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Abstract In this paper, we reconstruct a suitable model in
f (R,T ) gravity, (where R is the Ricci scalar and T is the
trace of the energy momentum tensor) which depict the cur-
rent cosmic picture in more consistent way. The dynamical
field equations are solved for generic anisotropic space-time.
The solution of field equations helps us to determine the
future cosmic evolution for both physical and kinematical
quantities. We explore the nature of deceleration parameter,
NEC and energy density for three different cases represent-
ing Bianchi type I, III and Kantowski-Sachs universe model.
We find that this study favors the phantom cosmic evolution
in all cases.

Keywords f (R,T ) gravity · Dark energy · Anisotropic
models

1 Introduction

Over the years, it is under the discussion that universe is
facing an accelerated cosmic expansion. According to most
of the observations, it is due to the exotic energy compo-
nent, known as dark energy (DE) (Perlmutter et al. 1997,
1998, 1999), but the nature and behavior of DE is anony-
mous. Currently, there are two main ways for the discus-
sion of this accelerated expansion. One way is to intro-
duced scalar fields models in Einstein gravity like phantom
(Caldwell 2002; Nojiri and Odintsov 2003), quintessence
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(Sahni and Starobinsky 2000; Sahni 2004; Padmanabhan
2008) and anisotropic fluids (Akarsu and Kilinc 2010; Sharif
and Zubair 2010), etc. An alternative way is modifications of
Einstein Hilbert action to obtain alternate theories of gravity
like f (R) gravity (Starobinsky 1980), f (τ) (where τ being
the torsion scalar) gravity (Ferraro and Fiorini 2007; Ben-
gochea and Ferraro 2009; Zubair 2015, 2016) and Gauss-
Bonnet gravity (Carroll et al. 2005; Cognola 2006), etc. DE
is linked with the modification of Einstein gravity in such
a way that it would give an alternative way to describe its
nature.

Recently, Harko et al. (2011) introduced f (R,T ) gravity
by defining a function of R and T in Einstein Lagrangian.
The action for this theory is described by

I = 1

2κ2

∫
f (R,T )

√−gdx4 +
∫

Lm

√−gdx4, (1)

in above equation, Lm is matter lagrangian and κ2 = 8πG.
The matter energy momentum tensor can be stated as (Land
and Lifshitz 2002)

Tαβ = − 2√−g

δ(
√−gLm)

δgαβ
. (2)

Harko et al. (2011) formulated the modified dynamical
equations in metric formalism for different choices of the
Lagrangian. The motion of massive test particles is found
to be non-geodesic leading to the presence of extra force.
This version of modified theories has gained significant im-
portance and various issues have been presented in liter-
ature (Houndjo et al. 2012; Jamil et al. 2012; Alvarenga
et al. 2013; Chakraborty 2013; Zubair and Noureen 2015;
Noureen et al. 2015). Houndjo and Piattella (2012) con-
sidered f (R,T ) theories of gravity and numerically recon-
structed the f (R,T ) function which can reproduce the stan-
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dard transition era from matter dominated phase to the accel-
eration phase. In Houndjo and Piattella (2012) presented the
cosmic evolution in the presence of dark matter and holo-
graphic DE. The chaplygin gas f (R,T ) models are also
explored in Houndjo et al. (2012) and Jamil et al. (2012)
and it is shown that dust fluid can reproduce ΛCDM, Ein-
stein static cosmos and phantom cosmology. Alvarenga et al.
(2013) studied the scalar cosmological perturbations in the
metric formalism in the context of f (R,T ) gravity and set
an explicit model in these theories to guarantee the standard
continuity equation.

Chakraborty (2013) obtained particular f (R,T ) func-
tions by taking the conservation of stress-energy tensor for
homogeneous and isotropic cosmic model. Reddy et al.
(2012) used f (R,T ) = R + 2f (T ) model in the presence
of perfect fluid to develop a viable cosmological model and
studied some physical features for Bianchi III model. Ah-
mad and Pradhan (2014) used the similar model for per-
fect fluid and found cosmological solutions for Bianchi type
V spacetime. Shamir et al. (2015) found exact solutions of
LRS Bianchi type I in the context of f (R,T ) gravity us-
ing the proportionality relation between expansion and shear
scalars. Sharif and Zubair (2013, 2012, 2014) discussed cos-
mic evolution of LRS Bianchi I model in the background
of f (R,T ) = f (R) + λT , by exploring the null energy
condition (NEC) and ωDE . The exact solution were ob-
tained in two different scenarios; employing the anisotropic
feature of model and assuming a particular from of func-
tion f (R). Moreover, the behavior of dynamical parame-
ters was also presented for exponential and power law ex-
pansion cases. The objective of this paper is to find more
consistent f (R,T ) model which counts the current cosmic
era. We will solve modified field equations with the help of
anisotropic nature of spacetime and discuss some dynami-
cal features for generic model which represents the Bianchi
type I, III and Kantowski-Sachs space-times. This paper has
following sequence. In Sect. 2, we develop the field equa-
tions and find their solutions as well as some physical pa-
rameters. Section 3 relates to the discussion of some im-
portant cases. Finally, Sect. 4, comprises of concluding re-
marks.

2 f (R,T ) gravity

The field equations corresponding to action (1) are

κ2Tαβ − fT (R,T )Tαβ − fT (R,T )Θαβ

− RαβfR(R,T ) + 1

2
gαβf (R,T )

+ (∇α∇β − gαβ�)fR(R,T ) = 0, (3)

where fR = df
dR

, fT = df
dT

and � = ∇α∇α , ∇α represents
the covariant derivative and Θμν is represented by

Θμν = gαβδTαβ

δgμν

= −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (4)

We can represent trace of Eq. (3) as

κ2T − fT (R,T )T − fT (R,T )Θ − RfR(R,T )

− 2f (R,T ) + 3�fR(R,T ) = 0, (5)

where Θ = Θα
α . From Eqs. (3) and (5), we get

κ2
(

Tαβ − 1

4
T gαβ

)
− fT (R,T )

(
Tαβ − 1

4
T gαβ

)

− fT (R,T )

(
Θαβ − 1

4
Θgαβ

)

−
(

Rαβ − 1

4
Rgαβ

)
fR(R,T )

−
(

1

4
gαβ�− ∇α∇β

)
fR(R,T ) = 0. (6)

The energy momentum tensor for perfect fluid is defined as

Tαβ = (ρ + p)uαuβ − pgαβ,

where p and ρ indicate the pressure and energy density re-
spectively. For matter configuration equation of state (EoS)
is defined as ω = p/ρ which determines different eras de-
pending on its values. ω = −1 denotes the ΛCDM model,
ω > −1 represents quintessence phase and phantom phase
is represented by ω < −1. We have two alternatives for
Lm to be selected for perfect fluid either Lm = −p or
Lm = ρ which have been studied in the literature (Sotiriou
and Faraoni 2008; Bertolami et al. 2007; Bisabr 2013). In
our case, we choose Lm = −p which helps to find Θαβ of
the form

Θαβ = −2Tαβ − pgαβ. (7)

So, the field equations become

κ2
(

Tαβ − 1

4
T gαβ

)
+ fT (R,T )(Tαβ + pgαβ)

− 1

4
fT (R,T )(ρ + p)gαβ −

(
Rαβ − 1

4
Rgαβ

)
fR(R,T )

−
(

1

4
gαβ�− ∇α∇β

)
fR(R,T ) = 0. (8)

If one takes fT = 0, in above equation, then field equations
convert to that in f (R) gravity. In this work, we choose the
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following f (R,T ) model (Harko et al. 2011)

f (R,T ) = f (R) + λT , (9)

where λ being the coupling parameter. The general model
representing Bianchi type I, III and Kantowski-Sachs space-
times can be defined as

ds2 = dt2 − A2(t)dr2 − B2(t)dθ2

− B2(t)K2(θ)dφ2, (10)

where k(θ) is the function of θ , A(t) and B(t) represent the
scale factors dependent on cosmic time. For metric (10), we
get the field equations as follows
(

Ä

A
+ 2

B̈

B
− ȦḂ

AB
− Ḃ2

B2
+ K ′′(θ)

B2K(θ)

)
F

− 1

2

(
Ȧ

A
+ 2

Ḃ

B

)
d

dt
F + 3

2

d2

dt2
F

= −3

2

(
κ2 + λ

)
(ρ + p), (11)

(
Ä

A
− 2

B̈

B
+ 2

ȦḂ

AB
− Ḃ2

B2
+ K ′′(θ)

B2K(θ)

)
F

−
(

Ḃ

B

)
d

dt
F − 1

2

d2

dt2
F

= 1

2

(
κ2 + λ

)
(ρ + p), (12)

(
Ḃ2

B2
− Ä

A
− K ′′(θ)

B2K(θ)

)
F − 1

2

(
Ȧ

A
+ Ḃ

B

)
d

dt
F − 1

2

d2

dt2
F

= 1

2

(
κ2 + λ

)
(ρ + p), (13)

where F(R) = fR(R), R = −2( Ä
A

+ 2 B̈
B

+ 2 ȦḂ
AB

+ Ḃ2

B2 −
K ′′(θ)

B2K(θ)
) and dot is the time derivative.

Now we identify some quantities including volume V ,
expansion scalar Θ and shear scalar σ

V = a3 = AB2, θ = ua
;a = Ȧ

A
+ 2

Ḃ

B
,

σ 2 = 1

2
σabσ

ab = 1

3

(
Ȧ

A
− Ḃ

B

)2

.

The anisotropy parameter of expansion, mean Hubble pa-
rameters and deceleration parameter q are given by

� = 2

9

(
Hx − Hy

H

)2

,

H = (ln ȧ) = 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
,

q = d

dt

(
1

H

)
− 1,

(14)

where Hx = Ȧ
A

and Hy = Ḃ
B

.

Now subtracting Eqs. (12) and (13), we find

(
Ä

A
+ ȦḂ

AB
− B̈

B
− Ḃ2

B2
+ K ′′(θ)

B2K(θ)

)
F

+
(

Ȧ

A
− Ḃ

B

)
d

dt
F = 0. (15)

For the solution of above equation, we utilize a physical
form that expansion scalar is proportional to shear scalar
(Sharif and Zubair 2012, 2014; Roy et al. 1985; Adhav et al.
2007; Reddy and Kumar 2013). Thorne (1967) found that
the velocity redshift relation for extragalactic sources im-
ply the isotropic nature of cosmos within the 30 % range
approximately i.e., σ

H
≤ 0.30 (Kantowski and Sachs 1966).

Collins (1977) studied physical importance of this form for
perfect fluid and barotropic EoS in a more general case. This
condition results in following relation

A = Bα, α �= 1, α > 0. (16)

By using the above condition and simplifying, we find

B̈

B
+ ḂḞ

BF
+ (α + 1)

Ḃ2

B2
− (α − 1)

K ′′(θ)

B2K(θ)
= 0. (17)

To solve the above equation, we assume a relation between
F and a as the F ∝ aβ (Sharif and Shamir 2009, 2010;
Sharif and Zubair 2013, 2014),

F = laβ, (18)

where β can be any scalar and l determines the proportion-
ality sign.

B̈ + (
1 + α + β(α + 2)

) Ḃ2

B
− (α − 1)K ′′(θ)

BK(θ)
= 0. (19)

Substituting Ḃ = f (B), it becomes

df 2

dB
+ (

1 + α + β(α + 2)
)f 2

B
= (α − 1)K ′′(θ)

Bk(θ)
, (20)

whose solution is

f 2 =
(

dB

dt

)2

= (α − 1)k′′(θ)

(1 + α + β(α + 2))K(θ)

+ C

B(1+α+β(α+2))
, (21)

where c represents constant of integration. So the space time
Eq. (10) goes to be

ds2 =
(

dt

dB

)2

dB2 − B2α(t)dr2 − B2(t)dθ2

− B2(t)K2(θ)dφ2
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= dT 2

(α−1)k′′(θ)
(1+α+β(α+2))k(θ)

+ C

T (1+α+β(α+2))

− T 2αdr2 − T 2dθ2 − T 2k2(θ)dφ2, (22)

where B = T . We describe physical features of model (22).
The directional Hubble parameter and mean Hubble param-
eter takes the form

Hx = αHy = α

[
(α − 1)k′′(θ)

T 2(1 + α + β(α + 2))k(θ)

+ c

T 3+α+β(α+2)

] 1
2

,

H = α + 2

3

[
(α − 1)k′′(θ)

T 2(1 + α + β(α + 2))k(θ)

+ c

T 3+α+β(α+2)

] 1
2

.

(23)

It can be seen that these quantities appear to be dynami-
cal and approach to zero as T → ∞ subject to the condi-
tion that 3 + α + β(α + 2) > 0, which can satisfied only if
β ≥ −1 with α > 1. Moreover, for earlier times these param-
eters take infinitely large values for 3 + α + β(α + 2) > 0.
In present discussion we find similar results for volume and
anisotropy parameter as shown in Sharif and Zubair (2012,
2014).

The deceleration parameter, shear scalar and expansion
scalar are set to be

q = ∂t

(
1

α+2
3 [ (α−1)k′′(θ)

T 2(1+α+β(α+2))k(θ)
+ c

T 3+α+β(α+2) ] 1
2

)
− 1,

(24)

θ = 3H = (α + 2)

[
(α − 1)k′′(θ)

T 2(1 + α + β(α + 2))k(θ)

+ c

T 3+α+β(α+2)

] 1
2

, (25)

σ = (α − 1)2

3

[
(α − 1)k′′(θ)

T 2(1 + α + β(α + 2))k(θ)

+ c

T 3+α+β(α+2)

]
. (26)

We present the evolution of q for subcases in next section
and evolution of θ and σ is very similar to that for the Hub-
ble parameter H . Using Eq. (21) in field equations (11)–
(13), we find the following relations for null energy condi-
tion (NEC) and energy density ρ

ρ + p = [
T −3−αlk(θ)

(
1 + α + k(θ)β(2 + α)

)

× (
2T 1+α+β(2+α)

(
2β + (2 + β)α

)

+ c
(
2 + α

(
2 − 2α + β(2 + α)

))) + T 1+α+β(2+α)

× (−2(1 + α) + k(θ)
(−2 + (−2 + α)

× (−2α2 + β(1 + α)(2 + α)
)))

k′′(θ)
]

× [
k(θ)

(
1 + α + k(θ)β(2 + α)

)(
κ2 + λ

)]−1
,

(27)

ρ = [
T −3−αl

[
k(θ)

(
1 + α + k(θ)β(2 + α)

)

× [
2T 1+α+β(2+α)

(
2β + (2 + β)α

)

+ c
(
2 + α

(
2 − 2α + β(2 + α)

))] + T 1+α+β(2+α)

× [
k(θ)

[−2 + (−2 + α)
[
β(1 + α)(2 + α) − 2α2]]

− 2(1 + α)
]
k′′(θ)

]][
k(θ)

(
1 + α + k(θ)β(2 + α)

)

× (
κ2 + λ

)
(1 + ω)

]−1
. (28)

Putting the Eqs. (21) and (27) in Eq. (5) results in follow-
ing function of f (R,T )

f (R,T ) = T (2+α)β l

2

[
R + 1

T 3

[
3β(2 + α)

×
(

−2T + T −α−β(2+α)c(1 + α)

+ T (−1 + α2)k′′(θ)

1 + α + k(θ)β(2 + α)

)]

− [(
T −3−α−β(2+α)(1 − 3ω)

× (
k(θ)

(
1 + α + k(θ)β(2 + α)

)

× (
2T 1+α+β(2+α)

(
2β + (2 + β)α

)

+ c
(
2 + α

(
2 − 2α + β(2 + α)

)))

+ T 1+α+β(2+α)
(−2(1 + α)

+ k(θ)
(−2 + (−2 + α)

× (−2α2 + β(1 + α)(2 + α)
)))

k′′(θ)
))

/
(
k(θ)

(
1 + α + k(θ)β(2 + α)

)
(1 + ω)

)]

+[(
2T −3−α−β(2+α)λ(−1 + ω)

× (
k(θ)

(
1 + α + k(θ)β(2 + α)

)

× (
2T 1+α+β(2+α)

(
2β(2 + β)α

)

+ c
(
2 + α

(
2 − 2α + β(2 + α)

)))

+ T 1+α+β(2+α)
(−2(1 + α) + k(θ)

× (−2 + (−2 + α)
(−2α2 + β(1 + α)

× (2 + α)
)))

k′′(θ)
))
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Fig. 1 Behavior of NEC (left
plot) and ρ (right plot) for LRS
Bianchi I model versus T and λ.
Herein, we set α = 1.1, β = −2,
l = 1, c = 2 and κ = 8π

Fig. 2 Behavior of NEC (left
plot) and ρ (right plot) for LRS
Bianchi I model versus T and λ.
We set α = 1.1, β = −2, l = 1,
c = 2 and κ = 8π

/
(
k(θ)

(
1 + α + k(θ)β(2 + α)

)

× (
κ2 + λ

)
(1 + ω)

)]]
. (29)

3 Some important cases

Now we discuss some particular cases depending on k(θ).

• LRS Bianchi type-I Model

For k(θ) = θ , we get LRS Bianchi type-I model, which re-
duces to flat FRW spacetime if A(t) = B(t) = a(t). This
spacetime has one transverse direction x and two equivalent
longitudinal directions y and z.

We can define the relations of NEC and ρ for this model
as

ρ + p = [
T −3−αl

[(
T 1+α+β(2+α)(1 + α)

(
2α + β(2 + α)

)
+ c

(
2 + α

(
2 − 2α + β(2 + α)

)))]]

× [
κ2 + λ

]−1
, (30)

ρ = [
T −3−αl

(
T 1+α+β(2+α)(1 + α)

(
2α + β(2 + α)

)
+ c

(
2 + α

(
2 − 2α + β(2 + α)

)))]

× [(
κ2 + λ

)
(1 + ω)

]−1
. (31)

In Figs. 1 and 2, we present the evolution of NEC and
ρ for LRS Bianchi I model. In our studies we focus on
both positive and negative values of the coupling parame-
ter λ. One can see that NEC is satisfied so that is the en-
ergy density for the choice of parameters α = 1.1, β = −2,

Fig. 3 Plot of f (R,T ) versus λ and T

l = 1, c = 2 and κ = 8π as shown in Fig. 1. The validity of
NEC implies that EoS parameter ω > −1 (the quintessence
model). If c > 0, then ρ + p < 0 so that NEC is violated,
ω < −1 representing phantom era of DE as shown in Fig. 2.
Hence the evolution of cosmological parameters is consis-
tent with the current observational data (Perlmutter et al.
1999; Ade et al. 2013).

The deceleration parameter for LRS Bianchi I model is
given as

q = 5 + 6β + α + 3βα

4 + 2α
. (32)

Here, the value of q is independent of the choice of α if
β = −2 and q < −1 for this choice of parameters. q < −1,
is consistent with the above shown evolution of ρ + p. It is
a cumbersome task to find the explicit form of the function
f (R,T ), we present the plot of f (R,T ) versus λ and T as
shown in Fig. 3.
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• Bianchi type-III Model

When k(θ) = sin θ then we get the Bianchi III model. This
model also describes the homogeneous and anisotropic be-
havior of the universe. In literature (Shamir et al. 2015;
Kiran and Reddy 2013; Chandel and Ram 2013), people
have discussed the Bianchi type III in the background of
f (R,T ) gravity. Kiran and Reddy (2013) found that the
bulk viscous string Bianchi type III model does not exist
in f (R,T ) gravity for the choice of f (R,T ) = R + 2f (T ).

The expression of the NEC, energy density and deceler-
ation parameter for Bianchi type III model can be expressed
as

ρ + p = [(
1 + α + β(2 + α)

)(
κ2 + λ

)]−1

× [
T −3−αlc

(
1 + α + β(2 + α)

)
× (

2 + α
(
2 − 2α + β(2 + α)

))

+ T 1+α+β(2+α)(2β2α(2 + α)2

+ 2
(
2 + α + 3α3)

+ β(2 + α)
(
2 + α(3 + 5α)

)]
, (33)

ρ = [
T −3−αl

[
c
(
1 + α + β(2 + α)

)
× (

2 + α
(
2 − 2α + β(2 + α)

))

+ T 1+α+β(2+α)
[
2β2α(2 + α)2 + 2

(
2 + α + 3α3)

Fig. 4 Plot of deceleration parameter for Bianchi type III model with
α = 1.1, β = −2, l = 1, c = 2 and κ = 8π

+ β(2 + α)
(
2 + α(3 + 5α)

)]]]

× [(
1 + α + β(2 + α)

)(
κ2 + λ

)
(1 + ω)

]−1
, (34)

q = −1 − 3

2T 4(2 + α)

×
√

T −1−α−β(2+α)c + 1 − α

1 + α + β(2 + α)

×
(

2T (−1 + α)

1 + α + β(2 + α)

− T −α−β(2+α)c
(
3 + α + β(2 + α)

))

×
(

T −3−α−β(2+α)c

+ 1 − α

T 2(1 + α + β(2 + α))

)−3/2

. (35)

To explore the dynamics of Bianchi type III model, we
first see the evolution of q which helps to constrain the pa-
rameters including β and c. q is found to be imaginary if
we set β < 0 and c < 0 with α � 1. Now −1 < q < 0 if
−0.7 � β � −1.3 and q < −1 if β � −1.4, later case ap-
pears to be more viable favoring the phantom model, we
present its evolution in Fig. 4.

Now we will see the behavior of the energy density and
NEC for Bianchi III model. Here, we set c = 2 and β = −2
according to the evolution of q . Figure 5 shows the evolution
of ρ and ρ + p versus λ and T . Left plot shows that NEC is
violated which implies the EoS parameter as ω < −1, also
it depicts the picture of q in more convincingly way. More-
over, in this era of DE, we have ρ > 0 as shown in right plot
of the Fig. 5. The plot of the function f (R,T ) for this model
is shown in Fig. 6.

• Kantowski-Sachs Model

When k(θ) = sinh θ , we get Kantowski-Sachs model. Au-
thors have explored the solutions of modified dynami-
cal equation for this model in f (R,T ) gravity (Samanta
2013; Reddy et al. 2014). Samanta (2013) discussed the
H(z), luminosity distance and distance modulus μ(z) for

Fig. 5 Behavior of NEC (left
plot) and ρ (right plot) for
Bianchi III model versus T

and λ. We set α = 1.1, β = −2,
l = 1, c = 2 and κ = 8π
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Kantowski-Sachs model in the background of particular
function f (R,T ) = R + λT . Using the similar f (R,T )

function, Reddy et al. (2014) presented the dynamics of
bulk viscous fluid and discussed some physical properties
for Kantowski-Sachs model. Here, in our case ρ and ρ + p

takes the following form.

ρ + p = [
T −3−αl

(
T 1+α+β(2+α)

(−4 + 2β2(2 + α)2

+ βα(2 + α)(5 + α)

− 2α
(−1 + (−4 + α)α

)) + c
(
1 + α + β(2 + α)

)

× (
2 + α

(
2 − 2α + β(2 + α)

)))]

× [
1 + α + β(2 + α)

(
κ2 + λ

)]−1
, (36)

Fig. 6 Evolution of f (R,T ) for Bianchi III model

Fig. 7 Plot of deceleration parameter for Kantowski-Sachs model with
α = 1.1, β = −2 and c = 2

ρ = [
T −3−αl

[
T 1+α+β(2+α)

[−4 + 2β2(2 + α)2

+ βα(2 + α)(5 + α) − 2α
(−1 + (−4 + α)α

)]

+ c
(
1 + α + β(2 + α)

)(
2 + α

(
2 − 2α + β(2 + α)

))]]

× [(
1 + α + β(2 + α)

)(
κ2 + λ

)
(1 + ω)

]−1 (37)

The relation of q for the above model is obtained of the form

q = −1 + 3

2T 4(2 + α)

×
√

T −1−α−β(2+α)c + −1 + α

1 + α + β(2 + α)

×
(

2T (−1 + α)

1 + α + β(2 + α)

+ T −α−β(2+α)c
(
3 + α + β(2 + α)

))

×
(

T −3−α−β(2+α)c

+ −1 + α

T 2(1 + α + β(2 + α))

)−3/2

(38)

Figure 7 shows the evolution of deceleration parameter

versus λ and T . In this case we find that for positive β , q > 0

at earlier times. Here, we set T ≥ 1.1, if β ≥ 54, it results in

−1 < q < 0, however for phantom cosmic era, we need to

set β ≤ −1.4. As in previous case, we are interested to dis-

cuss the phantom era in accordance with recent observations

(Ade et al. 2013). For the evolution of NEC we set β = −2,

it found that NEC is violated which favors the evolution of

q as shown in left plot of Fig. 8. Moreover, ρ > 0 for thick

choice of parameters.

Figure 9, shows the evolution of f (R,T ) for Kantowski-

Sachs model.

Fig. 8 Behavior of NEC (left
plot) and ρ (right plot) for
Kantowski-Sachs model versus
T and λ. We set α = 1.1,
β = −2, l = 1, c = 2 and
κ = 8π
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Fig. 9 Evolution of f (R,T ) for Kantowski-Sachs model with
α = 1.1, β = −2, l = 1 and c = 2

4 Conclusion

The f (R,T ) theory can be regarded as a potential candi-
date in explaining the role of DE to accelerate the cosmic
expansion. In such theory, cosmic acceleration may appear
as an outcome of unified contribution from geometrical and
matter components. A suitable form of Lagrangian which
can explain the cosmic evolution in a definite way is still
under consideration. People have studied various issues in
f (R,T ) gravity including the evolution of cosmic param-
eters for anisotropic cosmic models (Houndjo et al. 2012;
Chakraborty 2013; Reddy et al. 2012; Ahmad and Pradhan
2014; Shamir et al. 2015; Sharif and Zubair 2012, 2013,
2014). In this study we have obtained the exact solutions
of the modified field equations for the general model repre-
senting Bianchi type I, III and Kantowski-Sachs spacetimes.
In literature people have discussed these anisotropic mod-
els for more specific case R + λT (Kiran and Reddy 2013;
Samanta 2013; Reddy et al. 2014). However, we have em-
ployed more general function f (R)+λT , which has already
been discussed in Sharif and Shamir (2009, 2010), Sharif
and Zubair (2013, 2014) for LRS Bianchi type I model.

In finding the solution we restrict the anisotropic na-
ture of universe using the condition that expansion scalar
is proportional to shear scalar, which results in power law
relation between scale factors as A = Bα . Moreover, fol-
lowing Sharif and Shamir (2009, 2010), Sharif and Zubair
(2013, 2014), we assume the relation between F and a.
We explain the evolutionary paradigm of Hubble parame-
ters, expansion and shear scalars. The dynamical quantities
of the model are explored in three different cases namely,
Bianchi type I, Bianchi type III and Kantowski Sachs mod-
els. In this discussion we set the parameters as α = 1.1,
β = −2, l = 1 and c = 2. For this choice we find that

q < −1, ρ + p < 0 with ρ > 0 in all the three cases, which
indicates the phantom evolution of the universe in accor-
dance with the recent observations (Perlmutter et al. 1999;
Ade et al. 2013).
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