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Abstract Singleton et al. (arXiv:0912.0350, 2009) have ar-
gued that the flux of pulsars measured at 1400 MHz shows
an apparent violation of the inverse-square law with distance
(r), and instead the flux scales as 1/r . They deduced this
from the fact that the convergence error obtained in recon-
structing the luminosity function of pulsars using an iterative
maximum likelihood procedure is about 105 times larger for
a distance exponent of two (corresponding to the inverse-
square law) compared to an exponent of one. When we ap-
plied the same technique to this pulsar dataset with two dif-
ferent values for the trial luminosity function in the zeroth it-
eration, we find that neither of them can reproduce a value of
105 for the ratio of the convergence error between these dis-
tance exponents. We then reconstruct the differential pulsar
luminosity function using Lynden-Bell’s C− method after
positing both inverse-linear and inverse-square scalings with
distance. We show that this method cannot help in discern-
ing between the two exponents. Finally, when we tried to
estimate the power-law exponent with a Bayesian regression
procedure, we do not get a best-fit value of one for the dis-
tance exponent. The model residuals obtained from our fit-
ting procedure are larger for the inverse-linear law compared
to the inverse-square law. Moreover, the observed pulsar flux
cannot be parameterized only by power-law functions of dis-
tance, period, and period derivative. Therefore, we conclude
from our analysis using multiple methods that there is no
evidence that the pulsar radio flux at 1400 MHz violates the
inverse-square law or that the flux scales inversely with dis-
tance.
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1 Introduction

Pulsars are rotating magnetized neutron stars, which emit
pulsed electromagnetic radiation. They have been detected
throughout the electromagnetic spectrum. Pulsars are excel-
lent laboratories for applications as well as tests of nearly
all branches of Physics (Blandford 1992). Even though
pulsars are mainly located in our galaxy, they can also
be used to address cosmological questions such as dark
matter (Baghram et al. 2011; Bramante and Linden 2014;
Desai and Kahya 2015) and constraining related modified
theories of gravity (Freire et al. 2012). At the moment, 2524
pulsars are listed in the Australian Telescope National Facil-
ity pulsar catalog (Manchester et al. 2005).1 In the last two
decades there has been a plethora of new pulsar discoveries
using dedicated radio surveys and also from the Fermi Large
Area Telescope (Abdo et al. 2013), and one expects a ten-
fold increase in the number of observed pulsars during the
Square Kilometre Array era (Kramer and Stappers 2015).

Radio telescopes typically measure the flux of pulsars at
multiple frequencies between 400–2000 MHz. Like most
other astrophysical phenomenon, it is implicitly assumed
that the pulsar fluxes obey the inverse-square law. However,
this ansatz has been recently challenged by Singleton et al.
(2009) (hereafter, S09). Their conclusions were based on
computing the convergence of a maximum likelihood tech-
nique used to reconstruct the flux distribution (at 1400 MHz)
of pulsars from the Parkes multi-beam survey. If the results
of S09 are correct, this would imply that either the distances
to the pulsars are wrong by a factor of ten, or there is a com-
ponent of the flux, which does not vary with distance (r) as
1/r2, thereby violating the inverse-square law. S09 argue
that since the dispersion measure-inferred distances have

1http://www.atnf.csiro.au/research/pulsar/psrcat/expert.html.
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been validated against other techniques, the most plausible
conclusion is a violation of the inverse-square law. Such a
violation of the inverse-square law is expected in some pro-
posed theoretical models of pulsar emission involving super-
luminal polarization currents (Ardavan et al. 2008a). This
model has also been used to explain the frequency spectrum
of the Crab pulsar (Ardavan et al. 2008b).

However, the result of S09 has been disputed by the pul-
sar community (Lorimer 2011). If the pulsar flux varied
more slowly than an inverse-square law, one would have dis-
covered a large number of pulsars in M31 or M33, whereas
no confirmed detections have been made (McLaughlin and
Cordes 2003; Bhat et al. 2011; Rubio-Herrera et al. 2013).
Nevertheless, it is possible that the non-detection of pul-
sars from these nearby galaxies could be due to other rea-
sons such as: large pulse smearing or interstellar scattering
along the line of sight; or the IMF and star formation rate in
M31/M33 could be different from that in our galaxy; or ac-
cretion from dark matter could destroy the neutron star pop-
ulation (Bramante and Linden 2014), etc. Some of the above
reasons have been invoked to explain the paucity of neu-
tron stars in the Galactic Center (Dexter and O’Leary 2014).
Therefore, given the potential path-breaking result claimed
in S09, it is important to corroborate or refute their results
with an independent analysis of the same dataset, which is
the goal of this work. We check the claims of S09 using
three independent methods to see if we reach the same con-
clusions.

The outline of this paper is as follows. In Sect. 2, we
review the procedure followed by S09 to test whether the
pulsar fluxes obey the inverse-square law. In Sect. 3, we re-
peat the same procedure as S09, and describe in detail our
numerical methods. In Sect. 4, we reconstruct the pulsar lu-
minosity function using Lynden-Bell’s C− method for two
different distance exponents. In Sect. 5, we describe our pa-
rameter estimation method used to obtain the distance expo-
nent. We conclude in Sect. 6.

2 Review of S09 results

S09 attempted to reconstruct the luminosity function of pul-
sars detected from the Parkes multi-beam survey (Manch-
ester et al. 2001). The Parkes multi-beam survey was the
biggest ever pulsar survey carried out from 1997 to 2003
along the galactic plane with |b| < 5◦ and l between 50◦
and 260◦. It was carried out with a 13-beam receiver hav-
ing a bandwidth of 288 MHz and a central frequency of
1374 MHz on the 64 m Parkes radio telescope. More details
of this survey can be found in Manchester et al. (2001).

For each pulsar, S09 calculated the distance from the ob-
served dispersion measure using the Cordes-Lazio model
for the galactic distribution of free electrons (Cordes and

Lazio 2002), also known as the NE2001 model in litera-
ture. S09 assumed that the luminosity function of pulsars is
uniform throughout our galaxy and there are no population-
specific selection effects. They demonstrated that the Parkes
observations show evidence for Malmquist bias (Gonzalez
and Faber 1997), since the cumulative flux distributions
of the observed pulsars in different distance bins flattens
out at 0.4 mJy. To circumvent this bias, they applied the
stepwise maximum likelihood method (SWML) (Efstathiou
et al. 1988), which does not assume any functional form
for the luminosity function and corrects for the Malmquist
bias. The SWML algorithm is routinely used in estimating
the galaxy and quasar luminosity functions from various ex-
tragalactic surveys (Efstathiou et al. 1988; Willmer 1997;
Takeuchi et al. 2000). We briefly recap the SMWL algorithm
and discuss how it was applied to the Parkes dataset by S09.
We use the same notation as S09, which in turn followed the
same notation as Efstathiou et al. (1988).

In SWML, the luminosity function φ(L) is determined
nonparametrically in Nb bins between a fiducial minimum
and maximum value for the luminosity: φ(L) = φk , for Lk −
�L
2 < L < Lk + �L

2 , with k = 1, . . . ,Nb , �L is the width
of each luminosity bin, and Lk is the luminosity in the kth
bin.

The maximum likelihood estimate for the luminosity
function in each luminosity bin k for a sample of Np pul-
sars after the mth iteration (φm

k ) is given by (Efstathiou et al.
1988):

φm
k �L =

∑Np

i=1 W(Li − Lk)
∑Np

i=1{ H [Lk−Lmin(ri )]
∑Nb

j=1 φm−1
j �LH [Lj −Lmin(ri )]

}
. (1)

In Eq. (1), Lmin(ri) is the minimum detectable luminos-
ity for a pulsar at distance ri , and φm−1

j is the luminosity
function after the (m − 1)th iteration in the j th luminosity
bin.

The window function W(x) is given by W(x) = 1 for
−�L/2 ≤ x ≤ �L/2, and 0 otherwise. We note that S09
report using the inverse of the above window function (see
the sentence after Eq. (1) in S09). H(x) is given by

H(x) =
⎧
⎨

⎩

0, x ≤ −�L/2,

(x/�L + 1/2), −�L/2 ≤ x ≤ �L/2,

1, x ≥ �L/2.

Therefore, the luminosity function can be obtained by it-
eratively solving Eq. (1) after assuming an initial estimate
for the luminosity function in each bin.

S09 applied the SWML algorithm with an inverted win-
dow function (assuming no typographical error in their pa-
per) to a sample of 1109 pulsars from the Parkes multi-beam
survey using the flux measured at 1400 MHz (S1400). They
parameterized the intrinsic luminosity, which is sometimes
called pseudoluminosity in the pulsar literature (Bagchi
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2013) using L = S1400r
n, where n is the distance exponent,

which quantifies how the flux scales with distance (r), and
S1400 is the measured flux at 1400 MHz. For each pulsar,
they calculated the luminosity from the observed flux and
the putative power law index. They solved Eq. (1) iteratively
in each bin to obtain the final luminosity function after a
fixed number of iterations. They parameterized the good-
ness of fit of their iterative procedure using a convergence
factor ε, defined as follows:

ε =
Nb∑

j=1

[
φm(j) − φm−1(j)

]2
, (2)

where the difference in each luminosity bin (j ) is between
the mth and (m − 1)th iteration, while solving Eq. (1). We
note that the absolute value of ε depends on the normaliza-
tion of the luminosity function. S09 find that the luminosity
function converges very rapidly for n = 1.0 and 1.5, and the
convergence factor is about 105 times worse for the conven-
tional inverse-square law (n = 2). They obtain the best con-
vergence for n = 1 and n = 1.5, depending on whether the
full sample of pulsars is analyzed (n = 1), or if only pulsars
with periods less than 0.1 seconds are considered (n = 1.5).
They applied the same procedure to a synthetic sample of
simulated pulsars with both n = 2 and n = 1.5, and were
able to demonstrate that they can recover the original power
law exponents. Hence, they argued that their conclusions on
the violation of the inverse-square law are robust.

From this analysis, S09 conclude that if the distances to
the pulsars are correct, the observed flux at 1400 MHz falls
off more slowly than 1/r2. However, they do not provide
any information on the relative convergence error as a func-
tion of the number of iterations, or the number of luminosity
bins used, or the trial luminosity function in the zeroth itera-
tion. Furthermore, it is entirely possible that the convergence
factor for an inverse-square law could asymptote to the same
value as n = 1 (or 1.5) after increasing the number of itera-
tions. Moreover, there is also no mathematical justification
provided for using the above convergence factor as a metric
for deciding on the best distance exponent.

3 Application of the SWML algorithm

Despite some of the concerns raised in the previous section
regarding the conclusions of S09, we now try to replicate
the same procedure as S09, to see if we can reproduce their
results. We download the Parkes multi-beam survey dataset
from the ATNF online catalog. Similar to S09, we neglect
pulsars with S1400 < 0.4 mJy. We choose different putative
values for the exponent n ranging from zero to three in dis-
crete steps of 0.5. In order to use the SWML algorithm to
self-consistently determine the luminosity function (φ), one
needs an initial starting value for the same in different bins.

Since no details are given in S09 about this, we apply the
SWML algorithm using two different guesses for the trial
luminosity functions in the zeroth iteration. We denote these
two applications of the SWML algorithm with different ini-
tial guesses as Method 1 and Method 2. In Method 1, we
assume that φ ∝ L−1 for all values of n. This functional
form is similar to the empirically derived luminosity func-
tion of pulsars (Bagchi 2013). In Method 2, we use the lu-
minosities of pulsars (estimated from the observed flux and
distance exponent) to construct the luminosity function in
each bin. This procedure is similar to how SWML is used
in extragalactic astronomy (C. Willmer, private communica-
tion). Therefore, in Method 1, the zeroth order luminosity
function is the same for all distance exponents, whereas it
depends on the power-law exponent in Method 2. In Eq. (1),
Lmin(ri) for a pulsar located at distance ri is given by 0.4rn

i

for a particular exponent n. Similar to S09, in both the meth-
ods, we also remove any outliers in luminosity for each ex-
ponent. For each power law exponent, we initially examine
the luminosity distribution after splitting the data in about
50 bins, and then use the maximum luminosity bin with
the smallest non-zero number of entries as the luminosity
threshold. We then remove all pulsars with luminosity val-
ues exceeding this cutoff, so that there is at least one pulsar
in every bin. After this outlier rejection, we then choose an
optimum number of bins using the Freedman-Diaconis algo-
rithm, computed using astroML (Vanderplas et al. 2012).
According to Freedman-Diaconis rule, the optimal number
of bins (Nb) for a dataset of N points is given by (Vanderplas
et al. 2012):

Nb = 2(q75 − q25)

N1/3
, (3)

where q25 and q75 are the first and third quartiles of the ob-
served dataset. Since the SWML algorithm only provides
information about the shape of the luminosity function and
not its normalization (Willmer 1997), we disregard the nor-
malization between successive iterations. We note that the
normalizations are different in Methods 1 and 2. We now
discuss the results of applying the SWML algorithm for the
different exponents. The full set of luminosity thresholds,
the number of pulsars after each cut, the number of bins,
and the relative convergence error after 100 and 200 itera-
tions for Methods 1 and 2 are shown in Table 1 for different
power law indices. A graphical summary of our results us-
ing both the methods can be found in Fig. 1. We highlight
the key results from both the methods below:

• Method 1: The values of ε after 100 iterations using
Method 1 can be found in Table 1, and as a function of
the number of iterations in the top panel of Fig. 1. We
note that the SWML algorithm with Method 1 fails for
n = 3, since the luminosity function asymptotes to zero
in all the bins after 100 iterations. We find that ε after 100
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Table 1 Results from the application of SWML algorithm to the flux
of pulsars measured at 1400 MHz with different power-law distance
exponents using two different guesses for the luminosity function (φ)
in the zeroth iteration. In Method 1, we assume that φ ∝ 1/L, where
L is the luminosity in each bin. In Method 2, we use the luminosities

of the observed pulsars to construct an empirical luminosity function.
Lmax is the luminosity cut for each trial exponent and ε is the conver-
gence error defined in Eq. (2). We also find that Method 1 is unable to
reconstruct the pulsar luminosity function for n = 3

Exponent Lmax # Pulsars # Bins ε (Method 1) ε (Method 2)

100 iterations 200 iterations

0 5 mJy 687 30 6.2 × 10−5 6.4 × 10−2

0.5 15 mJy kpc0.5 691 40 1.5 × 10−4 4.5 × 10−2

1.0 40 mJy kpc 692 40 1.9 × 10−5 2.2 × 10−5

1.5 100 mJy kpc1.5 687 30 10−6 2.3 × 10−5

2.0 200 mJy kpc2 677 25 10−6 6.4 × 10−4

2.5 600 mJy kpc2.5 677 30 10−6 1.4 × 10−2

3.0 1400 mJy kpc3 663 22 – 6.8

Fig. 1 Relative convergence error ε from the SWML algorithm for
pulsar fluxes measured at 1400 MHz from the Parkes multi-beam sur-
vey with two different luminosity functions assumed in the zeroth it-
eration. The top panel shows the results for Method 1 and the bottom
panel shows the same for Method 2. (See the caption of Table 1 for
explanation of both the methods.) Therefore, we see no evidence that
the convergence error for n = 2 is five orders of magnitude larger than
n = 1 or 1.5

iterations for n = 2 has the same value as that for n = 1.5
and 2.5, of about 10−6. The value for n = 1 is about ten
times larger than for n = 2. Therefore, ε is of the same or-
der of magnitude for most exponents. The slope in Fig. 1

is also the same for n between 1.5 and 2.5. Therefore, the
values we get for the ratio of ε for n = 2 compared to
n = 1 disagree with those of S09.

• Method 2: The values of ε for Method 2 after 200 itera-
tions is shown in Table 1, and as a function of the num-
ber of iterations in the bottom panel of Fig. 1. Unlike
Method 1, the final luminosity functions for each expo-
nent do not converge after 100 iterations, and hence we
doubled the number of iterations compared to Method 1,
before examining the relative values of ε for different
power law exponents. Using this method, we find that for
n = 2, ε is only about a factor of ten larger than the same
for n = 1 or n = 1.5. Therefore, although we agree with
S09, that ε after a certain number of iterations is smaller
for n = 1 and 1.5 as compared to n = 2, the ratio is only
about a factor of ten and not O(105) as claimed by S09.
The slope is also the same between these three exponents.

Therefore, in summary we conclude that the convergence
error of the SWML algorithm is sensitive to the initial guess
for the trial luminosity function, before the iterative pro-
cedure is started. We have used two different choices for
these. If we assume that φ ∝ 1/L, then ε for n = 2 is of the
same order of magnitude as n = 1 or n = 1.5. On the other
hand, if we use the observed data to construct the zeroth or-
der luminosity function, the convergence error is larger for
n = 2 compared to n = 1 and 1.5, by only a factor of ten.
A comparison of the relative convergence error using both
the guesses for the initial luminosity along with the same
obtained by S09 is shown in Fig. 2. Note that all the three
curves in Fig. 2 have been normalized to the value of ε at
n = 2, in order to compare the relative convergence errors
for n = 1 or 1.5. Therefore, we do not concur with S09 af-
ter replicating their procedure. One possible reason for the
large convergence error found by S09 for n = 2, compared
to n = 1 or 1.5 could be due to the number of bins they may
have used or their initial guess for the luminosity function.
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Fig. 2 Comparison of the convergence error (ε) as a function of the
distance exponent (n) normalized to its value at n = 2 using our ap-
plication of the SWML algorithm with two different guesses for the
initial luminosity function (Method 1 and 2) vs the same for S09 (data
obtained from Fig. 2 of Singleton et al. 2009). The value of ε for n = 2
is approximately the same as n = 1 for Method 1 and about ten times
larger in Method 2. This does not agree with the results from S09, who
find that ε for n = 2 is about 105 times larger than for n = 1

Another possibility could due to the inverted value for
the window function used by S09 compared to what is pre-
scribed in the SWML algorithm. To test this, we then ap-
plied the SWML algorithm with the same inverted window
function. However, with this inverted window function, the
SWML algorithm does not converge for either of the trial
functions used in the zeroth iteration, and the luminosity
function diverges to NaN in all the bins. This implies that
there is a typographical error in the reported window func-
tion in S09, and they used the same window function as in
the original SWML paper (Efstathiou et al. 1988).

4 Application of Lynden-Bell C− method

All estimates of the cumulative luminosity function of
pulsars in literature have been obtained after positing an
inverse-square law (Bagchi 2013). In all these cases, the
empirically derived luminosity function agrees well with
the observed distribution and there have been no concerns
about the mismatch between the data and the reconstructed
luminosities. However, most empirical methods of estimat-
ing the pulsar luminosity function in literature do not ac-
count for the Malmquist bias in the observed flux distribu-
tion. So, we would like to apply a different maximum like-
lihood technique, which is similar in spirit to SWML with
two different power indices to see if the reconstructed lumi-
nosity functions in both the cases help distinguish between
the two scenarios. The algorithm we apply for this purpose
is the Lynden-Bell C− method (Lynden-Bell 1971), which
was originally used to estimate the luminosities of quasars.
Similar to SWML, C− is a non-parametric method to cor-
rect for the truncated distribution and makes no assumption

about the functional form for the luminosity. As pointed out
by Willmer (1997), C− is the limiting case of SWML, where
each bin contains only one object. However, it is not an iter-
ative procedure like SWML. We briefly recap the usage of
the binned version of the C− method. More details can be
found in Ivezić et al. (2013).

This method postulates that the observed distribution of
pulsars can be derived from a two-dimensional distribution
n(L, r) of pulsars with luminosity (L) and distance (r),
where n(L, r) is the probability density function per unit
distance and luminosity. It further assumes that the distri-
butions along L and r are uncorrelated and the bivariate
distribution can then be separated into functions of lumi-
nosity and distance: n(L, r) = ψ(L)ρ(r). The C− method
provides a recipe to reconstruct ψ(L) and ρ(r) from the
observed dataset. More details about the implementation of
this algorithm are provided in Lynden-Bell (1971), Jackson
(1974), Willmer (1997), Takeuchi et al. (2000) and we skip
the details. Once ψ(L) is estimated, the cumulative luminos-
ity distribution function �(L) can be determined as follows:

φ(L) =
∫ L

−∞
ψ(x)dx (4)

The differential luminosity distribution can be obtained by
binning the cumulative luminosity function obtained from
Eq. (4). We apply the C− method, using the codes provided
in astroML (Ivezić et al. 2013) to construct the differen-
tial luminosity function of pulsars from Parkes multi-beam
survey using the flux at 1400 MHz, after assuming both an
inverse-square law as well as assuming that the flux falls off
linearly with distance. For this method, one needs to know
the maximum detectable luminosity for the observed dis-
tance and the maximum possible distance to which a pulsar
with the observed luminosity can be detected. The former
can be estimated by assuming that the maximum distance
to which we can detect a pulsar is 20 kpc, and the latter is
obtained by assuming that the minimum detectable flux is
0.4 mJy. Therefore, the maximum distance corresponding to
a given observed flux (S), distance (r) and exponent (n) is
given by r(S/0.4)1/n. The differential luminosity distribu-
tion of pulsars for both the power law exponents is shown
in Fig. 3. The error bars in each bin for both the exponents
are obtained by 50 bootstrap resamples. As we can see from
a simple chi-by-eye, the C− method has no problem in re-
producing the observed distribution for both the exponents,
and the estimated luminosity function is consistent within
1σ of the observed distribution. Therefore, although the C−
method does not help us to distinguish between the two sce-
narios, this is the first application of this method in esti-
mating the luminosity function of pulsars. In future work,
we shall also compare the cumulative luminosity function
of pulsars using the C− method with other estimates of the
same in literature.
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Fig. 3 Differential normalized luminosity function of pulsars from the
Parkes multi-beam survey computed using Lynden-Bell C− method
with error bars computed for the usual inverse-square law (top panel)
and inverse-linear law (bottom panel). The error bars for both the pow-
er-law indices have been estimated using 50 bootstrap resamples. The
plots have been made using astroML (Vanderplas et al. 2012)

5 Parameter estimation of the distance exponent

We now address the following question: Can we estimate the
distance exponent from the observed pulsar flux with a pa-
rameter estimation technique using some variant of the max-
imum likelihood analysis? This might seem a daunting task,
since the physics of pulsar radio emission is not understood
(Hankins et al. 2009). Furthermore, there is a large diversity
in the observed pulsar population. For example, Lee et al.
(2012) have used machine learning techniques to classify the
pulsar population into five different categories. The emission
mechanisms could be different among the disparate pulsar
categories. Moreover, the pulsar flux could also depend on
parameters which are not always known or easy to estimate
(for example, the beaming fraction, radius, mass, or the neu-
tron star equation of state). However, if the model proposed
in Ardavan et al. (2008a) to explain the pulsar radio emission
is correct, then pulsars are expected to be standard candles,
and we should be able to recover a distance exponent of one
with a likelihood-based regression method.

Ever since the first pulsar discoveries, a large number of
authors have studied how the pulsar luminosity scales with
the pulsar period and its derivative using a variety of datasets

(Gunn and Ostriker 1970; Vivekanand and Narayan 1981;
Narayan 1987; Hui et al. 2010; Bagchi 2013). All these fits
have been done assuming that the pulsar fluxes obey the
inverse-square law. The best-fit values for the various expo-
nents have differed a lot among the authors (Bagchi 2013).
In fact, Lorimer et al. (1993) have argued that none of the
proposed scaling laws of pulsar luminosity with period and
its derivative can accurately describe the full pulsar popula-
tion. Nevertheless, we now generalize this fitting procedure
by keeping the distance exponent as a free parameter and use
robust methods to see if we get a good fit, and if the best-fit
value of the distance exponent is close to one to vindicate
the pulsar emission model of Ardavan et al. (2008a).

We model the pulsar flux as power-law functions of the
distance, the pulsar period and its derivative, and a normal-
ization constant, and estimate the best-fit values of each of
these. This can be thought of as a regression problem to find
a relation between the dependent variable (pulsar flux) vs
three independent variables: distance, pulsar period, and its
first derivative. We now discuss the estimation of the dis-
tance exponent from the observed data. The pulsar flux at
1400 MHz (S1400) can be expressed as follows:

S1400 = AR−nP −qṖ1
m
, (5)

where Ṗ1 = 1015Ṗ , R is the distance to the pulsar, P is its
period, Ṗ its period derivative, and A is a normalization con-
stant. We now obtain the best-fit estimates of A, n, q , and m

using Bayesian statistical inference. The first step in param-
eter estimation involves constructing the data likelihood L
given the model and the errors in the data. We use the same
data from the Parkes multi-beam survey as S09. We need to
take into account the errors in S1400, R, and Ṗ . The errors in
S1400 and Ṗ are obtained from the online ATNF catalog. For
the errors in distance, we use the fractional distance errors
from the NE2001 model as a function of galactic longitude
from Fig. 12 of Cordes and Lazio (2002), provided to us by
J. Cordes (private communication). Since there are no esti-
mates for these errors as a function of galactic latitude, we
only use the functional dependence on galactic longitude to
estimate the error in distance for each pulsar. The median er-
rors in distance from the NE2001 model are about 20 %. Re-
cently, Deller et al. (2009) have compared these dispersion
based distances with parallax based distances and pointed
out that the 20 % errors estimated for the distance are not
realistic. They argue that the distribution of errors cannot be
approximated by a single Gaussian, because of a long tail
of errors with incorrect distance estimates by more than a
factor of three. (See Fig. 12 of Deller et al. (2009).) Nev-
ertheless, since we do not have parallax measurements for
the full Parkes pulsar sample, we use the distances and the
estimated errors from the NE2001 model in this work. We
neglect the errors in P , since they are very small compared
to the measured values. We assume that there are no covari-
ances in the measured errors between the different pulsars.
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A number of methods have been developed to incorporate
errors in variables on both sides of Eq. (5), while construct-
ing the likelihood. Here, we follow the formalism of Weiner
et al. (2006). See also Hoekstra et al. (2012), whose notation
we follow. Our likelihood L is as follows:

L =
n∏

i=1

1

wi

exp

{

−|Si − S(P, Ṗ1,R)|
2wi

}

. (6)

In Eq. 6, wi for the ith pulsar is given by:

w2
i =

[
∂S

∂R

]2

σ 2
Ri

+
[

∂S

∂Ṗ

]2

σ 2
Ṗi

+ σ 2
Si

. (7)

In Eq. (7), Si is the measured flux (at 1400 MHz) for each
pulsar, σSi

is the error in the measured flux, σRi
is the error

in the measured distance, σṖi
is the measured error in Ṗ1.

Note that we do not bin the data. Unlike most literature on
parameter estimation we choose a likelihood, which is simi-
lar to L1 norm, or sometimes called M-estimate (Press et al.
1992), instead of the widely used L2 norm (or usually known
as χ2/least-squares minimization). This is to suppress the
contribution from outliers and to account for any diversity in
the pulsar population. Note however that our likelihood dif-
fers from the M-estimate defined in Press et al. (1992) by an
extra wi term in the denominator, since the error term (wi )
is a function of both the dependent and independent vari-
ables. Alternately, one could also try to bifurcate the pulsar
population into a subset of “standard” pulsars which obey
the scaling relation in Eq. (6) and an outlier population, us-
ing the methods described in Hogg et al. (2010) to reject
outliers. Although we tried such a procedure, it is not com-
putationally feasible with an unbinned analysis due to the
large number of pulsars.

Once we construct the likelihood, we then calculate the
model posterior using Bayes theorem after multiplying the
likelihood by a Bayesian prior for each of the unknown pa-
rameters:

P(M,θ |D) ∝ LP(n)P (q)P (m)P (A), (8)

where P(M,θ |D) is the model posterior for the model M

given the data D, the likelihood (L) is defined in Eq. (6),
and the vector of parameters θ = {A,m,n, q}. P(n), P(q),
P(m), and P(A) represent the priors in n, q , m, and A re-
spectively. The Bayesian posterior mean for a given vari-
able θ̂ is given by θ̂ = ∫

θ̂P (θ̂ |D)dθ̂ , where P(θ̂ |D) for
a given parameter (θ̂ ) is obtained by marginalizing Eq. (8)
over the other parameters. In practice, Eq. (8) also needs to
be normalized by P(D), where P(D) is the probability of
the data. However, since we are not doing a model compar-
ison between two distinct sets of models, we shall ignore
the normalization term. We choose uniform priors on the
parameters with n ∈ [−2,20], m ∈ [−2,20], q ∈ [−2,20],
A ∈ [1,1000]. Using this choice of priors, Eq. (8) is equiv-
alent to ordinary maximum likelihood analysis. Similar to

S09, we only consider pulsars with S1400 > 0.4 mJy and
distance less than 20 kpc. With these priors for the four un-
known parameters, the best-fit value for the distance expo-
nent n can be found by maximizing Eq. (8), after marginal-
izing over the other nuisance parameters.

We use the publicly available Markov-chain Monte-Carlo
code sampler emcee (Foreman-Mackey et al. 2013) to sam-
ple the posterior distribution in Eq. (8) and estimate the
marginalized best-fit parameters. We start the chain with
about 300 ‘walkers’, each of which starts at a different po-
sition in parameter space. We run the MCMC for 5000
steps and choose a burn-in of 3000 steps. So the best-fit
values are obtained from the last 2000 steps. The best-fit
marginalized parameters on each of the four parameters are:
n = 1.95 ± 0.06, q = 0.41 ± 0.05, m = 0.30 ± 0.01, and
A = 19.5 ± 2.3

It is not straightforward to formally assess the goodness
of fit for the Bayesian analysis we have done using a M-
estimate based likelihood with an unbinned analysis (Raja
2005; Lucy 2015). However, we still need to check whether
the best-fit parameters obtained from our regression analy-
sis provide a good description of the observed fluxes. From
Eq. (6) and the total number of degrees of freedom (DOF),
we calculate −2 lnL/DOF (analogous to χ2/DOF) using
our best-fit parameters to see if we get a value close to one.
At the best-fit point, the value of −2 lnL/DOF is about 3.42.
Therefore, this is a poor description of the observed fluxes.
We also confirmed that the normalized residuals given by
Si−S(P,Ṗ1,R)

wi
, do not show a Gaussian distribution with mean

at zero. Therefore, we find (in agreement with Lorimer et al.
1993) that the pulsar population from the Parkes multi-beam
survey cannot be accurately modeled as power-law functions
of the pulsar period and derivative, after keeping the distance
exponent as a free parameter. Moreover, we are unable to
obtain a best-fit value of the distance exponent of one.

Even though we cannot get a good fit to the observed pul-
sar fluxes, we would like to do a model comparison by com-
paring our best fit with some other distance exponents if they
are favored compared to an inverse-square law. To do this,
we fix the values of n in Eq. (8) to 1 and 1.5, and calculate
best-fit values of m, n, and A for these exponents, and com-
pare the residuals with our best-fit exponent of 1.95. This
comparison is shown in Table 2. For each value of n, we then
calculate −2 lnL/DOF using L from Eq. (6). The model
with a larger value of −2 lnL/DOF is disfavored compared
to the one with a smaller value. From Table 2, we see that
the value for n = 1 or n = 1.5 is larger than for our best-fit
value (close to 2), and is therefore disfavored compared to
an inverse-square law scaling.

We note that we also tried other variants of the likelihood
besides the one used in Eq. (6), including a binned maxi-
mum likelihood analysis. However, none of them provide a
good fit to the observed data or recover a best-fit exponent
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Table 2 Comparison of −2 lnL/DOF, where L is given by Eq. (6)
and DOF is the total number of degrees of freedom equal to 543, for
different values of distance exponent after marginalizing over the nui-
sance parameters

Exponent −2 lnL/DOF

1 4.05

1.5 3.17

1.95 3.00

of n = 1. Therefore, we do not find any evidence from our
likelihood-based analysis that the model for pulsar emission
proposed by Ardavan et al. (2008a) can account for the flux
of pulsars from the Parkes multi-beam survey.

6 Conclusions

S09 (Singleton et al. 2009) have argued that the radio
fluxes of pulsars measured at 1400 MHz from the Parkes
multi-beam survey show a violation of the universally ac-
cepted inverse-square law behavior. They tried to construct
the luminosity function of pulsars (after assuming different
power-law dependencies) using the SWML algorithm (Efs-
tathiou et al. 1988). SWML is an iterative procedure, where
one starts with an initial estimate for the luminosity func-
tion and the final luminosity function is obtained after a fi-
nite number of iterations using a bootstrapping procedure.
S09 found that the convergence error between successive it-
erations is smaller for n = 1 compared to the inverse-square
law (n = 2) by a factor of 105. In this paper, we have tried to
verify if the pulsar flux scales inversely with the first power
of distance using three different methods. First, we follow
exactly the same procedure as S09 and apply the original
SWML algorithm to the same pulsar dataset. We posit two
different estimates for the luminosity function in the zeroth
iteration. The first method assumes that the luminosity func-
tion is inversely proportional to the luminosity, and the sec-
ond method uses the observed data to construct the lumi-
nosity function. The final convergence errors for n = 2 us-
ing both these initial guesses do not agree with the results
of S09. Using the first method, we find that the convergence
error for n = 2 is of the same order of magnitude as n = 1.
Using the second method, we find that the convergence error
for n = 2 is only larger by a factor of 10 compared to n = 1.
Therefore, the convergence error of the SWML algorithm
for the pulsar dataset is sensitive to the initial luminosity
function used in the zeroth iterations. We are unable to re-
produce the results of S09 with two different trial luminosity
functions in the zeroth iteration.

We then reconstruct the luminosity function for the same
set of pulsars using the Lynden-Bell C− method (Lynden-
Bell 1971), after assuming both n = 1 and n = 2. We find

that in both the cases, the C− method has no problem in
reconstructing an empirical luminosity distribution. So this
method cannot be used to distinguish between the two dis-
tance exponents.

Finally, we extract the distance exponent with a Bayesian
regression procedure, after modeling the observed flux as
power-law functions of the observed distance, pulsar period,
and the period derivative. We do not get a best-fit value of
n = 1. The best-fit solution we obtain from our regression
method cannot adequately account for the flux distribution
of all the pulsars, which implies that the flux is also a func-
tion of other parameters not accounted for in our fitting pro-
cedure. However, the residuals from our fit for n = 1 are
larger compared to those for n = 2.

Therefore, using three independent methods we do not
find any evidence to support the claims of S09 that the pulsar
flux violates the inverse-square law and the flux decreases
linearly with distance.
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