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Abstract The main objective of this manuscript is to study
the anisotropic universe in f (G) Gravity. For this purpose,
locally rotationally symmetric Bianchi type I spacetime is
considered. A viable f (G) model is used to explore the ex-
act solutions of modified field equations. In particular, two
families involving power law and exponential type solutions
have been discussed. Some important cosmological parame-
ters are calculated for the obtained solutions. Moreover, en-
ergy density and pressure of the universe is analyzed for the
model under consideration.
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1 Introduction

Cosmic expansion of universe has been one of the most in-
teresting topic of discussion in the last decade. It is thought
that the current expansion of universe is accelerating and it is
due to some invisible energy with strong negative pressure.
Researchers call this mysterious energy as dark energy. It is
expected that dark energy constitutes almost 70 % of the to-
tal energy of the universe. Einstein also defined the dark en-
ergy by using a cosmological constant in the field equations.
Accelerated expansion of universe is well supported from
different sources including cosmic microwave background
fluctuations, galaxy clustering and supernovae experiments
(Spergel et al. 2003, 2007; Riess et al. 1998, 2004; Bennett
et al. 2003; Tegmark et al. 2004). Equation of state (EoS)
parameter ω = p/ρ can be used to describe the dark energy,
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where ρ and p represent the energy density and pressure
of dark energy. It is now believed that alternative theories of
gravity can be helpful to understand the dark energy and late
time acceleration issues (Capozziello 2002).

Einstein’s theory of general relativity (GR) has been
modified by many researchers in the recent decades. Among
the various modification, f (R) and f (R,T ) theories of
gravity (R is the Ricci scalar and T is the trace of energy-
momentum tensor) has been discussed most seriously
(Starobinsky 1980; Nojiri and Odintsov 2004; Harko et al.
2011; Appleby and Battye 2007; Appleby et al. 2010; Fe-
lice and Tsujikawa 2010; Bamba et al. 2012). In particular,
f (R) gravity is proved to be equivalent to scalar-tensor the-
ory of gravity (Chiba et al. 2007). The cosmic acceleration
may be justified just by involving the term 1/R which is
required at small curvature. It has been suggested that the
modified gravity with positive powers of the curvature sup-
ports the inflationary epoch while with negative powers of
the curvature serves as effective dark energy, supporting the
current cosmic acceleration (Nojiri and Odintsov 2003). Fu-
ture evolution of the dark energy universe in modified theo-
ries of gravity has been discussed where it is shown that the
non minimal gravitational coupling can remove the finite-
time future singularities (Bamba et al. 2008). Further, it has
been proved that modified theories may be consistent with
local tests and may provide qualitatively reasonable unified
description of inflation with dark energy epoch (Nojiri and
Odintsov 2011). f (T ) theory of gravity (Bamba et al. 2011;
Li et al. 2011; Jamil et al. 2012a,b,c) is an other alternate
theory which generalizes teleparallel gravity. The interesting
feature of the theory is that cosmic acceleration can be justi-
fied without involving dark energy. Modified Gauss-Bonnet
(GB) gravity is another theory which has gained popular-
ity in the last few years (Nojiri and Odintsov 2005; Con-
gnola et al. 2006, 2007). It is also known as f (G) theory
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of gravity, where f (G) is a generic function of GB invari-
ant G. GB term plays an important role as it may avoid ghost
contributions and helps in regularizing the gravitational ac-
tion (Chiba 2005). It is hoped that this theory may describe
the late-time cosmic acceleration. Moreover, the theory also
passes the solar system tests for some specific choices of
f (G) gravity models. Some interesting work has been done
so far in this theory.

Nojiri and Odintsov (2007) developed the reconstruc-
tion techniques for f (G) gravity and it was demonstrated
that how cosmological sequence of matter dominance,
deceleration-acceleration transition and acceleration era
could emerge by using a modified theory. Fayaz et al. (2015)
investigated power law solutions with anisotropic back-
ground in f (G) gravity and it was concluded that Bianchi
type I power law solutions only existed for some special
choices of f (G) gravity models. Sharif and Fatima (2015)
studied noncommutative static spherically symmetric worm-
hole solutions in modified GB gravity by considering a vi-
able f (G) model. Abbas et al. (2015) gave the possibil-
ity for the existence of anisotropic compact stars in f (G)

gravity. Cylindrical symmetry in f (G) gravity has been ex-
plored where it was shown that there existed seven fami-
lies of exact solutions with three choices of f (G) models
(Houndjo et al. 2014). Investigation of exact cylindrically
symmetric solutions of modified field equations resulted
cosmic string space-time (Rodrigues et al. 2014). Garcia
et al. (2011) explored energy condition to find the viabil-
ity of some specific choices of f (G) gravity models. Re-
cently, we have discussed the dynamics of f (G) gravity in
anisotropic background by studying the energy conditions
and a power law f (G) model (Shamir 2016). Noether f (G)

symmetries have been recently found in FRW background
by Sharif and Fatima (2016a). The same authors (Sharif and
Fatima 2016b) argued the role of GB term in the late time
accelerated phases of the universe.

A further generalization of GB gravity named as f (R,G)

gravity is also proposed recently. Felice et al. (2011) in-
vestigated the stability of Schwarzschild like solutions in
f (R,G) gravity using linear metric perturbations. Wu and
Ma (2015) explored the spherically symmetry by finding the
exact solutions at low energy. Laurentis et al. (2015) stud-
ied the cosmological inflation in f (R,G) theory of grav-
ity. Warm inflation has been discussed in the context of
f (G) theory of gravity using scalar fields for the Friedmann-
Robertson-Walker (FRW) universe model (Sharif and Ikram
2015). Energy conditions in f (R,G) gravity has been re-
cently explored where the weak energy condition was used
along with the recent experimental values of some impor-
tant cosmological parameters to determine the viability of
some specific choices of f (R,G) gravity models (Atazadeh
and Darabi 2014). Sebastiani (2011) studied finite time sin-
gularities in modified f (R,G) gravity and it was concluded

that singularities could be avoided in f (R,G) theories of
gravity using the higher order curvature corrections. Thus it
seems interesting to explore modified theories of gravity, in
particular, the f (G) gravity.

In this manuscript, we focus our attention to investigate
f (G) gravity in anisotropic background. For this purpose,
we consider locally rotationally symmetric (LRS) Bianchi
type I spacetime. We explore the exact solutions of the LRS
Bianchi type I field equations in modified f (G) gravity.
A well-known f (G) gravity model has been used to solve
the set of differential equations. The paper is planned as
follows: Some basics of f (G) gravity and field equations
are briefly introduced in Sect. 2. In Sect. 3, the solutions
of the field equations for a specific choice of f (G) model
are given. Last section gives the summary and conclusion of
work.

2 f (G) gravity: field equations

The action for modified GB gravity is

S = 1

2κ

∫
d4x

√−g
[
R + f (G)

] + SM

(
gμν,ψ

)
, (1)

where κ is called the coupling constant and g represents
determinant of the metric tensor gμν . Matter is minimally
coupled to the metric tensor through the action SM(gμν,ψ),
where ψ denotes the matter fields. This coupling of mat-
ter with metric tensor suggests that f (G) gravity is purely
a metric theory of gravity. It is to be noted that f (G) is a
general function of GB invariant G

G ≡ R2 − 4RμνR
μν + RμνσρRμνσρ, (2)

where R is the Ricci scalar while Rμν and Rμνσρ denote
Ricci and Riemann tensors respectively. Gravitational field
equations can be obtained by varying the action (1) with re-
spect to the metric tensor

Rμν − 1

2
Rgμν + 8

[
Rμρνσ + Rρνgσμ − Rρσ gνμ − Rμνgσρ

+ Rμσ gνρ + 1

2
R(Rμνgσρ − Rρσ gνρ)

]
∇ρ∇σ F

+ (GfG − f )gμν = κTμν, (3)

where the operator ∇μ is used for covariant differentiation
and the subscript G in fG is to represent the derivative of f

with respect to G. A more familiar form similar to GR field
equations is

Gμν ≡ Rμν − 1

2
gμνR = T eff

μν , (4)
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where

T eff
μν = κTμν − 8

[
Rμρνσ + Rρνgσμ − Rρσ gνμ − Rμνgσρ

+ Rμσ gνρ + 1

2
R(Rμνgσρ − Rρσ gνρ)

]
∇ρ∇σ fG

− (GfG − f )gμν. (5)

We start with the spatially homogeneous, anisotropic LRS
Bianchi type I spacetime

ds2 = dt2 − A2(t)dx2 − B2(t)
[
dy2 + dz2], (6)

where the metric coefficients A and B are known as cosmic
scale factors of the universe. The corresponding GB invari-
ant and Ricci scalar turn out to be

G = 8

[
ÄḂ2

AB2
+ 2

ȦḂB̈

AB2

]
, (7)

R = −2

[
Ä

A
+ 2

B̈

B
+ 2ȦḂ

AB
+ Ḃ2

B2

]
, (8)

where dot represents derivative with respect to cosmic
time t . It is assumed that the universe is filled with perfect
fluid

Tμν = (ρ + p)uμuν − pgμν, (9)

where uμ is the usual four-velocity vector and ρ, p denote
the energy density and pressure of the universe respectively.
The volume scale factor V and the average scale factor a for
LRS Bianchi I spacetime are given by

V = AB2, a = 3
√

AB2. (10)

The average Hubble parameter H is defined as

H = 1

3

(
Ȧ

A
+ 2Ḃ

B

)
. (11)

The expansion scalar θ and shear scalar σ are given by

θ = u
μ

;μ = Ȧ

A
+ 2

Ḃ

B
, (12)

σ 2 = 1

2
σμνσ

μν = 1

3

[
Ȧ

A
− Ḃ

B

]2

, (13)

where

σμν = 1

2

(
uμ;αhα

ν + uν;αhα
μ

) − 1

3
θhμν, (14)

hμν = gμν − uμuν is known as the projection tensor. It is
well known that first four time derivatives of position are

termed as velocity, acceleration, jerk and snap. In a cosmol-
ogy, apart from Hubble parameter, we can define some im-
portant quantities like the deceleration, jerk, and snap pa-
rameters as

q = − 1

H 2

ä

a
, j = 1

H 3

...
a

a
, s = 1

H 4

¨̈a
a
. (15)

Now using Eq. (6), the field equations (3) take the form

2
ȦḂ

AB
+ Ḃ2

B2
− 24

ȦḂ2

AB2
ḟG + GfG − f = κρ, (16)

− 2
B̈

B
− Ḃ2

B2
+ 16

ḂB̈

B2
ḟG + 8

Ḃ2

B2
f̈G − GfG + f = κp,

(17)

− Ä

A
− B̈

B
− ȦḂ

AB
+ 8

(
ȦB̈

AB
+ ḂÄ

BA

)
ḟG + 8

ȦḂ

AB
f̈G − GfG

+ f = κp. (18)

These are complicated and highly non-linear differential
equations with five unknowns. Thus, some additional con-
straints are required to solve these equations. A physical
condition that shear scalar σ is proportional to expansion
scalar θ can be used to give

A = Bn, (19)

where n belongs to the set of real numbers. This assump-
tion is physically important as the recent observations of the
velocity red-shift relation for extragalactic sources indicate
that the expansion of universe can achieve isotropy if σ

θ
is

constant (Kantowski and Sachs 1966). Collins (1977) pro-
vided the physical significance of this condition for perfect
fluid with barotropic EoS. In literature (Xing-Xiang 2005;
Thorne 1967; Collins and Hawking 1973; Roy and Baner-
jee 1995; Bali and Kumawat 2008; Sharif and Zubair 2010),
many authors have used this condition to explore the solu-
tions of field equations. Thus using Eq. (19), field equations
(16)–(18) take the form

(1 + 2n)
Ḃ2

B2
− 24n

Ḃ3

B3
ḟG + GfG − f = κρ, (20)

− 2
B̈

B
− Ḃ2

B2
+ 16

ḂB̈

B2
ḟG + 8

Ḃ2

B2
f̈G − GfG + f = κp,

(21)

− (n + 1)
B̈

B
− n2 Ḃ2

B2
+ 8

(
2n

ḂB̈

B2
+ n(n − 1)

Ḃ3

B3

)
ḟG

+ 8n
Ḃ2

B2
f̈G − GfG + f = κp. (22)

Now we investigate the solutions of these field equations.



147 Page 4 of 8 M. Farasat Shamir

3 Solutions for the power law f (G) model

We consider the f (G) model as

f (G) = αGm+1, (23)

where α and m are arbitrary constants. This model has al-
ready been proposed by Cognola et al. (2006) and it is in-
teresting because the Big-Rip singularity may not appear.
Also, this model is compatible with the observational data
and predicts the existence of a transient phantom epoch. The
viability of this model has already been shown in cosmo-
logical contexts (Cognola et al. 2008; Felice and Tsujikawa
2009; Bamba et al. 2010). Moreover, this model belongs to
the general class of the models without the irregular spin-2
ghosts (Tsujikawa 2010). Subtraction of Eqs. (21) and (22)
yields

B̈

B
+ (n+1)

Ḃ2

B2
−8

(
2
ḂB̈

B2
+n

Ḃ3

B3

)
ḟG −8

Ḃ2

B2
f̈G = 0. (24)

It follows from Eq. (23),

fG(G) = α(m + 1)Gm. (25)

Without loss of any generality, we choose α = 1
m+1 so that

Eq. (24) takes the form

B̈

B
+ (n + 1)

Ḃ2

B2
− 8mGm

[(
2
ḂB̈

B2
+ n

Ḃ3

B3

)
Ġ

G

− Ḃ2

B2

(
(m − 1)

Ġ2

G2
+ G̈

G

)]
= 0. (26)

It is worth mentioning here that many solutions can be found
using this equation. Here we investigate two type of solu-
tions.

3.1 Power law solutions

Now we consider the power law form, i.e.

B(t) = γ tk (27)

where γ and k are arbitrary constants. Using this in Eq. (26),
we obtain a constraint equation

t2(kn + 2k − 1) + 32mk
[
8nk3(kn + 2k − 3)

]m
(32kn

+ 64k − 96 − 128m) = 0. (28)

This equation is satisfied for k = 1
n+2 such that

m(2m + 1) = 0. (29)

Thus, corresponding to two roots of this equation, we obtain
two choices of f (G) models

f (G) = G + c1, f (G) = 2
√

G + c2, (30)

where c1 and c2 are integration constants. The first model
becomes trivial for c1 = 0. The second model with square
root term is important as it leads to a viable inflation in
the presence of massive scalar field (Myrzakul et al. 2015).
Thus, the solution metric takes the form

ds2 = dt2 − γ 2nt
2n

n+2 dx2 − γ 2t
2

n+2
(
dy2 + dz2). (31)

Using Eqs. (20)–(22), the expressions for energy density and
pressure of universe turn out to be

ρ =
t2(m + 1)(2n2 + 5n + 2)+16mn(5 + 6m)( −16n

t4(n+2)3 )m

t4(m + 1)(n + 2)3κ
,

(32)

p = 1

t4(m + 1)(n + 2)3κ

[
t2(m + 1)

(
2n2 + 5n + 2

)

+ 16

( −16n

t4(n + 2)3

)m(
m2n2 + mn2 + 4m3n + 7mn

+ 10m2n + 8m3 + 12m2 + 4m
)]

. (33)

It is evident from Eqs. (32) and (33) energy density and
pressure of the universe is defined for −∞ < n < −2 and
−2 < n < 0 for m = −1/2. The behaviour of energy den-
sity and pressure of universe can be seen from Fig. 1 for the
model f (G) = √

G with −2 < n < 0. The Ricci scalar and
GB invariant for this solution turn out to be

R = 2(2n + 1)

(n + 2)2t2
, G = − 16n

(n + 2)3t4
. (34)

The average Hubble parameter, average scale factor and vol-
ume scale factor of universe take the form

H = 1

3t
, a = γ

n+2
3 t

1
3 , V = γ n+2t. (35)

The redshift for a distant source is directly related to the
scale factor of the universe at the time when the photons
were emitted from the source. The scale factor a and redshift
z are related through the equation

a = a0

1 + z
, (36)

where a0 is the present values of the scale factor. Using
Eq. (35), we get

H

H0
= t0

t
,

a0

a
= 1 + z =

(
t0

t

) 1
3

, (37)

where H0 is the present values of Hubble’s parameter. Thus
the value of Hubble’s parameter in terms of redshift param-
eter turns out to be
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Fig. 1 Behaviour of energy density and pressure for m = −1/2

Fig. 2 Behaviour of ω for m = −1/2 and isotropy parameter σ 2

θ

H = H0(1 + z)3. (38)

The deceleration, jerk and snap parameters become

q = 2, j = 10, s = −80. (39)

The expansion scalar and shear scalar turn out to be

θ = 1

t
, σ 2 = 1

3

[
(n − 1)

(n + 2)t

]2

. (40)

The isotropy condition σ 2

θ
→ 0 as t → ∞, is also satisfied in

this case. It is also observed from Eqs. (35) and (40) that the
spatial volume is zero at t = 0 while the expansion scalar
is infinite, which suggests that the universe starts evolving
with zero volume at t = 0, i.e. big bang scenario. It is fur-
ther observed that the average scale factor is zero at the ini-

tial epoch t = 0 and hence the model has a point type sin-
gularity (MacCallum 1971). Figure 2a shows the behaviour
of EoS parameter ω for −2 < n < 0. It can be seen that ω

possesses negative values as well. It would be worthwhile
to mention here that the phantom like dark energy is found
to be in the region where ω < −1. The universe with phan-
tom dark energy ends up with a finite time future singularity
known as cosmic doomsday or big rip (Starobinsky 2000;
Caldwell 2002). The behaviour of isotropy condition can be

observed from Fig. 2b. The value of σ 2

θ
decreases as the time

goes on. It is also evident that energy σ 2

θ
→ 0 for small val-

ues of n even when t is not very large. This indicates that
transition to isotropy is also possible for some suitable val-
ues of n and t (other than ∞). Now we discuss some special
cases.
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Case I: Flat FRW Solution
For a special case when n = 1, and m = − 1

2 , space-time (31)
takes the form

ds2 = dt2 − γ 2t
2
3
(
dx2 + dy2 + dz2), (41)

which is the solution of well-known flat FRW metric. Using
Eqs. (32) and (33), EoS parameter becomes

ω = 115

67
+ i

6
√

3

67
. (42)

The imaginary value of ω indicates that the model f (G) =√
G is not viable for flat FRW solution. However, for m = 0,

the solution is valid with ω = 1 describing the stiff fluid uni-
verse (Mathew et al. 2014).

Case II: Kasner Type Solution
Putting n = −1/2 in Eq. (31), it follows that

ds2 = dt2 − γ −1t−
2
3 dx2 − γ 2t

4
3
(
y2 + dz2). (43)

After redefining the parameters, it is exactly the same as
the well-known Kasner’s metric (Cataldo and Campo 2000).
Here EoS parameter takes the form

ω = −24m2 + 29m + 3

2(6m + 5)
. (44)

For m = 0, ω = −0.3 describing accelerated expansion of
universe (Hogan 2007; Corasaniti et al. 2004; Weller and
Lewis 2003). Moreover, when m = −1/2, EoS parameter
has positive value ω = 1.375. It has been shown that EoS
parameter can be positive due to classical and the quantum
mechanical contributions (Kim and Yoon 2007).

Now we consider one more specific f (G) model to get
an idea how the solutions depend on the choice of f (G)

model. We assume f (G) = αG0.5 + βGm, where α and β

are arbitrary constants. This model has already been dis-
cussed by Nojiri et al. (2010). Moreover, this choice of f (G)

model allows exact power law solutions for m < 3/2 (Go-
heer et al. 2009). Late time accelerating universe is also
indicated when m > 1 (Nojiri et al. 2008). Here we dis-
cuss only the power law solution for the sake of compari-
son. Thus for f (G) = αG0.5 + βGm, Eq. (24) yields a solu-
tion

B(t) = γ t2/3, n = −1/2, (45)

with the constraint equation

2m2 − 3m + 1 = 0. (46)

Thus, corresponding to two roots of this equation, we obtain
two choices of f (G) models

f (G) = αG0.5 + βG, f (G) = (α + β)G0.5. (47)

So many solutions can be reconstructed using different val-
ues of n and hence different choices of f (G) model are
obtained. Obviously, one can work out the physical pa-
rameters like energy density, pressure etc. for this solu-
tion.

3.2 Exponential law solutions

It is noticed that Eq. (26) have an exponential solution of the
form

B(t) = ec3t+c4, (48)

where c3 and c4 are arbitrary constants. Here EoS parameter
becomes

ω = −1

2

[
(m + 1)(n2 + n + 4) + 16mn(n + 2)(8n2 + 16n)m

(m + 1)(2n + 1) + 8mn(n + 2)(8n2 + 16n)m

]
.

(49)

It is mentioned here that the exponential solution is satisfied
with the constraint equation

n + 2 = 0. (50)

The solutions metric for this case turns out to be

ds2 = dt2 − e−4(c3t+c4)dx2 − e2(c3t+c4)
(
dy2 + dz2). (51)

The average Hubble parameter is be zero for this solution.
All other dynamical parameters expansion scalar θ , shear
scalar σ , volume scale factor of universe are constant here.
EoS parameter involving energy density and pressure of the
universe becomes independent of the parameter m and we
get ω = 1. The Ricci scalar is also constant

R = −6c3
2, (52)

while GB invariant is zero here.

4 Summary and conclusion

This paper is devoted to investigate f (G) gravity with
anisotropic background by finding the exact solutions of
field equations. For this purpose, LRS Bianchi type I space-
time is chosen. To our knowledge, this is the first attempt to
explore the exact solutions for LRS Bianchi type I space-
time. Highly nonlinear and complicated nature of the field
equations restrict us to take the assumption that the shear
scalar σ is proportional to the expansion scalar θ . This im-
plies A = Bn, where A, B are the metric coefficients and n

is an arbitrary constant. A brief summary and conclusion of
the work is as follows:
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• In this work, we have considered a power law f (G) grav-
ity model already available in literature (Cognola et al.
2006). This model is interesting because the chances
of appearing Big-Rip singularity vanish. Moreover, it is
compatible with the observational data predicting the ex-
istence of a transient phantom epoch. The viability of
this model has already been shown in cosmological con-
texts (Cognola et al. 2008; Felice and Tsujikawa 2009;
Bamba et al. 2010). Using this model, we have de-
veloped a general differential equation (26) which can
be used to explore many solutions. Mainly we have
explored the solutions of modified field equations us-
ing power law and exponential forms of metric coeffi-
cients.

• The metric coefficients involve anisotropy parameter n

for power law solution. Two f (G) gravity models are
associated with this solution. The first model becomes
trivial case when c1 = 0. However, the second model in-
volves square root of GB invariant which seems more
important as it leads to a viable inflation in the pres-
ence of massive scalar field (Myrzakul et al. 2015).
The graphical analysis indicates that EoS parameter
ω also possesses negative values for −2 < n < 0. It
would be worthwhile to mention here that the phan-
tom like dark energy is found to be in the region where
ω < −1.

• It can be seen from Eqs. (34) and (35) that when t is
large, Ricci scalar, GB invariant and Hubble parameter
approach to zero. Thus the universe becomes asymp-
totically flat in this case. Moreover, the solution met-
ric (31) becomes singular at t = 0 for n < −2. Fur-
ther, Fig. 1b suggests that pressure of universe for n =
−1/2 falls down from infinity and gets uniform as the
time goes. On the other hand, for some other value
of anisotropy parameter n, the behavior of pressure
seems different. Also the curvature is very large at ini-
tial epoch. Thus, the solutions involving square root GB
term suggests an early universe with anisotropic infla-
tion.

• Two special cases are discussed for power law solution.
The first case corresponds to flat FRW spacetime. The
solution is valid with ω = 1 describing the stiff fluid
universe for the first model. However, the solutions is
not physical for the second model as ω is imaginary.
The second case provides the well-known Kasner’s uni-
verse and it gives the value of anisotropy parameter n =
−1/2.

• Another specific model f (G) = αG0.5 + βGm is con-
sidered to get an idea how the solutions depend on the
choice of f (G) model. This model has already been
discussed by Nojiri et al. (2010). Moreover, this choice
of f (G) model allows exact power law solutions for
m < 3/2 (Goheer et al. 2009). Only the power law

solutions are discussed for the sake of comparison. It
is concluded that solutions provide two f (G) mod-
els, one includes linear and square root GB invariant
terms.

• The second family of solutions is obtained by exponen-
tial law assumption. It gives the average Hubble param-
eter zero and all other dynamical parameters like ex-
pansion scalar θ , shear scalar σ , volume scale factor of
universe constant. EoS parameter is independent of the
parameter m for this solution and we get ω = 1. The
Ricci scalar is constant while GB invariant is zero in
this case. Thus the universe is asymptotically the de-
Sitter space corresponding to an accelerating universe.
Moreover, this family presents singularity free solu-
tions.
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