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Abstract We study gravitational lensing in the vicinity of
a massive object described by non-Schwarzschild geometry
surrounded by a homogeneous plasma. The expression for
the deflection angle in a non-Schwarzschild space-time in
the weak field regime in the presence of plasma have been
derived. It has been shown that the obtained deflection angle
depends on (i) the frequency of the electromagnetic wave,
due to the dispersion properties of the plasma; (ii) the grav-
itational mass M; and (iii) deformation parameter ε of the
gravitational lens. Moreover, the influence of deformation
parameter of the gravitational lens and plasma frequency on
the magnification of brightness of the source star has been
studied in the case of microlensing.

Keywords Gravitational lensing · Plasma ·
Non-Schwarzschild gravitating object

1 Introduction

Einstein (1916) proposed three tests of general relativity,
subsequently called the classical tests of general relativity:
the perihelion precession of Mercury’s orbit, the deflection
of light by the Sun and the gravitational redshift of light.
The deflection of light due to gravity of the massive object
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is known as gravitational lensing. Gravitational lensing has
become an important tool for astronomy. It can give infor-
mation about the source that is imaged, about the object act-
ing as a lens, and about the intervening large-scale geometry
of the universe when source, lens and observer at a cosmo-
logical distances from one another. The first paper on this
subject, enabled “Nebulae as gravitational lenses” was pub-
lished by Zwicky (1937). Zwicky clearly emphasized the
role of galaxies as light-deflecting objects that could pro-
duce multiple images of background sources. In the 1960s
and 1970s, Refsdal (1964, 1966), Barnothy and Barnothy
(1968), Kristian and Sachs (1966), Bourass and Kantowski
(1975), Dyer and Roeder (1974), Sanitt (1971) and several
others published papers highlighting various aspects of grav-
itational lensing, ranging from purely theoretical investiga-
tions in general relativity to observational predictions in as-
tronomy. For further details on problems of the theory and
observations of gravitational lensing one can find in the book
of Schneider et al. (1992).

Recently Bisnovatyi-Kogan and Tsupko (2010, 2015),
Tsupko and Bisnovatyi-Kogan (2012) have studied propa-
gation of light in the presence of massive gravitational lens
surrounded by plasma. In these works it has been consid-
ered the deflection of light by the gravitation field and by
the inhomogeneities of plasma self-consistently and showed
that even in the homogeneous plasma the deflection angle
depends on the frequency of light through the refractive in-
dex. In the paper of Morozova et al. (2013) it has been
studied gravitational lensing in the vicinity of a slowly ro-
tating massive object surrounded by a plasma. They have
studied the influence of rotation of the gravitational lens
on the deflection angle of the light ray in the presence of
plasma.

In the present paper we consider effects of gravitational
lensing by non-Schwarzschild space-time in the presence
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of homogeneous plasma. Present non-Schwarzschild space-
time has been introduced by Yunes and Stein (2011) where
they studied two large classes of alternative theories, mod-
ifying the action through algebraic, quadratic curvature in-
variants coupled to scalar fields, and found a deformation
to the Schwarzschild metric that solved the modified field
equations in the small coupling approximation. Afterwards
Johannsen and Psaltis (2011) have been motivated by exam-
ining the no-hair theorem, they applied the Newman-Janis
transformation (Newman and Janis 1965) and constructed
a non-Kerr black hole metric with deformed parameter ε,
which measures deviations from the Kerr geometry. The de-
formation parameter ε can take quantities as ε > 0 or ε < 0
corresponds to the cases in which the event horizon of com-
pact object is more prolate or oblate than that of the Kerr
one, respectively. The study of the astrophysical processes
in the vicinity of deformed compact gravitational objects
could provide an opportunity for constraining the allowed
parameter space of solutions, and to provide a deeper insight
into the physical nature and properties of the correspond-
ing spacetime metric. For example Chen and Jing (2012)
have studied the strong gravitational lensing in the back-
ground of a non-Kerr black hole and have found that the
marginally circular stable orbit radius and deflection angle
depend sharply on the deformation parameter ε and rota-
tion one a. Recently in our preceding work (Atamurotov
et al. 2013) it was shown that in addition to the specific an-
gular momentum a, the deformation parameter of non-Kerr
spacetime essentially deformed the shape of the black hole
shadow. Moreover recently Rayimbaev et al. (2015) have
studied rotating magnetized neutron star with plasma mag-
netosphere described by non-Kerr spacetime metric in slow
rotation approximation.

The main purpose of this paper is to study the weak gravi-
tational lensing by a non-Schwarzschild compact object sur-
rounded by homogeneous plasma and see how deformation
parameter either plasma influence to the deflection angle in
the weak field limit. Here we plan to extend the results of the
paper of Bisnovatyi-Kogan and Tsupko (2010) to the case of
deformed gravitational lens. We consider a light ray propa-
gating in the vicinity of the massive Schwarzschild like ob-
ject surrounded by plasma shell. Our goal is to investigate
the deflection angle in the case when the metric of space-
time has deformation parameter.

The paper is organized as follow. In Sect. 2 we study de-
flection of light by non-Schwarzschild gravitational lensing
object in a plasma. As a physical application of the obtained
result in Sect. 3 we consider the influence of deformation
parameter on the magnification of brightness of the star in
the case of microlensing. We obtain the ratio of the magnifi-
cation in the case of non-Schwarzschild and Schwarzschild
lens, but the estimation of the effect using the typical param-
eters of the lensing systems shows that the effect of defor-

mation is small. Finally in Sect. 4 we summarize our main
findings.

Throughout, we use a space-like signature (−,+,+,+).
Greek indices run from 0 to 3 and Latin ones from 1 to 3.

2 Deflection of light by a non-Schwarzschild
lensing object in a plasma

2.1 Equations of light propagation in deformed
space-time

Here we assume that the gravitational field is weak and the
space-time is asymptotically flat, mathematically it means

gαβ = ηαβ + hαβ, ηαβ = (−1,1,1,1),

hαβ � 1, hαβ → 0 under xi → ∞, (1)

where gαβ is the metric tensor of the ds2 = gαβdxαdxβ

space-time metric, hαβ is the flat space metric (−1,1,1,1)

and is a small perturbation. And their contravariants are (see
Landau and Lifshitz 1971)

gαβ = ηαβ − hαβ, hαβ = hαβ. (2)

Synge (1960) suggested equivalent variational principle
which might be taken as a base of the geometrical optics.
He has shown that in the presence of the gravitational field
the trajectories of photons can be taken from the variational
principle

δ

(∫
pαdxα

)
= 0 (3)

by using following restriction condition

n2 = 1 + pαpα

(p0√−g00)2
,

in the form

W
(
xα,pα

) = 1

2

[
gαβpαpβ − (

n2 − 1
)(

pαV α
)2] = 0, (4)

here pα is the photon momentum, V α is the 4-velocity of the
medium and n is the refractive index of the medium, leads
to the following system of differential equations

dxα

dλ
= ∂W

∂pα

,
dpα

dλ
= − ∂W

∂xα
, (5)

with the affine parameter λ which is changing along the pho-
ton’s trajectory.

Taking into account that in a static gravitational field for
a static medium (see Synge 1960)

pαV α = −�ω(xi)

c
, (6)
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where � is the Planck constant, ω(xi) is the photon fre-
quency, which depends on the spatial coordinates xi due to
the presence of the gravitational field, and c is the speed of
light, the scalar function W(xα,pα) may be rewritten in the
form

W
(
xα,pα

) = 1

2

[
gαβpαpβ − (

n2 − 1
)�

2ω2(xi)

c2

]
. (7)

Here a static inhomogeneous plasma with a refractive in-
dex n depends on xi and ω(xi) as

n2 = 1 − ω2
e

ω2(xi)
, ω2

e = 4πe2N

m
≡ KeN, (8)

where N = N(xi) is the electron concentration in an inho-
mogeneous plasma, e is the charge of the electron, m is
the electron mass, ωe is the electron plasma frequency
in this plasma. We denote the following notations for the
values at infinity as ω(∞) = ω, ωe(∞) = ω0, n(∞) =√

1 − ω2
0/ω

2 = n0.
From (7) and (8) one may write Eqs. (5) for the trajectory

of the photon as

dxi

dλ
= gikpk,

dpi

dλ
= −1

2
glm

,i plpm − 1

2
g00

,i p2
0 − 1

2

�
2KeN,i

c2
.

(9)

Solution for the photon’s trajectory in flat space-time in
vacuum is a straight line. The components of the 4-mo-
mentum of photon moving along the straight line along the
z-axis are (see Bisnovatyi-Kogan and Tsupko 2010)

pα =
(

�ω

c
,0,0,

n0�ω

c

)
, pα =

(
−�ω

c
,0,0,

n0�ω

c

)
.

(10)

While there is weak gravitational field and small plasma in-
homogeneity, we follow to the work of Bisnovatyi-Kogan
and Tsupko (2010) and may consider the components (10)
as null approximation for the trajectory of the photon. Using
Eqs. (9) one gets in the left-hand side the first order devia-
tion of the trajectory from a straight line as

dpi

dz
= 1

2

n0�ω

c

(
h33,i + 1

n2
0

h00,i − KeN,i

n2
0ω

2

)
, (11)

with

dz

dλ
= n0�ω

c
. (12)

The deflection angle of the light ray in the plane perpen-
dicular to the z-axis is equal to (see Bisnovatyi-Kogan and

Tsupko 2009)

α̂k = [
pk(∞) − pk(−∞)

]
/p,

p =
√

p2
1 + p2

2 + p2
3 = |p3| = n0�ω

c
, k = 1,2,

(13)

and from Eq. (11) one can get

α̂k = 1

2

∫ ∞

−∞
∂

∂xk

(
h33 + h00ω

2

ω2 − ω2
0

− KeN

ω2 − ω2
0

)
dz. (14)

2.2 Angle of deflection

The deformed Schwarzschild like metric which describes
static and asymptotically flat vacuum spacetime, in the
standard Boyer-Lindquist coordinates, may be expressed
as (Yunes and Stein 2011)

ds2 = −f (1 + h)c2dt2 + f −1(1 + h)dr2 + r2d�, (15)

where

f = 1 − 2GM

c2r
,

d� = dθ2 + sin2 θdφ2.

Together with the mass of lensing object, this space-
time metric contains parameters that measure potential de-
viations from the Schwarzschild metric and reduces to the
Schwarzschild metric in Boyer-Lindquist coordinates in the
case when h(r) = 0. The function h(r) can be chosen as

h(r) =
∞∑

k=0

εk

(
GM

c2r

)k

,

and the constraints on εk can be found from asymptotical
properties of the metric (15). The requirement of the asymp-
totic flatness of the metric implies that ε0 = ε1 = 0. Here
our choice of the function h(r) to be the third power of
(GM/c2r) as in Johannsen and Psaltis (2011) is

h(r) = ε

(
GM

c2r

)3

.

As ε = 0, the metric (15) is reduced to the typical Schwarzs-
child one well known in general relativity.

In the limit of large radii, the static and asymptotically
flat spacetime non-Schwarzschild metric can be written as
(Landau and Lifshitz 1971)

ds2 = ds2
0 +

(
2GM

c2r
− h

)
c2dt2 +

(
2GM

c2r
+ h

)
dr2, (16)

where the flat part of the above metric is ds2
0 = −c2dt2 +

dr2 + r2(dθ2 + sin2 θdφ2).
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Fig. 1 Deflection angle αb as a function of the impact parameter b. In plots in vertical axes αb is taken in radians, and in horizontal axes b/M is
considered as dimensionless parameter. Plot (a) corresponds to the vacuum case, while plot (b) has a plasma with a � = ω2

0/ω
2 = 0.5

In the Cartesian coordinates the components hαβ are
written as

h00 =
(

rg

r
− h

)
,

hik =
(

rg

r
+ h

)
nink, h33 =

(
rg

r
+ h

)
cos2 χ.

(17)

Here rg = 2GM/c2, ni is the unit vector of 3-radius-
vector ri = (x1, x2, x3), the angle χ is the polar angle be-
tween 3-vector ri = ri and z-axis, and n3 = cosχ = z/r =
z/

√
b2 + z2. And the formula for the deflection angle of

light for non-Schwarzschild lensing object in homogeneous
plasma will be in the following form

α̂b =
∫ ∞

0

∂

∂b

[(
rg√

b2 + z2
+ ε

(GM/c2)3

(b2 + z2)3/2

)
z2

b2 + z2

+ 1

1 − ω2
0/ω

2

(
rg√

b2 + z2
− ε

(GM/c2)3

(b2 + z2)3/2

)]
dz.

One can calculate the deflection angle as

α̂b = rg

b

[(
1 + 1

1 − ω2
0/ω

2

)

− ε

(
GM

c2b

)2( 1

1 − ω2
0/ω

2
− 1

3

)]
. (18)

The above formula (18) is valid only for ω > ω0, because
the waves with ω < ω0 do not propagate in the plasma (see
Ginzburg 1970).

One can see from (18) when there is vacuum ω0 = 0 and
no deformation in spacetime ε = 0 the gravitational deflec-
tion

α̂b = 2rg

b
, (19)

is the Schwarzschild one. In the presence of plasma and ab-
sents of the deformation of the spacetime, the formula (18)
comes to

α̂b = rg

b

(
1 + 1

1 − ω2
0/ω

2

)
, (20)

as it was shown by Bisnovatyi-Kogan and Tsupko (2010).
One can easily see that in the absent of plasma the deflection
angle by non-Schwarzschild spacetime will be:

α̂b = 2rg

b

(
1 − 1

3
ε

(
GM

c2b

)2)
. (21)

For the clarity of importance of our research we compare
the second term in the right hand side with deformation pa-
rameter of Eq. (18) for α̂b with the first term by the order of
magnitude. In the case ω0 << ω the ratio of these terms is
equal to

−1

3
ε

(
GM

c2b

)2

, (22)

which can be 0.017ε for the typical neutron star with the
radius R = 10 km. For deformation parameter ε = ±6 the
ratio reaches 10−1 as the ratio of term being responsible for
the angular momentum to the one induced by the total mass
for millisecond pulsars (see Morozova et al. 2013).

Let us now see how the deflection angle behaves in a
weak field for the lens with a homogeneous plasma de-
scribed by a non-Schwarzschild metric (15). From Fig. 1
one can see that as in the Schwarzschild case for all values
of deformation parameter ε the deflection angle decreases
with the increasing impact parameter b either the lens is in
vacuum figure (a) or surrounded with a plasma figure (b).
Nevertheless the presence of the plasma increases the de-
flection angle by the lensing object. Let us note that the
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Fig. 2 Variety of the deflection angle αb with the deformed parame-
ter ε, where � = ω2

0/ω
2

deflection can be strongest only for the radiowaves, when
the frequency of the electromagnetic wave would be slightly
exceeding the plasma frequency (see Bisnovatyi-Kogan and
Tsupko 2009) and in other wave lengths when the frequency
of the light much more bigger then the electron frequency
plasma it comes to the Schwarzschild one (19). The change
of deflection angle α by the deformed lensing object with
a square ratio of electron frequency plasma ω0 to the fre-
quency of photon ω changes from zero to one is shown in
Fig. 2, which tells us that the deflection angle is increasing
monotonically with frequency ω is approaching to the elec-
tron plasma frequency ω0.

3 Amplification of brightness of the image source

In the classical model of gravitational lensing the traveling
light is bent to the angle (19) which is called Einstein de-
flection angle, by the presence of a massive body. However
in our deformed lens surrounded by the homogenous plasma
case the deflection angle should be replaced by formula (18).
In observational astronomy an Einstein ring is the inclina-
tion of the light from a source (such as a galaxy or star) into a
ring through gravitational lensing of the source’s light by an
object with an extremely large mass (such as another galaxy
or a black hole). This occurs when the source, lens, and ob-
server are all aligned. The size of an Einstein ring which is
the angular half separation due to gravitational lensing, be-
tween the images of the source in vacuum (Schneider et al.
1992) is of the order of

θ0 =
√

2rg
Dds

DdDs

, (23)

where Dd is the angular diameter distance between the
observer and the lens, Ds is the angular diameter dis-
tance between the observer and the source, Dds is the an-
gular diameter distance between the lens and the source.

Non-Schwarzschild lensing in presence of a homogeneous
plasma (18) leads to an angular half separation between im-
ages as

(
θ

pl

0

)
ε
=

[[(
1 + 1

1 − ω2
0/ω

2

)

− ε

(
GM

c2b

)2( 1

1 − (ω2
0/ω

2)
− 1

3

)]
rg

Dds

DdDs

]1/2

= θ0

[
1

2

(
1 + 1

1 − (ω2
0/ω

2)

)

− 1

2
ε

(
GM

c2b

)2( 1

1 − (ω2
0/ω

2)
− 1

3

)]1/2

, (24)

or the formula (24) can be written in the following way

(
θ

pl

0

)
ε
=

√√√√(
θ

pl

0

)2 − ε

(
GM

c2b

)2( 1

1 − ω2
0/ω

2
− 1

3

)
θ2

0

2
,

(25)

where

θ
pl

0 = θ0

√
1

2

(
1 + 1

1 − ω2
0/ω

2

)
, (26)

which is called, as plasma Einstein ring (see Bisnovatyi-
Kogan and Tsupko 2010).

While gravitational lensing preserves surface brightness,
lensing does change the apparent solid angle of a source.
The amount of magnification is given by the ratio of the
image area to the source area. The magnification effect en-
ables us to observe objects which are too distant or intrinsi-
cally too faint to be observed without lensing. Lenses there-
fore act as “cosmic telescopes” and allow us to infer source
properties far below the resolution limit or sensitivity limit
of current observations. For a circularly symmetric lens, the
magnification factor μ is given by

μ = θ

β

dθ

dβ
,

where the β is the angular position of the source and the θ

is the angular position of the appeared image relative to the
line passing through the observer and the lens respectively.

Following to the book of Schneider et al. (1992) let the
magnification factor of the primary image μ+, located at
the same side as the source relative to the lens, and of the
secondary image μ−, located at the opposite side, depend
on the angular position of the source. Further corresponding
expression for the magnification would be

μ+ = 1

4

[
y√

y2 + 4
+

√
y2 + 4

y
+ 2

]
, (27)
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μ− = 1

4

[
y√

y2 + 4
+

√
y2 + 4

y
− 2

]
. (28)

Here y = β/θ0, and the total magnification of the source is
equal to

μ� = μ+ + μ− = y2 + 2

y
√

y2 + 4
. (29)

We consider the total magnification which is the product of
the individual values of each type of magnification used in
combination with each other. Because it is important for the
microlensing events when the separated images are not re-
solved, and the only observable effect is changing of the flux
from the source due to lensing.

In the case of lensing in plasma we can rewrite these for-
mulae, using ỹ = β/(θ

pl

0 )ε instead y:

μ
pl
ε+ = 1

4

[
ỹ√

ỹ2 + 4
+

√
ỹ2 + 4

ỹ
+ 2

]
, (30)

μ
pl
ε− = 1

4

[
ỹ√

ỹ2 + 4
+

√
ỹ2 + 4

ỹ
− 2

]
, (31)

μ
pl
� = μ

pl
+ + μ

pl
− = ỹ2 + 2

ỹ
√

ỹ2 + 4
, (32)

where

ỹ = β

(θ
pl

0 )ε

= β

θ0

[
1

2

(
1 + 1

1 − (ω2
0/ω

2)

)

− 1

2
ε

(
GM

c2b

)2( 1

1 − ω2
0/ω

2
− 1

3

)]−1/2

. (33)

At large β the total amplification factor goes to unity,
because the influence of the lens on the light propaga-
tion becomes negligible. For both Schwarzschild and non-
Schwarzschild lenses at a small angle β , the amplification is
inversely proportional to the angle β , and is proportional to
the angular radius of the Einstein ring, which increases with
decreasing frequency, approaching infinity at the plasma fre-
quency. As β goes to zero, the amplification increases, for-
mally unrestrictedly for the point source.

The ratio of the magnification of the primary image in
presence of plasma μ

pl
ε+ to the same value in vacuum με+

with deformation parameters is given in Fig. 3, for ω =√
2ωe, according to (27), (30). The upper curve in Fig. 3

is the ratio of the magnification of the secondary image in
presence of plasma μ

pl
ε− to the same value in vacuum με−,

according to (28), (31).

Fig. 3 The ratio μ
pl
ε+/με+ of the magnification of the primary im-

age in presence of plasma to the same value in vacuum (lower curve),
and the ratio μ

pl
ε−/με− of the magnification of the secondary image in

presence of plasma to the same value in vacuum (upper curve) with
deformations parameter ε. Curves are plotted for ω = √

2ω0

The deflection angle in presence of the plasma is larger,
than in the vacuum, so the amplification for lower frequen-
cies is larger, and in this situation the image spectrum differs
from the original spectrum of the source, having more inten-
sive the low-frequency part. The light in two lensing images
is propagating through different media with different plasma
density. Therefore, different images of the same source may
have different spectra in the radio band.

Our purpose is to calculate μ
pl
�ε/μ

pl
� for the case when

β → 0 and see how deformation parameters affects the max-
imum value of the peak of magnification in the gravitational
microlensing phenomena. Here μ

pl
�ε is the magnification by

the deformed and μ
pl
� by the non-deformed gravitational

lenses surrounded by homogeneous plasma. The magnifi-
cation in the case of the non-deformed lens surrounded by
plasma was investigated in the work of Bisnovatyi-Kogan
and Tsupko (2010) and for β → 0 is equal to

μ
pl
�

∣∣
β→0 → 1

2

√
2θ2

0 (1 + 1

1− ω2
0

ω2

)

β
. (34)

One can obtain for the ratio μ
pl
�ε/μ

pl
� in the limit β → 0

the following result

μ
pl
�ε

μ
pl
�

=
[

1 − ε

(
GM

c2b

)2( 1

1 − ω2
0

ω2

− 1

3

)

×
(

1 + 1

1 − ω2
0

ω2

)−1] 1
2

, (35)

which is equal to 1 when there is vacuum ω0 = 0 and no
deformation ε = 0, as it could be expected.
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Table 1 The contribution of the deformation parameter to the mag-
nification of the brightness of the source. The ration of magnification
with deformation parameter to the source without deformation param-
eter in plasma can be expressed like μ�ε/μ� = 1 ± �μ, where �μ is
presented in percentages %. Here in the table 0 means vacuum space-
time

ω2
0/ω

2 0 0.01 0.25 0.5 0.9

ε = 20,�μ,% 5.56 5.62 7.2 9.46 15.45

ε = −20,�μ,% 5.27 5.32 6.73 8.64 13.36

However, the effect of the deformation on the magnifica-
tion appears to be of little significance as soon as we try to
estimate it for the astrophysical situation. Assuming the lens
to be a supermassive black hole with the following values of
parameters e.g. deformation parameter between (−20,20)

(see Chen and Jing 2012; Johannsen and Psaltis 2011; Ata-
murotov et al. 2013; Abdujabbarov et al. 2013), and the
mass M = 1, with the impact parameter b = 8.982 (see
Tsupko and Bisnovatyi-Kogan 2013), and the ratio of elec-
tron plasma frequency with the frequency of the light as
ω2

0/ω
2 = (0,0.01,0.25,0.5,0.9) have the following orders

Table 1.
This give us conclusion that for the realistic situations

the contribution of the deformation parameter of the grav-
itational lens to the magnification of the brightness of the
source makes small changes as well as a plasma of the lens.

4 Conclusion

We have studied the gravitational lensing in a plasma sur-
rounding deformed gravitational object and can summarize
our main findings as the following.

1. The deflection angle of light by non-Schwarzschild grav-
itational source surrounded by plasma linearly depends
on both the gravitational mass M and the deformation
parameter ε of the gravitational lens. For ε = ±6 the ra-
tio of term being responsible for the deformation to the
one induced by the total mass may proportional to 10−1

for the ordinary neutron stars.
2. We have studied influence of deformation parameter of

gravitational lens to the magnification of brightness of

the star in the case of microlensing and have shown that
the deformation does not make noticeable contribution to
the magnification.
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