
i need to replace the variable of

integration s = u − λ. After transformation, we have

A′
i = a′

1a
′
2a

′
3

a1a2a3
Ai + Ãi , (28)

where Ai from (6), and Ãi is

Ãi = a′
1a

′
2a

′
3

∫ 0

−λ

ds

(a2
i + s)�(ai, s)

,

�(ai, s) =
√

(a2
1 + s)(a2

2 + s)(a2
3 + s).

(29)

After some additional transformations we receive the de-
sired potential at core surface S′

Φ̃ ′(x) = const − πG
[
ρmAi + (ρcore − ρsh)Ãi

]
x2
i . (30)

Thus, the potential (30) on surface S′ is also presented
by a quadratic function of coordinates. This property of the
potential is important for the theory of equilibrium figures
(see also Pizzetti 1933; Martinez et al. 1990).

3 The equipotential surfaces inside the figure

The foregoing suggests that the equilibrium of the rotating
configuration should require that the surfaces of equal den-
sity coincided with the level surfaces. Thus, for equilibrium
in our model, it is necessary to require that the outer surface
and the surface between the core and mantle were the level
surfaces.

Taking into account Eqs. (10) and (21), the above require-
ment for the outer surface leads to the following proportion-
ality condition

Aix
2
i − Ω2

2πGρm

∝ x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

, (31)

which implies, that there are two equations

a2
1

(
A1 − Ω2

2πGρm

)
= a2

2

(
A2 − Ω2

2πGρm

)
= A3a

2
3 . (32)

The first of them

Ω2

2πGρm

= A1a
2
1 − A2a

2
2

a2
1 − a2

2

(33)

gives the normalized square of angular velocity as the func-
tion a2

a1
and a3

a1
, and the second equation

a2
1a2

2
A2 − A1

a2
1 − a2

2

= A3a
2
3 (34)

implicitly links the relationship of semiaxes of the ellipsoid
(10). Analyzing the case of outer surface we note, that our
model differs from the classical Jacobi ellipsoid in that im-

portant point that the value Ω2

2πGρm
from (33) is normalized

to the average density ρm from (22).
Similarly, we conclude that for existence of level surface

at the boundary S′ must be met two equations

a′2
1

(
A′

1 + ρcore − ρsh

ρm

Ã1 − Ω ′2

2πGρm

)

= a′2
2

(
A′

2 + ρcore − ρsh

ρm

Ã2 − Ω ′2

2πGρm

)

= a′2
3

(
A′

3 + ρcore − ρsh

ρm

Ã3

)
. (35)

From (35) follow the important relations

Ω ′2

2πGρm

= A′
1a

′2
1 − A′

2a
′2
2 + ρcore−ρsh

ρm
(Ã1a

′2
1 − Ã2a

′2
2 )

a′2
1 − a′2

2

,

(36)

a′2
1 a′2

2

A2 − A1 + ρcore−ρsh
ρm

(Ã2 − Ã1)

a2
1 − a2

2

= a′2
3

(
A3 + ρcore − ρsh

ρm

Ã3

)
, (37)

which define as the angular velocity Ω ′, and the shape of el-
lipsoidal core in Haumea. Note, that in contrast to (33) and
(34), in the formulas (35)–(37) appear the additional coef-
ficients Ãi from (29). As check we will notice that in the
case ρcore = ρsh the new equations become equivalent to the
Eqs. (33) and (34). It is also useful to notice that for inequal-
ities a′

1 > a′
2 > a′

3 we have

Ã1 ≤ Ã2 ≤ Ã3. (38)

4 Calculations for Haumea model

Then we will apply our formulas to calculations for the
Haumea model. First of all, for the external surface S from
(10) we find from (7) the semiaxes ai and the normalized
coefficients Ai :

a1 = 1.365369; A1 = 0.4318686;
a2 = 1.057686; A2 = 0.598298;
a3 = 0.692457; A3 = 0.969833.

(39)

Then, the equilibrium angular velocity (33) is equal to

Ω2

2πGρm

= 0.182134. (40)
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Fig. 1 Numerical solution of the cubic equation (42)

To calculate angular velocity by the formula (36), we
must first find a thickness of the shell. The thickness of the
shell in this model may not be arbitrary, and for its calcula-
tion it is necessary to equate the densities (22) and (8). This
gives another important equation

a′
1a

′
2a

′
3

a1a2a3
= ρm − ρsh

ρcore − ρsh
. (41)

Now it is necessary to set the real density of a stone and
ice. The density of a stone is about ρcore = 3 g/cm3, and the
density of an ice in the shell is ρsh = 1 g/cm3. Taking into
account (14), the Eq. (41) for unknown ellipsoidal coordi-
nate λ becomes√

(a2
1 − λ)(a2

2 − λ)(a2
3 − λ)

a1a2a3
= 0.801. (42)

Numerical solution of the cubic equation (42) gives (Fig. 1)

λ ≡ λ

R2
≈ 0.114. (43)

The value λ from (43) determines the thickness of icy shell
in this model.

Knowing λ, by numerical integration we find the ratio of
masses

Msh

Mcore
=

(
1 − a′

1a
′
2a

′
3

a1a2a3

)
ρsh

ρcore
= 0.0663. (44)

Thus, the mass of ice shell in the model of Haumea is only
6.6 % on the mass of stone core. Our result for the mass
of a shell considerably specifies the previous quality assess-
ments (∼11 %). In favor of the relation (44) says that only in
this case the calculated period of axial rotation of Haumea is
consistent with the observed period (1) T = 3.915483113 h.
On the basis of (44), the mass of the icy shell is equal to

Msh = 2.49 · 1023 g. (45)

By using λ from (43) and the formulas (16), (25) and
(29), we find another characteristics of the core of Haumea

Fig. 2 Dependence of the square of the normalized shell thickness
λ from meridian oblateness ε13 of outer boundary of the model. The
dashed line shows the coordinate λ for the Haumea’s model

a′
1 = 1.322964; A′

1 = 0.402696; Ã1 = 0.056469;
a′

2 = 1.002348; A′
2 = 0.575913; Ã2 = 0.096262;

a′
3 = 0.604563; A′

3 = 1.021391; Ã3 = 0.243883.

(46)

Then, by the formula (36) we find the square of angular ve-
locity on the core surface S′

Ω ′2

2πGρm

= 0.1710101472. (47)

Comparing the values of (40) and (47) we see that difference
of squares of the angular velocities at the outer surface and
at the boundary between a core and a shell

Ω2 − Ω ′2

2πGρm

= 0.0111242667 > 0 (48)

is positive. This means that two surfaces S and S′ are not
simultaneously level surfaces. In other words, we deal with
the almost equilibrium model of Haumea. This fact plays a
key role when studying evolution of the planet.

By using our formulas, we have made much calculations,
and obtained the following results. Figure 2 shows the de-
pendence λ from oblateness ε13 of an outer surface. We see
that thickness of an ice layer has a maximum at ε13 = 0
i.e. (for the Maclaurin spheroid). Along sequence of equilib-
rium models the thickness of the icy layer monotonically de-
creases and in limiting case of a needle the thickness is zero.

Figure 3 (top curve) shows dependence of Ω2

2πGρm
from

oblateness ε13 of outer boundary of the model. The lower

schedule shows the similar dependence for Ω ′2
2πGρm

, but at
the surface between the core and the shell. Namely for these
angular velocities both surfaces become the level surfaces.
We will point to one important detail: on the presence on the
lower curve of a local maximum:

ε13 ≈ 0.4292,
Ω ′2

2πGρm

≈ 0.17653. (49)

It is characteristic that the oblateness ε13 from (49) is very
close to the point of Haumea ε13 ≈ 0.4298.
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Fig. 3 The relations Ω2

2πGρm
(upper graph) and Ω ′2

2πGρm
(dots) as the

functions of oblateness ε13

Fig. 4 Dependence of the normalized difference of the squares angular

velocities Ω2−Ω ′2
2πGρm

from the oblateness ε13 of the outer surface along
sequence of inhomogeneous ellipsoidal equilibrium figures

As we see, angular velocity in points of an external sur-
face of an ice layer is always a little more, than in points
of a surface of a stone core. Besides, the difference be-
tween these angular velocities decreases along the sequence
(Fig. 4).

This distinction of angular velocities leads to launching
the mechanism of relaxation inside Haumea.

5 Near-equilibrium mechanism of formation
of satellites

Thus, the rotational angular velocity at an outer surface is
always slightly more than the angular velocity of a core:

Ω2 − Ω ′2

2πGρm

≈ 0.06
Ω2

2πGρm

. (50)

In other words, the coating of the ellipsoidal stone core by
a layer of ice leads to the fact that in the model appears

Fig. 5 Dependence of the normalized square of angular velocity from
oblateness ε13 along sequence of the Maclaurin spheroids (top curve,
at the point K is the maximum), and along sequence of the Jacobi
ellipsoids (lower curve, which starts at the point B). The dotted lines
show two triaxial equilibrium figures of with big (a) and smaller (b)
rotation

very small deviation from equilibrium. Such deviation plays
a key role in emergence of internal tension between the icy
layer and the stone core.

Consider the process of accumulation of stresses in the
ice layer in detail. First, we recall one important property
of the Jacobi ellipsoids: if its angular momentum is fixed,
the slower the ellipsoid rotates, the more it expands in the
equatorial plane (Fig. 5).

Consider the angular momentum LJ for the Jacobi ellip-
soid (Chandrasekhar 1969; Kondratyev 2003):

LJ√
GM3R

= 0.1732 · ΩJ

(
a2

1 + a2
2

R2

)
. (51)

Differentiating (51), after transformations and some substi-
tutions we will receive the ratio

�a′
1

a′
1

≈ 1

2(
a′

1
R

)2

√√√√ Ω2−Ω ′2
2πGρm

Ω2

2πGρm

. (52)

Thus, the difference of squares angular velocity (50) allows

us to estimate the relative deformation
�a′

1
a′

1
of a core. Sub-

stituting into (52) the found values, we find

�a1

a1
≈ 0.1. (53)

We see that the relaxation process (or process of alignment
of the angular velocities on two surfaces) can lead to consid-
erable (up to 10 %) lengthening the longest axis.

As a result, at changing the shape of a core appear the
shear stresses in the icy mantle (Fig. 6).

In stage of an elastic deformation the shear modulus for
the ice is μ. Accumulation of these stresses will cause, in
turn, the deformation of an icy shell.

Now it is important to emphasize that the difference be-
tween the angular velocities (50) on the surface and the
intermediate boundary between the core and the mantle is

only 6 % from Ω2

2πGρm
, so the relaxation processes inside the
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Fig. 6 The scheme of deformation of an ellipsoid (inner arrows) and
influence of this deformation on stretching the icy shell (outer dark
band)

planet will proceed very slowly. Consider the sequence of
stages of evolution. The ice is a more plastic than the stone,
and on the first stage exactly the outer border of the planet
comes to equilibrium. But at this stage the process of evo-
lution does not stop, because the core’s surface is not yet
equipotential (the core should spin slightly slower). There-
fore, the second phase of evolution begins that leads to a
small change of the core shape. The decrease of rotation of
the figure will cause an increase of the equatorial section of
a stone core (Fig. 5). Under these conditions, in the outer icy
shell are accumulating the shear stresses. But the ice shell is
deformed elastically as long as the stresses do not reach the
tensile strength, then there is the restructuring the ice man-
tle. As found in (53), the relaxation changes of the major
semiaxis in the core can reach the value �a1

a1
≈ 0.1, there-

fore during the evolution, the above restructuring the mantle
must takes place repeatedly.

The restructuring is repeated n times and, as the result,
on the sharp ends of the rapidly spinning elongated ellipsoid
occur accumulation of significant masses of ice. Then, there
is almost equilibrium separation of mass of ice, as leads to
formation of satellites. It is important that the model allows
to estimate the relation of mass of the satellites to the mass
of the shell (see (45)):

κ = m1 + m2

Msh
≈ 8 %. (54)

Thus, for formation of two satellites of the planet Haumea it
has been spent only 8 % from the mass of a shell.

Further evolution of the satellites orbits happened under
strong tidal influence of the planet. The external satellite
Hi’iaka has greatest mass and its orbit under the tidal in-
fluence was gradually rounded and the considerably moved
away from the planet on a1 = 49880 km. In this process the
part of the angular momentum of the planet was transferred
towards the satellites, therefore the rotation of Xaymea was
slowed down.

6 Rotation of Haumea before separating
the satellites

To determine how fast the planet rotated before a separa-
tion from it of the satellites Hi’iaka and Namaka, we will
perform some calculations. The angular momentum of a ho-
mogeneous ellipsoidal core is

Lcore = Ω

5
Mcore(ρcore)

(
a′2

1 + a′2
2

)
, (55)

and the angular momentum of the planet’s shell is equal to
difference

Lsh = Ω

5

[
Mcore(ρsl)

(
a2

1 + a2
2

) − Mcore(ρsh)
(
a′2

1 + a′2
2

)]
.

(56)

Besides, the orbital angular moments of Haumea’s satellites
are now equal to

L1 = m1

√
G(M + m1)a1;

L2 = m2

√
G(M + m2)a2.

(57)

Substituting the known parameters, we find

Lcore = 4.665 · 1036 g·cm2

sec
;

Lsh = 7.041 · 1035 g·cm2

sec
;

L1 = 6.550 · 1035 g·cm2

sec
;

L2 = 4.689 · 1034 g·cm2

sec
.

(58)

Then, before separation of satellites, the total angular mo-
mentum of Haumea was equal

Lt = 6.072 · 1036 g·cm2

sec
. (59)

Thus, adding the satellites to the planet Haumea slightly in-
creases its angular momentum:

Lt

Lcore + Lsh
= 1.130723. (60)

At present, the rotational energy of Xaumea is equal to

Erot = 1.197 · 1033 g·cm2

sec2
, (61)

and before separation of the satellites the energy was little
more

Erot = 1.530 · 1033 g·cm2

sec2
. (62)

The ratio of the rotational energy to the gravitational one for
Haumea is equal to

t = Erot

|W | ≈ 0.1376. (63)

The angular momentum (59) is used for calculation of the
rotation period of Haumea before separation of its satellites.
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It turns out that this period was less on 16m and (compare
with (1)) is equal to

T ≈ 3.64 h. (64)

Our approach to the formation of satellites is consistent with
the view that was proposed earlier in (Ortiz et al. 2012).

Another important characteristic is the normalized square
of angular velocity. We see that instead of modern equilib-

rium value Ω ′2
2πGρm

= 0.17101, in the era before separation of
satellites, Xaumea had

Ω ′2

2πGρm

≈ 0.184. (65)

It is interesting to note that this value is somewhat less than
the maximum possible for the Jacobi ellipsoids

Ω2

2πGρ
≈ 0.187115. (66)

This is surprising argument in favor of the fact that before
separation of satellites the planet Haumea was also in near-
equilibrium condition.

7 Physical reality of the latent mechanism of
tensions between stone core and icy shell

To gain greater insight into the model, we note the following.

7.1. The existence of level surfaces directly follows from
the equation of hydrostatic equilibrium (11) and is a funda-
mental property of any figure of relative equilibrium.

7.2. Analyzing the detailed properties of level surfaces in
the triaxial equilibrium figures we come to a conclusion
about the existence of stresses between the ellipsoidal stone
core and the outer icy shell.

7.3. To compute the level surfaces, we need at first to find
the gravitational potential of an inhomogeneous ellipsoid.
The key to understanding these questions is related to find-
ing the quadratic potential on two surfaces (at the outer sur-
face and at the surface of a core). Introducing the average
density ρm from (22), we try to obtain that the potential at
outer surface of the model was indeed a quadratic function
of the coordinates. To estimate the parameters of an ice shell,
we equate the average density ρm and the observed density
ρ = 2.602 g/cm3. This allows to get real values for the ice
shell thickness h ≈ 30 km and its mass Msh = 2.5 · 1023 g.
The mass of the icy shell is only ∼6 % of mass of the
planet Haumea, and this value specifies the previous esti-
mate (∼11 %).

7.4. Another important conclusion is that inside the equi-
librium heterogeneous ellipsoidal figure the level surfaces

may not be strictly identical with the surfaces of equal den-

sity. Really, our model with Ω2

2πGρm
= 0.182134 has the outer

level surface, whereas the surface of stone core is not level.
That the border of a core was a level surface, its rotation
must be reduced to the value Ω ′2

2πGρm
= 0.171010. Although

this difference is small Ω2−Ω ′2
Ω2 ≈ 0.06, the one dynamically

is still very important.

7.5. In the absence of coherence between two level sur-
faces, the inhomogeneous ellipsoidal model can only be in
the near-equilibrium condition. The ice is more plastic than
the stone, so that at beginning the evolution the outer sur-
face of icy shell will be in hydrostatic equilibrium. However,
the stone core is rotating slightly faster than necessary for
its equilibrium, so that the core begins to slowly change its
form. The decrease in rotation of the figure will cause an in-
crease of the equatorial section of a stone core. Under these
conditions, in the outer icy shell accumulate shear stresses.
The situation here is that this restructuring will bring the
planet to equilibrium, but at the same time will inevitably
appear the tensile stresses in the crystalline ice shell. The
relaxation process of alignment angular velocities can lead
to a significant (up to 10 %) lengthening the longest axis.
As a result, on the sharp ends of rapidly spinning elongated
ellipsoid there is an accumulation of the significant masses
of ice. Then, there is the near-equilibrium separation of the
ice mass from the planet, which leads to the formation of its
satellites.

7.6. We calculated, that adding the satellites slightly in-
creases angular momentum of the planet and reduces its
rotation period on 16m (T ≈ 3.64 h). In addition, it was
shown that before separation of satellites the Haumea was
in near-equilibrium condition. Based on this, was designed
a latent mechanism of separation of the satellites. With accu-
mulation of the stresses, with sharp ends of rapidly rotating
Haumea begin to separate the masses of ice, which leads to
formation of the satellites. For formation of two satellites
needed only 8 % of the shell’s mass. Our approach to the
formation of satellites is consistent with the view that was
proposed earlier in Ortiz et al. (2012).

Comparison with the available observations reveals good
internal consistency of our model.

8 Other applications of the mechanism

Note that developed here the latent mechanism of action of
stresses between the inner layers of equilibrium figure is not
designed exclusively for Haumea. This mechanism could be
extended also to other ice-covered planets or satellites.
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It is important to emphasize that for axisymmetric
spheroids with a small oblateness the effect of action of
this mechanism will be reversed to the above. Indeed, for
the Maclaurin spheroids (in Fig. 5 they are on a curve up
to K point), the tensions in a ice shell will be directed from
equator to poles. Therefore, accumulation of these stresses
will lead to a rupture of the icy layer on equator. Such equa-
torial grooves are really observed, for example, on Charon’s
surface (Cruikshank et al. 2015).

It is also well known that the flattening of the Earth a little
more (this is effect of the second order of smallness) than
this allows for the Earth the classical theory of equilibrium
figures (Moritz and Hofmann 2005). Our method also can
explain this fact as result of a full icing of the Earth in the
remote past.

Of course, all these tasks are the topic of research for
other articles.

9 Discussion

The dwarf planet Haumea is unique object. It is the only
example, known in the nature, when the configuration left
the sequence of flattened Maclaurin spheroids and settled
on the sequence of triaxial ellipsoids.

The main result of this paper consists in constructing the
near-equilibrium model of the dwarf planet Haumea and de-
veloping the latent mechanism of accumulation of the icy
masses at the sharp ends of rapidly rotating planet. The
model differs from the equilibrium classical Jacobi ellip-
soid and represents a non-uniform equilibrium figure of de-
formable gravitating mass with additional superficial tension
from the ice layer. By analyzing the properties of the level
surfaces we come to a conclusion about existence of stresses
between the stone core and the icy shell.

Using equilibrium conditions, we have received a cubic
equation for the shell thickness h, from which it follows
h ≈ 30 km and that the mass of the shell is only 6.6 % from
mass of the stone core. Inside heterogeneous ellipsoidal fig-
ure of equilibrium the level surfaces can’t be strictly identi-
cal with the surfaces of equal density. Although difference
Ω2 − Ω ′2 ≈ 0.06Ω2 is very small, this dynamical fact is
very important since activates a special relaxation mecha-
nism that aligns this distinction.

In favor of this near-equilibrium mechanism says that the
ice on Haumea is in the crystalline state (possibly due to ra-
dioactive heating). This circumstance is significant, because
only in the crystalline ice can accumulate the shear stresses.
The situation is that restructuring the core brings the planet
to equilibrium, but at the same time will inevitably appear
the tensile stresses in the crystalline ice shell. The relaxation
may lead to a significant (up to 10 %) lengthening the equa-
torial body size.

As a result, on the sharp ends of rapidly spinning elon-
gated ellipsoid there is an accumulation of the significant

masses of ice. The relaxation processes inside the planet will
proceed very slowly. Then, there is the near-equilibrium sep-
aration of the ice mass from the planet, which leads to the
formation of its satellites. For formation of two satellites of
the planet Haumea it has been spent only 8 % from the mass
of a shell.

Before separation of satellites the planet Haumea was in
near-equilibrium state, and its angular momentum was at
1.13 more, and the period of rotation was 16m shorter and
made T ≈ 3.64 h.

The mechanism predicts that the orbits of satellites can
not deviate much from the equatorial plane of Haumea. This
is consistent with observations: really, the orbit of Namaka
is almost in the equatorial plane, and the orbit of Hi’iaka
deviates only on 13°.

The new mechanism can be useful also for studying the
evolution of other ice-cover planets and satellites.
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