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Abstract In this paper we consider the non-viscous and vis-
cous holographic dark energy models in modified f (R,T )

gravity in which the infra-red cutoff is set by the Hubble
horizon. We find power-law and exponential form of scale
factor for non-viscous and viscous models, respectively. It
is shown that the Hubble horizon as an infra-red cut-off is
suitable for both the models to explain the recent acceler-
ated expansion. In non-viscous model, we find that there
is no phase transition. However, viscous model explains
the phase transition from decelerated phase to accelerated
phase. The cosmological parameters like deceleration pa-
rameter and statefinder parameters are discussed to analyze
the dynamics of evolution of the Universe for both the mod-
els. The trajectories for viscous model are plotted in r-s and
r-q planes to discriminate our model with the existing dark
energy models which show the quintessence like behavior.

Keywords Cosmology · Dark energy · Modified gravity
theory

1 Introduction

It is strongly believed that the Universe has entered a phase
of the accelerated expansion which has been confirmed by
the recent observations like supernovae Ia (Riess et al. 2007;
Suzuki et al. 2012), cosmic microwave background radiation
(Bennett et al. 2003; Komatsu et al. 2011), baryon acoustic
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oscillation (Percival et al. 2010) and Planck data (Ade et al.
2014). Within the framework of general relativity (GR), the
cause of the acceleration can be attributed to the existence
of a mysterious component of the Universe dubbed as “dark
energy” (DE), which makes up ∼70 % of the total cosmic
energy in the Universe. The �-cold dark matter (�CDM)
model presents the simplest and most successful descrip-
tion of the recent accelerated expansion scenario and ac-
commodates the observations very well. Despite of many
attractive features, it has some theoretical problems like
fine-tuning and cosmic coincidence problems (Carroll 2001;
Peebles and Ratra 2003; Padmanabhan 2003). To over-
come from these problems, a number of dynamical dark
energy models such as scalar field (quintessence, phantom,
k-essence, etc.) models (Chiba et al. 2000; Caldwell 2002;
Padmanabhan 2002; Copeland et al. 2006), chaplygin gas
models (Bento et al. 2002), holographic dark energy (HDE)
models (Setare 2007; Xu 2009; Sheykhi and Jamil 2011),
etc. have been explored in the literature.

In the recent years, the HDE models have been emerged
as a viable candidates to explain the problems of modern
cosmology. The HDE models explain the recent acceler-
ated expansion as well as the coincidence problem of the
Universe (Li 2004; Pavón and Zimdahl 2005). The concept
of HDE is based on the holographic principle proposed by
’t Hooft (1993) and found it’s roots in the quantum field the-
ory. Cohen et al. (1999) have shown that in the quantum field
theory, the formation of black hole sets a limit which relates
ultra-violet (UV) cut-off length γ to infra-red (IR) cut-off
length L. According to the authors, the quantum zero-point
energy ρh = γ 4 of a system of size L should not exceed the
mass of a black hole of the same size, i.e., L3ρh ≤ LM2

p ,

where Mp = (8πG)−1/2 is the reduced Planck mass. In a
paper, Li (2004) has taken the largest allowed L to saturate
this inequality and thus obtained dark energy density of the
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Universe ρh = 3c2M2
pL−2, known as HDE density. In the

formalism of HDE, the Hubble horizon is a most natural
choice for the IR cut-off, but it leads to a wrong equation of
state (EoS) of dark energy (Hsu 2004). However, Pavón and
Zimdahl (2005), and Banerjee and Pavón (2007) have shown
that the viable EoS of dark energy could be achieved by tak-
ing the interaction between HDE and dark matter (DM).

On the other hand, the modified theories of gravity such
as f (R) gravity (Bamba et al. 2008; Nojiri and Odintsov
2011), f (G) gravity (Nojiri and Odintsov 2005; De Felice
and Tsujikawa 2009), f (R,G) gravity (Bamba et al. 2010;
Elizalde et al. 2010), etc. have also been proposed to ex-
plain the recent accelerated expansion of the Universe. The
f (R) gravity is one of the simplest and successful modified
theories of GR, which fits with the observations very well.
Recently, Harko et al. (2011) have proposed a new modi-
fied gravity theory known as f (R,T ) gravity, where R as
usual stands for the Ricci scalar and T denotes the trace of
energy-momentum tensor. This modified theory presents a
maximal coupling between geometry and matter. A num-
ber of authors (Sharif and Zubair 2012; Chakraborty 2013;
Harko 2014; Singh and Singh 2014; Baffou et al. 2015;
Shabani and Farhoudi 2014) have discussed the modified
f (R,T ) gravity in different context to explain the early
and late time acceleration of the Universe. In a recent pa-
per (Singh and Kumar 2014), the authors have discussed the
viscous cosmology in this theory which shows the recent
phase transition of the Universe. The HDE models have not
been yet discussed in detail in the framework of f (R,T )

gravity. In some papers (Houndjo and Piattella 2012; Fayaj
et al. 2014), reconstruction of f (R,T ) gravity from HDE
and anisotropic model of HDE have been discussed.

Hsu (2004) in GR and Xu et al. (2009) in Brans-Dicke
theory have shown that the Hubble horizon as an IR cut-
off is not a suitable candidate to explain the recent ac-
celerated expansion. However, Pavón and Zimdahl (2005)
in GR, and Banerjee and Pavón (2007) in Brans-Dicke the-
ory have shown that the interaction between HDE and DM
can change the scenario and Hubble horizon as an IR cut-off
may explain the recent accelerated expansion. In this paper
our interest is to study the HDE model with Hubble hori-
zon as an IR cut-off in f (R,T ) gravity without considering
the interaction between HDE and DM. As it is known, the
f (R,T ) gravity has coupling between geometry and matter,
therefore, it will be interesting to discuss HDE with Hubble
horizon as an IR cut-off in this modified theory. We show
that Hubble horizon as an IR cut-off is suitable to explain
the accelerated expansion in this theory without interaction
between HDE and DM.

The Hubble parameter H and the deceleration parame-
ter q are well known cosmological parameters which ex-
plain the evolution of the Universe. However, these two pa-
rameters can not discriminate among various DE models.

In this context, Sahni et al. (2003) and Alam et al. (2003)
have introduced a new geometrical diagnostic pair {r, s},
known as statefinder parameters, which is constructed from
the scale factor and its derivatives up to the third order. The
statefinder pair {r, s} is geometrical in the nature as it is
constructed from the space-time metric directly. Therefore,
the statefinder parameters are more universal parameters to
study the DE models than any other physical parameters. In
a flat �CDM model, the statefinder pair has a fixed point
value {r, s} = {1,0}. One can plot the trajectories in r-s and
r-q planes to discriminate various DE models. We discuss
the statefinder diagnostic and obtain the fixed point values
of statefinder pair {r, s} = {1,0} as in the case of �CDM
model.

To be more realistic, the perfect fluid Universe is just
an approximation of the viscous Universe. The dissipative
processes in the relativistic fluid may be modeled as bulk
viscosity. Misner (1968) was the first to use the viscosity
concept in cosmology. The origin of the bulk viscosity in
a physical system can be traced to deviations from the local
thermodynamic equilibrium (see Maartens 1996; Brevik and
Grøn 2013). In a cosmological fluid, the bulk viscosity arises
any time when a fluid expands ( or contracts) too rapidly so
that the system does not have enough time to restore the
local thermodynamic equilibrium (Avelino and Nucamendi
2009). The bulk viscosity, therefore, is a measure of the pres-
sure required to restore equilibrium. When the fluid reaches
again the thermal equilibrium then the bulk viscous pressure
ceases (Xinzhang and Spiegel 2001). Therefore, sufficient
large bulk viscous pressure could make the effective pres-
sure negative. Thermodynamic states with negative pressure
are metastable and cannot be excluded by any law of nature.
These states are connected with phase transitions. A phase
transition in viscous early universe was discussed by Tawfik
and Harko (2012).

In Weinberg (1972), the theoretical concept of the bulk
viscosity in cosmology has been discussed which provides
the insight into the nature of the bulk viscosity. Within the
context of the early inflation, it has been known since long
time ago that an imperfect fluid with bulk viscosity can pro-
duce an accelerated expansion without the need of a cos-
mological constant or some other inflationary scalar field
(Heller et al. 1973; Zimdahl 1996). An accelerating Uni-
verse can be achieved for the right viscosity coefficient. At
the late time, since we don’t know the nature of the Uni-
verse’s contents (dark matter and dark energy components)
very clearly, the bulk viscosity is reasonable and can play a
role as a dark energy candidate. Therefore, it is natural to
consider the bulk viscosity in an accelerating Universe. It
has been shown that inflation and recent acceleration can
be explained using the viscous behavior of the Universe,
and plays an important role in the phase transition of the
Universe (Murphy 1973; Padmanabhan and Chitre 1987;
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Brevik and Gorbunova 2005; Hu and Meng 2006; Singh
et al. 2007; Wilson et al. 2007; Kumar and Singh 2015;
Sasidharan and Mathew 2015).

The concept of viscous DE has been discussed exten-
sively in the literature (Cataldo et al. 2005; Sebastiani 2010;
Setare and Sheykhi 2010). Feng and Li (2009) have shown
that the age problem of the Ricci dark energy can be allevi-
ated using the bulk viscosity. Motivated by the above works,
we extend our analysis to viscous HDE with the same IR
cut-off which shows the recent phase transition of the Uni-
verse. We obtain the statefinder parameters for viscous HDE
which achieve the value of �CDM model and show the
quintessence like behavior.

The paper is organized as follows. In the next section we
discuss the formalism of f (R,T ) gravity theory and present
its field equations. In Sect. 3 we discuss the non-viscous
HDE model and find the exact power-law solution of the
scale factor which avoids the big bang singularity. We also
find the cosmological parameters like deceleration param-
eter and statefinder parameters and discuss their behaviors.
Section 4 describes the viscous HDE model and its solution.
Section 5 presents the summary of our findings.

2 The formalism of modified f (R,T ) gravity
theory

The general form of the Einstein-Hilbert action for the mod-
ified f (R,T ) gravity in the unit 8πG = 1 is as follows
(Harko et al. 2011; Singh and Kumar 2014):

S = 1

2

∫
d4x

√−g
[
f (R,T ) + 2Lm

]
, (1)

where g stands for the determinant of the metric tensor gμν ,
R is the Ricci scalar and T represents the trace of the energy-
momentum tensor, i.e., T = T

μ
μ , while Lm denotes the mat-

ter Lagrangian density. The speed of light is taken to be
unity. As usual the energy-momentum tensor, Tμν of mat-
ter is defined as

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (2)

In fact, this modified theory of gravity is the generalization
of f (R) gravity and is based on the coupling between ge-
ometry and matter. The corresponding field equations have
been derived in metric formalism for the various forms
of f (R,T ).

Varying the action (1) with respect to the metric tensor
gμν for a simple form of f (R,T ) = R + f (T ), i.e., the
usual Einstein-Hilbert term plus an f (T ) correction (Harko
et al. 2011; Singh and Kumar 2014) which modifies the gen-
eral relativity and represents a coupling with geometry of the

Universe, we get the following field equations.

Rμν − 1

2
Rgμν = Tμν − (Tμν +�μν)f

′(T ) + 1

2
f (T )gμν,

(3)

where a prime denotes derivative with respect to the argu-
ment. The tensor �μν in (3) is given by

�μν = −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (4)

The matter Lagrangian Lm may be chosen as Lm = −p

(Harko et al. 2011), where p is the thermodynamical pres-
sure of matter content of the Universe. Now, Eq. (4) gives
�μν = −2Tμν − pgμν . Using this result, Eq. (3) reduces to

Rμν − 1

2
Rgμν = Tμν + (Tμν + pgμν)f

′(T ) + 1

2
f (T )gμν,

(5)

which are the field equations of the modified f (R,T ) grav-
ity theory.

Here, we are interested to study the behavior of HDE
in this modified theory for a spatially homogeneous and
isotropic flat Friedmann-Robertson-Walker (FRW) space-
time, which is expressed in comoving coordinates by the line
element,

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2), (6)

where a(t) stands for the cosmic scale factor. In what fol-
lows we study the non-viscous and viscous HDE models
with deceleration parameter and statefinder parameters in
f (R,T ) gravity theory to describe the recent acceleration.

3 Non-viscous holographic dark energy cosmology

In this model, let us consider the Universe filled with HDE
plus pressureless DM (excluding baryonic matter), i.e.,

Tμν = T h
μν + T m

μν, (7)

where T h
μν and T m

μν represent the energy-momentum tensors
of HDE and DM, respectively. Many authors have described
the recent accelerated expansion by assuming the interaction
between HDE and DM in the different theories of gravity.
In this paper, we consider a non-interacting matter field in
f (R,T ) gravity. The generalized Einstein Eqs. (5) yield

3H 2 = ρm + ρh + (ρm + ρh + ph)f
′(T ) + 1

2
f (T ), (8)

2Ḣ + 3H 2 = −ph + 1

2
f (T ), (9)
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where ρm, ρh and ph denote the energy density of DM, the
energy density of HDE and the pressure of HDE, respec-
tively. An overdot denotes the derivative with respect to cos-
mic time t . As the field equations (8) and (9) are highly non-
linear, therefore, we assume f (T ) = αT (see, Harko et al.
2011), where α is a coupling parameter. Now, the field equa-
tions (8) and (9) reduce as

3H 2 = ρm + ρh + α(ρm + ρh + ph) + 1

2
αT , (10)

2Ḣ + 3H 2 = −ph + 1

2
αT . (11)

The equation of state (EoS) of HDE is given by ph = whρh

and the trace of energy-momentum tensor is given by T =
ρm + ρh − 3ph. Now, from (10) and (11), a combined evo-
lution equation for H can be written as

2Ḣ + (1 + α)
[
(1 + wh)ρh + ρm

] = 0. (12)

In the literature, various forms of HDE (the general form
is ρh = 3c2M2

pL−2, where c2 is a dimensionless constant,
Mp stands for the reduced Planck mass and L denotes the
IR cut-off radius) have been discussed depending on the
choices of IR cut-off such as Hubble horizon, future event
horizon, apparent horizon, Granda-Oliveros cut-off, etc. In
this work, we consider the Hubble horizon (L = H−1) as
an IR cut-off to describe the recent acceleration. The corre-
sponding energy density ρh is given by

ρh = 3c2H 2. (13)

Form (10) and (13), the energy density of DM can be ob-
tained as

ρm = 3(αc2wh − 3αc2 − 2c2 + 2)

(3α + 2)
H 2. (14)

Using (13) and (14) into (12), we finally get

Ḣ + 3(α + 1)(2αc2wh + c2wh + 1)

3α + 2
H 2 = 0, (15)

which, on solving gives (where α �= −1, α �= −2/3)

H = 1

c0 + 3(α+1)(2αc2wh+c2wh+1)
3α+2 t

, (16)

where c0 is a positive constant of integration. Equation (16)
can be rewritten as

H = H0

1 + 3H0(α+1)(2αc2wh+c2wh+1)
3α+2 (t − t0)

, (17)

where H0 is the present value of the Hubble parameter at
the cosmic time t = t0, the time where the HDE starts to

dominate. Using the relation H = ȧ
a

, the cosmic scale factor
a is given by

a = c1

[
1 + 3H0(α + 1)(2αc2wh + c2wh + 1)

3α + 2

× (t − t0)

] 3α+2
3(α+1)(2αc2wh+c2wh+1)

, (18)

where c1 is an another positive constant of integration. One
can rewrite a as follows

a = a0

[
1 + 3H0(α + 1)(2αc2wh + c2wh + 1)

3α + 2

× (t − t0)

] 3α+2
3(α+1)(2αc2wh+c2wh+1)

, (19)

where a0 is the present value of the scale factor at the cos-
mic time t = t0. We obtain the power-law evolution of the
Universe which avoids the big-bang singularity.

The deceleration parameter q , which is defined as q =
−aä/ȧ2, is a geometric parameter which describes the ac-
celeration or deceleration of the Universe depending on it’s
negative or positive value. In this case, the deceleration pa-
rameter is given by

q = 3(α + 1)(2αc2wh + c2wh + 1)

3α + 2
− 1. (20)

Here, we obtain a constant deceleration parameter as ex-
pected due to the power-law scale factor. The accelerated
expansion may be obtained if the parameters satisfy the con-

straint 3(α+1)(2αc2wh+c2wh+1)
3α+2 < 1. In a paper, Li et al. (2013)

have studied the Planck constraints on HDE and obtained the
tightest and self-consistent value of constant c from Planck
+ WP + BAO + HST + lensing as c = 0.495 ± 0.039.
Therefore, let us consider here and thereafter c = 0.5 for
further discussion which is lying in this observed range.
Now, for example let’s take α = 1 and wh = −0.5, we
obtain q = −0.25 which shows the accelerated expansion.
Moreover, one may obtain the accelerated expansion even
when the HDE does not violate the strong energy condition
ρh + 3ph > 0 for suitable values of coupling parameter α.
Thus, the HDE with Hubble horizon as an IR cut-off can
successfully explain the accelerated expansion in the frame-
work of f (R,T ) gravity without assuming the interaction
between HDE and DM in contrast to the works done in GR
(Hsu 2004) and in Brans-Dicke theory (Xu et al. 2009). It is
to be noted that this model does not show the phase transi-
tion as the deceleration parameter is constant.

In order to get a robust analysis to discriminate among
DE models Sahni et al. (2003) and Alam et al. (2003) have
introduced a new geometrical diagnostic pair {r, s}, known
as statefinder parameters, which is constructed from the
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scale factor and its derivatives up to the third order. The
statefinder pair {r, s} is geometrical in nature as it is con-
structed from the space-time metric directly. The statefinder
pair {r, s} provides a very comprehensive description of the
dynamics of the Universe and consequently the nature of
the DE. It is defined as

r =
...
a

aH 3
, s = r − 1

3(q − 1/2)
. (21)

In this model, we obtain the statefinder parameters r and s

as

r = 18(α + 1)2(2αc2wh + c2wh + 1)2

(3α + 2)2

− 9(α + 1)(2αc2wh + c2wh + 1)

3α + 2
+ 1,

(22)

s = (α + 1)(2αc2wh + c2wh + 1)

(3α + 2)[(α + 1)(2αc2wh + c2wh + 1) − 1
2 ]

× [
2(α + 1)

(
2αc2wh + c2wh + 1

) − (3α + 2)
]
. (23)

We observe that the statefinder parameters {r, s} are constant
and the values of these parameters depend on the coupling
parameter α, constant c and EoS parameter wh of HDE. In
the papers (Sahni et al. 2003; Alam et al. 2003), it has been
observed that SCDM model and �CDM model have fixed
point values of statefinder pair {r, s} = {1,1} and {r, s} =
{1,0}, respectively. In our work, it is observed that fixed

point of �CDM model can be achieved for α = − 1+c2wh

2c2wh

as a particular case of this model. Thus, for a suitable value
of wh, which may be obtained by observations, we can find
the coupling parameter α for which {r, s} = {1,0} and vicev-
ersa.

4 Viscous holographic dark energy cosmology

In the non-viscous HDE model, we have obtained the con-
stant value of deceleration parameter which does not de-
scribe the phase transition. But, the astronomical observa-
tions show that the phase transition is an integral part of
the evolution of the Universe. Therefore, in this section, it
would be of interest to investigate whether a viscous HDE
with the Hubble horizon as an IR cut-off could be helpful
to explain the phase transition, i.e., time-dependent decel-
eration parameter with signature flip from positive to nega-
tive in order to elucidate the observed phase transition of the
Universe.

In an accelerating Universe, it may be natural to assume
that the expansion process is actually a collection of state out
of thermal equilibrium in a small fraction of time due to the
existence of possible dissipative mechanisms. In an isotropic
and homogeneous FRW model, the dissipative process may

be treated via the relativistic theory of bulk viscosity pro-
posed by Eckart (1940) and later on pursued by Landau and
Lifshitz (1987). It has been found that only the bulk viscous
fluid remains compatible with the assumption of large scale
homogeneity and isotropy. The other processes, like shear
and heat conduction, are directional mechanisms and they
decay as the Universe expands. In a cosmological context
the inclusion of viscosity broadens the applicability of the
theory considerably. Bulk viscosity can produce an acceler-
ated expansion even without dark energy matter due to the
presence of an effective negative pressure. A number of pa-
pers have appeared on viscous cosmology (for review, see
Grøn 1990; Brevik and Grøn 2013). Recently, the present
authors (Singh and Kumar 2014; Kumar and Singh 2015)
have studied the effect of viscous fluid in f (R,T ) gravity
and discussed the recent phase transition of the Universe.

Using the Eckart formalism for dissipative fluids, we can
assume that the effective pressure of HDE is a sum of the
thermodynamical pressure (ph) and the bulk viscous pres-
sure (Π ), i.e.,

Peff = ph + Π = ph − 3ζH, (24)

where ζ is the positive coefficient of the bulk viscosity. Now,
the matter Lagrangian is taken as Lm = −Peff for which
Eq. (4) gives �μν = −2Tμν −Peff gμν . In this model we fol-
low the same concept as discussed in Sect. 3 to analyze the
behavior of the Universe. Using f (T ) = αT , Eq. (3) yields
the field equations for viscous HDE in the framework of
f (R,T ) gravity as

3H 2 = ρm + ρh + α(ρm + ρh + ph − 3ζH) + 1

2
αT , (25)

2Ḣ + 3H 2 = −ph + 3ζH + 1

2
αT . (26)

In this case, the trace of energy-momentum tensor is T =
ρm + ρh − 3(ph − 3ζH). Using this value of T into (25)
and (26), a single evolution equation of H is given by

2Ḣ + (α + 1)(ρm + ρh + ph) − 3(α + 1)ζH = 0. (27)

From (25), we get

ρm = 3

(3α + 2)
H

[(
αc2wh − 3αc2 − 2c2 + 2

)
H − αζ

]
.

(28)

Now, Using (13) and (28) into (27), we get

Ḣ + 3(α + 1)

3α + 2

(
2αc2wh + c2wh + 1

)
H 2

− 3(α + 1)(2α + 1)ζ

(3α + 2)
H = 0. (29)
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Equation (29) is solvable for H if the coefficient of bulk
viscosity ζ is known. Many authors have studied the cosmo-
logical models by assuming the various forms of the bulk
viscous coefficient (for review, see Maartens 1995). Ren
and Meng (2006a, 2006b) have taken a general form ζ =
ζ0 + ζ1H + ζ2H

2 of bulk viscous coefficient. However, in
our case it is too difficult to solve Eq. (29) with this general
form of ζ . Therefore, we assume the bulk viscous coefficient
of the form ζ = ζ0 + ζ1H (Avelino and Nucamendi 2010;
Singh and Kumar 2014) by taking ζ2 = 0. With this form
of ζ , Eq. (29) reduces to

Ḣ + 3(α + 1)

3α + 2

(
2αc2wh + c2wh − 2αζ1 − ζ1 + 1

)
H 2

− 3(α + 1)(2α + 1)ζ0

(3α + 2)
H = 0. (30)

The solution of (30) is given by

H = e
3(α+1)(2α+1)ζ0

(3α+2)
t

c2 + (2αc2wh+c2wh−2αζ1−ζ1+1)
(2α+1)ζ0

e
3(α+1)(2α+1)ζ0

(3α+2)
t
, (31)

where c2 is a constant of integration. The scale factor a in
the terms of cosmic time t is

a = c3

[
c2 + (2αc2wh + c2wh − 2αζ1 − ζ1 + 1)

(2α + 1)ζ0

× e
3(α+1)(2α+1)ζ0

(3α+2)
t

] 3α+2
3(α+1)(2αc2wh+c2wh−2αζ1−ζ1+1)

, (32)

where c3 > 0 is another constant of integration. Equation
(32) can be rewritten as

a = a0

[
1 + (2αc2wh + c2wh − 2αζ1 − ζ1 + 1)H0

(2α + 1)ζ0

× (
e

3(α+1)(2α+1)ζ0(t−t0)

(3α+2) − 1
)] (3α+2)/(α+1)

3(2αc2wh+c2wh−2αζ1−ζ1+1)

. (33)

One can observe that the model avoids the big-bang singu-
larity. In this case, the deceleration parameter is obtained as

q = 3(α + 1)

(3α + 2)H0

[(
2αc2wh + c2wh − 2αζ1 − ζ1 + 1

)
H0

− (2α + 1)ζ0
]
e

3(α+1)(2α+1)ζ0
(3α+2)

(t0−t) − 1. (34)

It is observed that the value of q is time-dependent which
comes due to the introduction of bulk viscous term in HDE.
The phase transition of the Universe can be explained using
this value of deceleration parameter. The deceleration pa-
rameter must change it’s sign from positive to negative to
explain the recent phase transition (deceleration to accelera-
tion) of the Universe. In fact, q must change the sign at the

time t = t0 because we have assumed t0 is the time where the
viscous HDE begins to dominate. In other words, the Uni-
verse must decelerate for t < t0 (matter dominated epoch)
and accelerate for t > t0 (HDE dominated epoch). We ob-
serve that the Universe shows the transition from decelerated
to accelerated phase at cosmic time t0 if 3(α+1)[(2αc2wh+
c2wh − 2αζ1 − ζ1 + 1)H0 − (2α + 1)ζ0] = (3α + 2)H0.
Therefore, the value of coupling parameter α can be ob-
tained for a given value of wh, which may be obtained from
the observations, or vice-versa to get the phase transition.
Thus, we have shown that the bulk viscous HDE with Hub-
ble horizon as an IR cut-off can explain the recent phase
transition of the Universe in the framework of f (R,T ) grav-
ity.

Next, we discuss the another geometrical parameters, i.e.,
statefinder parameters. In this case, the statefinder parameter
r is obtained as

r = 9(α + 1)2

(3α + 2)2H0

[(
2αc2wh + c2wh − 2αζ1 − ζ1 + 1

)
H0

− (2α + 1)ζ0
]

×
[

(2αc2wh + c2wh − 2αζ1 − ζ1 + 1)H0 − (2α + 1)ζ0

H0e
6(α+1)(2α+1)ζ0

(3α+2)
(t−t0)

+ (2αc2wh + c2wh − 2αζ1 − ζ1 + 1) − 3α+2
α+1

e
3(α+1)(2α+1)ζ0

(3α+2)
(t−t0)

]
+ 1.

(35)

The second statefinder parameter s is not given here due
to complexity but one can find it by using the values of
q and r from (34) and (35) in s = r−1

3(q−1/2)
. Our model

reproduces the fixed point value {r, s} = {1,0} of �CDM
model when the parameter α satisfies the condition α =
− 1

2 (1+ H0
c2whH0−ζ1H0−ζ0

). For this value of α, the statefinder
pair is independent of time and remains fixed throughout
the evolution as in �CDM model. Indeed, we have obtained
time-dependent statefinder pair which means that a general
study of the behavior of this pair is needed.

We plot the trajectories in r-s plane for some particular
values of parameters α and wh to discriminate our model
with existing models of DE. Here, we have taken c = 0.5,
H0 = 1, ζ0 = ζ1 = 0.05 and t0 = 1. In Figs. 1 and 2, the fixed
points {r, s} = {1,1} and {r, s} = {1,0} have been shown as
SCDM model and �CDM model, respectively. It is obvious
from both the figures that for any values of α and wh, which
are consistent with the model, the viscous HDE model al-
ways approaches to the �CDM model, i.e., {r, s} = {1,0}
in the late time evolution. In the early time of the evolution
our model can approach in the vicinity of SCDM model for
some values of α as can be seen in Figs. 1 and 2. It is inter-
esting to note that for larger negative values of α the trajec-
tories may start from �CDM in the early time and approach
to the same �CDM model during the late time evolution.
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Fig. 1 The trajectories in r-s plane are plotted for wh = −0.5 and
different values of α

Fig. 2 The trajectories in r-s plane are plotted for wh = −1 and dif-
ferent values of α

In the quiessence model with constant EoS (Q1-model)
(Sahni et al. 2003; Alam et al. 2003) and the Ricci dark en-
ergy (RDE) model (Feng 2008), it has been shown that the
trajectories in r-s plane are vertically straight lines. In the
both models, s is constant throughout the evolution of the
Universe, while r increases in RDE model and decreases
in Q1-model starting from the initial point r = 1. It has also
been shown (Sahni et al. 2003; Alam et al. 2003) that the tra-
jectories for the quintessence scalar field model (Q2-model),
where the scalar potential V (φ) varies as V (φ) ∝ φ−β ,
β ≥ 1, and chaplygin gas model approach asymptotically
to the �CDM model in the late time. Comparing this vis-
cous HDE model with Q1-model and RDE model, we find

Fig. 3 The trajectories in r-q plane are plotted for wh = −0.5 and
different values of α

that our viscous HDE model produces the curved trajectories
which approach to �CDM model in the late time. Further,
we observe that our model almost shows the similar trajec-
tories like Q2-model for some values of α and wh in r-s
plane. For α = −0.15, wh = −0.5 and α = −0.23, wh = −1
as shown in Figs. 1 and 2, respectively, the trajectories show
almost similar behavior as Q2-model for β = 2.

It may be observed from Figs. 1 and 2 that for a fixed
value of α, say α = −0.15, the trajectories show more devi-
ation from the Q2-model as we increase the negative value
of wh. Further, for small negative values or positive val-
ues of α, the trajectories deviate more and more from the
Q2-model for fixed value of wh (see, Sahni et al. 2003;
Alam et al. 2003). We may fix α, and vary ζ0 and ζ1, the
same behavior of trajectories can be observed for suitable
values of ζ0 and ζ1.

Figures 3 and 4 plot the trajectories in r-q plane. Here,
we have taken c = 0.5, H0 = 1, ζ0 = ζ1 = 0.05, and t0 = 1.
The SCDM model and SS model (steady-state cosmology)
have been shown by the fixed points {r, q} = {1,0.5} and
{r, q} = {1,−1} , respectively. We observe the signature flip
in the value of q from positive to negative which explain
the recent phase transition successfully. The �CDM model
starting from the fixed point of SCDM model evolves along
the doted line and ends at the fixed point of SS model. It
can be observed from both the figures that for any values
of α and wh, the viscous HDE model always approaches
to the SS model, i.e., {r, q} = {1,−1} as �CDM, Q2 and
chaplygin gas models approach in the late time evolution.
However, in the early time of evolution the model stats close
to SCDM model for some values of α as shown in Figs. 3
and 4. Moreover. it may start exactly from the fixed point
{r, q} = {1,0.5} of SCDM for suitable value of α. In r-q
plane also the trajectories corresponding to our model show
the Q2-model like behavior. Again, comparing our viscous
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Fig. 4 The trajectories in r-q plane are plotted for wh = −1 and dif-
ferent values of α

HDE model with Q1-model, RDE model, Q2-model and
chaplygin gas model, we find that viscous HDE model is
compatible with Q2-model.

5 Conclusion

In GR and Brans-Dicke theory, some authors (Hsu 2004;
Xu et al. 2009) have found that the Hubble horizon is not a
viable candidate to explain the accelerated expansion of the
Universe. However, Pavón and Zimdahl (2005), and Baner-
jee and Pavón (2007) have shown that the interaction be-
tween HDE and DM can describe the accelerated expansion.
Therefore, it is clear that one can observe accelerated expan-
sion if the interaction between the different matter contents
is considered. In this work, we have studied non-viscous and
viscous HDE models with Hubble horizon as an IR cut-off
in the frame work of modified f (R,T ) gravity. The f (R,T )

gravity theory presents a maximal coupling between ge-
ometry and matter. Therefore, we have explored the con-
sequences of the coupling of matter with the geometry of
the Universe instead of taking the interaction between HDE
and DM as many authors have studied. We have investigated
the possibility whether the Hubble horizon as an IR cut-off
could explain an accelerated expansion in f (R,T ) gravity.
We have shown that the non-viscous and viscous HDE mod-
els with Hubble horizon as an IR cut-off may explain the
accelerated expansion in the frame work of this modified
theory. Further, we have investigated statefinder pair {r, s}
to discriminate our non-viscous and viscous HDE models
with other existing DE models. We summarize the results of
these two models as follows: in non-viscous HDE model, we
have found an accelerated expansion under the constraint of
parameters. In this case, we have obtained constant deceler-
ation and statefinder parameters. Due to constant q , it is not

possible to analyze the phase transition of the Universe. We
have found the fixed point {r, s} = {1,0} of �CDM model
as a particular case of this model. Thus, non-viscous HDE
model is consistent with �CDM model.

In viscous HDE model, we have obtained the recent
phase transition of the Universe as the deceleration parame-
ter comes out to be time-dependent and shows signature flip
from positive to negative. In this model, the statefinder pa-
rameters also are the function of cosmic time t . These time-
dependent parameters are possible due to the inclusion of
bulk viscous fluid in HDE model which could explain the re-
cent phase transition in a better way. It is interesting to note
that the viscous HDE model gives the �CDM model fixed
point {r, s} = {1,0} and remains fixed in �CDM model
throughout the evolution for a specific value of α as dis-
cussed in Sect. 4. The statefinder diagnostic have been dis-
cussed through the trajectories of r-s and r-q planes as
shown in Figs. 1–4 to discriminate our model with the exist-
ing DE models. In Figs. 1 and 2, it has been observed that
some of the trajectories pass through the vicinity of SCDM
during early time but ultimately all approach to �CDM
model in the late time. In Figs. 3 and 4, it can be seen that the
trajectories may start from SCDM model for a suitable value
of α in early time but all the trajectories approach to SS
model in the late time evolution. It has been noticed that for
some values of α the trajectories of the viscous HDE model
are similar to the trajectories of Q2-model (Sahni et al. 2003;
Alam et al. 2003). Therefore, the viscous HDE in the frame-
work of f (R,T ) gravity gives more general results in com-
parison to �CDM and Q2-model at least at the level of
statefinder diagnostic as we are able to achieve the behav-
ior of both the models.
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