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Abstract We formulate exact non-local linear analysis for
identification and characterization of the global collective
gravito-electrostatic eigenmodes, discrete oscillations and
associated instabilities in interstellar charged dust molecu-
lar cloud (DMC) sphere with mass-radius above the stabil-
ity critical values on the astrophysical fluid scales of space
and time. The realistic relevant zeroth-order effects, hith-
erto remaining unaccounted for, are concurrently included.
It avoids using any kind of the Jeansian swindles against
usual viewpoint. Armed with the modified Fourier plane-
wave method, the dispersion relations (eigenvalues) and
amplitude-variations (eigenfunctions) of the relevant per-
turbations about the inhomogenous equilibrium are proce-
durally derived and analyzed together with numerical il-
lustrations. It is seen that the entire cloud supports spec-
trally heterogeneous mixture of the Jeans (gravitational)
and electrostatic (acoustic) modes, coupled via quasi-linear
discrete oscillations of mixed pattern. The lowest-order non-
rigid diffused cloud surface boundary (CSB), sourced by
active gravito-electrostatic interplay, is the most unstable in-
terfacial plasma layer. Three distinct and spatio-spectrally
isolated classes of global eigenmodes—dispersive, non-
dispersive and hybrid types—are keyed together with id-
iosyncratic prolific features. Dispersive features are promi-
nent in the ultra-high k-regime (acoustic) with modified
form due to self-gravitational condensation of the Jeans
modes; whereas, non-dispersive characteristics in the ultra-
low k-regime (gravitational) dominated by the Jeans waves;
where, k = 2π/λ is the angular wave number of the fluctu-
ations on the Jeans scale. We further demonstrate that the
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grain-charge (grain-mass) plays destabilizing (stabilizing)
influential role for the electrostatic fluctuations, but stabi-
lizing (destabilizing) role for the self-gravitational counter-
parts. The results can be useful to realize diverse complex
global astrophysical matter stabilities, instability-caused
energy-cascading processes and self-gravitational cloud col-
lapse dynamics leading to star clusters and galactic associa-
tions.

Keywords Dust · Eigenvalue and eigenfunction ·
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1 Introduction

Application of conventional local stability theory in self-
gravitating astrophysical plasmas is indeed inadequate and
incorrect due to their non-uniform nature ensuing from
the differential scale-heights of the gravitationally strati-
fied constituent species in establishing gravito-thermal equi-
librium. The existence of gravity-induced ambipolar elec-
trostatic space-charge polarization effects in the plasmas
with large-scale non-zero equilibrium electric field, in fact,
needs inclusive attention (Bally and Harrison 1978; Vran-
jes and Tanaka 2005). An isolated isothermal gravitat-
ing dusty plasma gas or dust molecular cloud (DMC) in
gravito-thermal equilibrium organizes itself in such a fash-
ion that the heavier constituents (grains) preponderantly fill
lower layers toward the central region, leaving the lighter
species (electrons and ions) re-distributed in upper lay-
ers relative to the center. In the usual DMC conditions
(Vranjes and Tanaka 2005) at plasma temperature T eV,
the grain-to-electron and grain-to-ion scale heights (Hs )
may, with all the usual notations, be respectively compared
as, Hd/He ∼ (md/mi)(T /Td) ∼ 1013 � 1 and Hd/Hi ∼
(md/mi)(T /Td) ∼ 109 � 1. For a few km of scale-heights
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of the electrons and ions, the dust density scale-height may
go a few parsecs. It clearly indicates that a large-scale non-
zero electrostatic potential is evolved in association with
the gravity-induced stratification effects. As a consequence,
astrophysical plasmas are indeed inhomogeneous and non-
uniform in nature containing free energy sources stored in
their equilibrium inhomogeneities themselves. The free en-
ergies naturally tend to relax into lower energy states via in-
stabilities or diffusive fluctuations. This implies that gravity-
induced ambipolar electrostatic space-charge polarization
effects in the plasmas with large-scale non-zero equilibrium
electric field giving large-scale plasma flow dynamics on
the zeroth-order must be considered in their instability anal-
yses. This entails, at least in principle, that the existence
of the gravity-induced non-zero zeroth-order electric field
acting as an active source for the inhomogeneities requires
non-local analyses in astrophysical environments. It may
be noted that the global (non-local) collective plasma wave
fluctuations in the complex astrophysical grainy cloud envi-
ronments with the unipolar gravitationally-induced bipolar
electrostatic polarization effects needed for maintaining the
cloud equilibria taken into account has hitherto not been re-
alized completely amid the non-uniform equilibrium.

It may furthermore be pertinent to mention that con-
templates of collective waves, oscillations and associated
instabilities in ionized self-gravitating dusty plasmas (viz.
DMCs, protostellar disks, interstellar and circumstellar
clouds, cores, and so on) are very essential due to their
important role in the formation process of stars, planets
and other galactic elements (Verheest 1996, 2000; Shukla
and Mamun 2000; Mamun and Shukla 2001; Spitzer 2004).
The presence of inertially massive and electrically charged
dust particulates makes it more interesting to empathize the
nascence mechanism of bounded astrophysical objects.

The interstellar dust mostly consists of Silicates
((SiO4)

4−), Graphite (C), Amorphous Carbon (aC), Poly-
cyclic Aromatic Hydrocarbon (PAH) molecules, Silicon
Carbide (SiC), Magnesium Sulfide (MgS), Icy grain mantles
composed of simple molecules (e.g., H2O, NH3, CH3OH
and CO), and organic refractory grain mantles rich in car-
bon and oxygen (Tielens and Allamandola 1987; Hoyle
and Wickramasinghe 1991; Spitzer 2004). The grain mor-
phologies are usually non-uniform in composition (Tielens
and Allamandola 1987; Hoyle and Wickramasinghe 1991;
Spitzer 2004). These are composed of heterogeneous mul-
tilayers of different constituents starting from the grain
core to outer surface. The core is made up of silicates
and carbon. The inner surface, just adjacent to the core,
is formed with water and ammonia at normal tempera-
ture (far below the plasma temperature); and the outer
surface with oxygen, carbon monoxide and nitrogen (Tie-
lens and Allamandola 1987; Hoyle and Wickramasinghe
1991; Spitzer 2004). The grain mass is ∼ 10−9–10−21 kg,

with the volume density of mass, ρd = mdnd ∼ 3 ×
10−21 kg m−3 in interstellar media (Vaisberg et al. 1987;
Hoyle and Wickramasinghe 1991; Verheest 2000; Spitzer
2004). There are different DMC classes depending on
their physical properties (Friberg and Hajalmarson 1990;
Kutner 2003; Stahler and Palla 2004). For example, these
are Globular Clouds (GCs) (nGC ∼ 109–1010 m−3, TGC ∼
10−3 eV), Dark Clouds (DCs) (nDC ∼ 109 m−3, TDC ∼
10−3 eV); Giant Molecular Clouds (GMCs) (nGMC > 3 ×
108 m−3, TGMC ∼ 1.4 × 10−3–5.0 × 10−3 eV); Dense
Dust Clouds (DDCs) (nDDC ∼ 1011–1012 m−3, TDDC ∼
3.0×10−3–1.0×10−2 eV); Diffuse Dust Molecular Clouds
(DDMCs) (nDDMC > 107 m−3, TDDMC ∼ 5.0 × 10−3–1.0 ×
10−2 eV); Cirrus Clouds (CCs) (nCC ∼ 107–109 m−3,
TCC ∼ 10−3–10−2 eV); Supernova Remnant Clouds (SRCs)
(nSRC ∼ 106 m−3, TSRC ∼ 1–103 eV); etc.

As is well-known, the star-formation processes are gov-
erned by complex interplay between the gravitational at-
traction due to the massive grains; and agents such as, in-
stability in the atmosphere, magnetic field, radiation and
thermal pressure that resist free-fall compression. The su-
personic turbulence and thermal instability lead to tran-
sient, dense clumpy structures. Some of the clumps begin
to collapse under the condition that the gravitational force
pulling inward exceeds the gas pressure pushing them out-
ward. Once the collapse starts, the process feeds on itself
and makes it denser, and so on. Thus, the clumps fragment
into many pieces. Fragmented pieces again continue to col-
lapse on its own self-gravity until the gas temperature raises
enough to balance gravitational effects. A consequence of
the gravito-thermal balancing results in bounded structures
in the form of protostars or pre-stellar cores (Peratt 2015).
The presence of flow and inhomogeneity is an integral part
here. For example, interplay between self-gravity and flow
can destabilize the dusty fluid; where, both the electro-
static and Jeans instabilities may operate simultaneously.
Jeans has predicted the instabilities of self-gravitating large
gas clouds in the last century (Jeans 1902). Later, Chan-
drasekhar has worked on comparative investigation of the
Jeans instability in self-gravitating fluids and plasmas; and
has found that the hydrostatic gas pressure gradient and the
Lorentz force stabilize the Jeans instability (Chandrasekhar
1957). In this direction, Pudritz has performed a local lin-
ear instability analysis of self-gravitating partially ionized
magnetoplasma (Pudritz 1990). His main interesting result
is that the fluctuation growth rate reduces to that of the
Jeans instability for the large-wavelength limit with fric-
tional modulation in the short-wavelength regime only. Re-
cently, other authors have also studied local stabilities to
explore the magnetic Jeans and tearing instabilities for un-
derstanding the involved fragmentation processes (Mamun
et al. 1999; Mamun and Shukla 2000, 2001; Shukla and
Mamun 2000). It can thus be seen that, there might have
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been many other earlier linear (Pudritz 1990; Avinash and
Shukla 1994; Pandey et al. 1994; Shukla and Mamun 2000;
Verheest et al. 2003) and nonlinear (Rao et al. 1990;
Pandey et al. 1994) stability analyses in the direction. Re-
cently, Mamun and Schlickeiser have reported an interest-
ing result on nonlinear fluctuations in self-gravitating dusty
plasma (Mamun and Schlickeiser 2015). They have investi-
gated the existence of different solitary gravito-electrostatic
potential structures in an inertial bi-dust-fluidic plasma sys-
tem with bi-polar charges evolving on the dust-acoustic
scales of space and time. They have applied local nonlin-
ear perturbation theory, with presumptively homogeneous
equilibrium; but on the ground that their perturbation wave-
length is much shorter in comparison with the inhomogene-
ity scale-length. Based on the existing reports, it can be
noted that the realistic DMC dynamics is indeed very com-
plex to formulate. Equilibrium inhomogeneities and non-
uniformities further add to the factors complicating it. So,
to the best of our knowledge, none has heretofore studied
the non-local linear fluctuations in such a convoluted cloudy
configuration. In this paper, we, therefore, construct a theo-
retical methodological model for the same.

In astrophysical berths, the grain dynamics is mainly con-
trolled by gravitation; while, those of the electrons and ions
are influenced overwhelmingly by electromagnetic coun-
terparts. The two forces operate on two widely distinct
scales. For micron and sub-micron sized grains, these forces
become comparable, at least in principle, within an or-
der of magnitude (Avinash and Shukla 1994). Our model
is specially focused on the particular class of the DMCs,
where the dust self-gravity is balanced by the force arising
from shielded electric field on the charged dust (Avinash
and Shukla 2006). The principal goal is centered on the
choice that the mass- and scale-size of the cloud are greater
than the Avinash-Shukla critical mass limit (MD > MAS ∼
1018 kg, but ∼ 1021 kg, in our case) and critical scale length
(RD > LAS ∼ 109 m) for the maximum cloud mass, respec-
tively. We develop standard eigenvalue formalism around
the inhomogeneous and non-uniform equilibrium. It uses
the inhomogeneous plane wave analysis (Ostashev and Wil-
son 2016). The derived eigenvalue and eigenfunction equa-
tions are numerically illustrated and analyzed. The unique
characteristics found here are the co-excitation and co-
evolution of new instability and interplaying spectral fluc-
tuations sourced by the gravito-electrostatics.

Apart from the “introduction” described in Sect. 1 above,
this paper is structurally organized in a standard format as
follows. Section 2 contains physical model and necessary
basic governing structure equations. Section 3 presents ana-
lytical derivations of the DMC stability threshold values of
the mass and size. Section 4 contains the non-local fluctu-
ation analysis, subdivided into Sects. 4.1 and 4.2, showing
the electrostatic Poisson and self-gravitational Poisson for-

malisms, respectively. Results and discussions are summa-
rized in Sect. 5. Lastly, Sect. 6 depicts the main conclusions
and astrophysical applicability in futuristic directions.

2 Physical model and basic governing equations

A spherical self-gravitating charged DMC in astrophysical
environment is considered in quasi-neutral hydrodynamic
inhomogeneous equilibrium configuration on the astrophys-
ical scales of space and time. The plasma constituents are
the thermal electrons, singly ionized positive ions and in-
ertial spherical micron-sized dust grains of identical nature.
The solid matter of the massive dust grains is embedded in
the gaseous phase of the plasma enclosed in a giant spheri-
cally symmetric chamber. A bulk uniform (divergence-free)
flow is presumed to exist globally amid quasi-neutrality. On
the Jeans scales of space and time, we neglect the iner-
tia of the electrons and ions, treated as the Boltzmannian
species. The dust kinetic pressure, which is appropriate for
the cloud much larger than the plasma Debye radius, is ig-
nored. Moreover, the dust charge is not constant, but taken
as function of dust population density. It decreases with in-
crease in the dust concentration, and vice versa. The equi-
librium (zeroth-order) electric field is finite non-zero arising
due to gravity-induced electrostatic polarization effects of
the plasma (Bally and Harrison 1978; Pandey et al. 2002;
Vranjes and Tanaka 2005). The electrostatic fragmentation
of the like charged grains due to the Coulombic repulsive
fields (Bliokh et al. 1995) is ignored. The origin of such
polarization lies in the mass-dependent gravitational strat-
ification of the plasma constituents to establish reorganized
gravito-thermal equilibrium. Besides, all the realistic zeroth-
order effects hitherto remaining unaccounted for—like equi-
librium inhomogeneities, diverse gradient forces, dust flow-
convection dynamics, and so forth—are all concurrently in-
cluded. Thus, it avoids using any kind of the Jeansian swin-
dles to handle the inhomogeneities against the traditional
viewpoint of assuming the equilibrium initially as “homo-
geneous” one. Furthermore, influences by external cosmic
agencies, such as dark matter or stars, are neglected. All
other equilibrium characteristic features, as described by
Avinash and Shukla, are retained without any loss of gener-
ality (Avinash and Shukla 2006). We consider that the total
cloud mass contributed collectively by the heavier grains is
greater than the Avinash–Shukla critical mass-size limiting
values. The velocity convection dynamics in the dust fluid is
afresh included. For realizing the macroscopic state of such
clouds, the electrons and ions with all usual notations are
respectively drew as

qne
�∇ϕ − �∇pe = 0, and (1)

− qni
�∇ϕ − �∇pi = 0. (2)
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We apply the hydrodynamic model approximation (low-
frequency), which enables us to assume the phase velocity
vp = ω/k of the fluctuations in the range vte, vti � vp �
vtd ; where vte, vti , and vtd are thermal velocities of the elec-
trons, ions and the charged grains, respectively. So, the elec-
trons and ions are justifiably treated as the Boltzmannian
particles (derivable from Eqs. (1)–(2)). The dynamics of the
dust fluid with all conventional notations is collectively gov-
erned by

∂nd

∂t
+ �∇.(nd �vd) = 0, and (3)

ρd

[
∂ �vd

∂t
+ (�vd . �∇)�vd

]
= −qdnd

�∇ϕ − ρd
�∇ψ. (4)

The system is finally closed by the coupling Poisson
equations of the electrostatic and self-gravitational potential
distributions, given respectively in closed form, as follows,

∇2ϕ = −4π
[
e(ni − ne) + qdnd

]
, and (5)

∇2ψ = 4πGρd. (6)

Here, ne, ni , and nd are the unnormalized electron
(with charge “−q”, temperature “Te”, and mass “me”), ion
(with charge “+q”, temperature “Te”, and mass “mi”), and
dust (with charge “qd = −Zdq”, temperature “Td”, and
mass “md”) number densities, respectively. The notations
ϕ and ψ stand for the unnormalized electrostatic and self-
gravitational potentials, respectively. The dust flow velocity
is designated by vd . The electronic and ionic thermal pres-
sures are dictated by their respective isothermal equations
of state, pe = neTe and pi = niTi , with temperature-scaling
Td � Te ≈ Ti = T (in eV) due to the differential mass-
scaling md � mi > me , respectively. Lastly, G = 6.67 ×
10−11 N m2 kg−2 is the universal gravitational constant via
which the gravitating dusty gaseous matter interacts.

3 Derivation of the stability mass limit

Avinash and Shukla have shown an upper limit of the to-
tal mass and spatial extension of astrophysical dusty clouds
for stable configuration (Avinash and Shukla 2006), as origi-
nally understood in case of the Chandrasekhar mass limit for
compact astrophysical objects (Chandrasekhar 1957). For
the present DMC, we first derive its mass- and size-limits, in
the light of our formalism. This implies that, if the mass and
size are less than the Avinash-Shukla critical values, then
the cloud is stable; otherwise, the cloud becomes unstable
and undergoes collapse self-gravitationally. The equation of
force balance for the charged dust fluid can be written as,

�∇pe = −ρd
�∇ψ, (7)

where, pe is the electrostatic pressure (superscript ‘e’ for
‘electrostatic’). Now, spatially differentiating Eq. (7) and us-
ing Eq. (6), we derive the Lane-Emden equation (LEE) on
the self-gravitational pressure with spherical symmetry in
the normalized form as follows,

(
RD

λJ

)2{ 1

ξ2

∂

∂ξ

(
ξ2

ρD

∂PE

∂ξ

)}
= −ρD, (8)

where, RD = (noT /4πGm2
dn2

do)
1/2 is the DMC scale-size

and λJ is the critical Jeans length. Further, ξ is the radial
distance normalized by λJ , PE is the electric pressure nor-
malized by the plasma thermal pressure PEo = noT , and
ρD = mdnd is the cloud mass density normalized by equi-
librium cloud mass density, ρDo = mdndo.

It is seen that RD = 100λJ m in the proposed model
for λJ ∼ 4.21 × 109 m, md ∼ 10−14 kg, no/ndo ∼ 104,
and T ∼ 1 eV (Vaisberg et al. 1987; Hoyle and Wickra-
masinghe 1991; Verheest 2000; Spitzer 2004). To derive
the critical mass limit, the total mass (Chandrasekhar 1957;
Avinash and Shukla 2006) of the DMC can analytically be
calculated as,

MD = T R2
D

Gmdλ2
J

I, (9)

where, the integral I = ∫ ξ

0 ρDr2dr ∼ 1, is a dimensionless
number (Avinash and Shukla 2006).

Now, from Eq. (9), we find that MD ∼ 1021 kg. Avinash
and Shukla have given the critical DMC mass limit as
MAS ∼ 1018 kg and critical length as LAS ∼ 109 m for
equilibrium (stable) state (Avinash and Shukla 2006). In
our model, the DMC mass (MD � MAS) and scale-size
(RD � LAS) exceed the Avinash-Shukla critical values.
Thus, by critical value estimation, the cloud model here is
unstable and hence, an interesting site for global fluctuation
analysis.

A schematic diagram of the considered dust cloud model
is portrayed in Fig. 1. The fluctuating non-rigid surface
is well-known to be located at ξ = 3.5λJ (Dwivedi et al.
2007; Karmakar 2012; Borah and Karmakar 2015), which
is the lowest-order cloud surface boundary (CSB). The ter-
minology “lowest-order CSB”, means the nearest concen-
tric spherical electric potential surface boundary (formed by
gravito-electrostatic force balancing) relative to the center
of entire cloud mass distribution. The CSB acts as an inter-
facial surface, coupling the cloud interior plasma (CIP) and
cloud exterior plasma, as clearly shown in Fig. 1. Thus, it
is seen that the concentric cloud surface located at ξ = 6λJ

is the physical extension boundary for our stability study,
which corresponds to the unstable cloud size, RD = 100λJ .
For clarity, we re-state that LAS ∼ 109 ≈ 2.37 × 10−1λJ ,
which indicates ξ = 6λJ ≈ 25LAS. This justifies that the
spherical cloud extension ξ = 0 − 6λJ (> LAS), containing



Global gravito-electrostatic fluctuations in self-gravitating spherical non-uniform charged dust clouds Page 5 of 22 115

Fig. 1 Schematic diagram of the spherical DMC considered in the
analysis. Various concentric spherical layers are described in the text

net mass MD ≈ 25MAS(> MAS), is sensibly a good choice
in physical parameter window for instability investigation in
the considered cloud.

4 Non-local fluctuation analysis

The normalized (by standard astrophysical parameters) form
of Eqs. (1)–(2), describing the electron-ion dynamics in
spherically symmetric geometry, is respectively given as fol-
lows,

Ne

∂θ

∂ξ
− ∂Ne

∂ξ
= 0, and (10)

Ni

∂θ

∂ξ
+ ∂Ni

∂ξ
= 0. (11)

Integrating Eqs. (10)–(11) spatially, we obtain the nor-
malized Boltzmann population distribution for the electrons
and ions, respectively, as written below,

Ne = Neo exp(θ), and (12)

Ni = Nio exp(−θ). (13)

Similarly, the normalized form of Eqs. (3)–(4) for the
dust is obtained as below

1

Md

∂Nd

∂τ
+ Nd

2

ξ
+ Nd

Md

∂Md

∂ξ
+ ∂Nd

∂ξ
= 0, and (14)

∂Md

∂τ
+ Md

∂Md

∂ξ
= −qd

q

∂θ

∂ξ
− md

q

∂η

∂ξ
. (15)

Lastly, the normalized form of the coupling Poisson
equations, Eqs. (5)–(6), under spherical symmetry is respec-
tively transformed as

∂2θ

∂ξ2
+ 2

ξ

∂θ

∂ξ
=

(
λJ

λDe

)2

[Ne − Ni + ZdNd ], and (16)

∂2η

∂ξ2
+ 2

ξ

∂η

∂ξ
=

(
λJ

λDe

)2
GmdNd

q
. (17)

The time, τ , is here normalized by the Jeans time ω−1
J

scale. The electrostatic potential θ and self-gravitational po-
tential η are normalized by the plasma thermal potential
T/q , so as to compare the fluctuation levels on a com-
mon base. Next, Ne, Ni , and Nd are the concentrations of
the electrons, ions, and grains, normalized by the equilib-
rium plasma density no each. Moreover, Md is the dust
flow velocity normalized by the dust sound phase speed
Css = (T /md)1/2.

4.1 Electrostatic fluctuations

We apply non-local linear perturbation on the relevant physi-
cal parameters around the inhomogeneous equilibrium point
as shown below,

F(ξ, τ ) = Fo(ξ) + F1(ξ, τ ), (18)

where, F = Ne,Ni,Nd,Md, θ and η; with Fo as the cor-
responding spatially inhomogeneous equilibrium counter-
parts. Here, we consider inhomogeneous equilibrium mainly
due to gravity-induced plasma polarization effects (Bally
and Harrison 1978; Vranjes and Tanaka 2005). Using
Eq. (18) in Eqs. (12)–(17), the corresponding linearized set
of equations is as follows,

Ne1(ξ, τ ) = Neo(ξ) exp
{
θo(ξ)

}
θ1(ξ, τ ), (19)

Ni1(ξ, τ ) = −Nio(ξ) exp
{−θo(ξ)

}
θ1(ξ, τ ), (20)

∂Nd1(ξ, τ )

∂τ
+ Nd1(ξ, τ )

∂Mdo(ξ)

∂ξ
+ Ndo(ξ)

∂Md1(ξ, τ )

∂ξ

+ Md1(ξ, τ )
∂Ndo(ξ)

∂ξ
+ Mdo(ξ)

∂Nd1(ξ, τ )

∂ξ

+ {
Mdo(ξ)Nd1(ξ, τ ) + Ndo(ξ)Md1(ξ, τ )

}2

ξ
= 0, (21)

∂Md1(ξ, τ )

∂τ
+ Md1(ξ, τ )

∂Mdo(ξ)

∂ξ
+ Mdo(ξ)

∂Md1(ξ, τ )

∂ξ

+ qd

q

∂θ1(ξ, τ )

∂ξ
+ md

q

∂η1(ξ, τ )

∂ξ
= 0, (22)

∂2θ1(ξ, τ )

∂ξ2
+ 2

ξ

∂θ1(ξ, τ )

∂ξ
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=
(

λJ

λDe

)2[
Ne1(ξ, τ ) − Ni1(ξ, τ ) + ZdNd1(ξ, τ )

]
,

(23)

and

∂2η1(ξ, τ )

∂ξ2
+ 2

ξ

∂η1(ξ, τ )

∂ξ
=

(
λJ

λDe

)2
Gmd

q
Nd1(ξ, τ ). (24)

Now, we apply the Fourier technique for a first-order in-
homogeneous plane wave analysis over Eqs. (19)–(24) as in-
homogeneous planar (radial) fluctuations (Melrose 1986)—
a natural justified choice to describe the fields in non-
uniform complex media in inhomogeneous equilibrium.

The following key points on the plane wave analysis,
both as a methodical theory and as a strategic tool, may
be worth mentioning. A plane harmonic wave may be as-
sumed as a limiting special structure of a spherical wave
from a considerably distant source (idealistically, induced
point-source, in pure electromagnetic sense); where, the
spherical wave front becomes almost planar. Although, re-
alistic astrophysical clouds are known to have finite exten-
sion, the assumption of perturbations propagating as plane
wave is valid under the condition that the dust cloud is un-
bounded, expanded infinitely and boundary effects are not
directly of any great immensity for the phenomena hap-
pening in the bulk plasma system (Carbonell et al. 2004;
Cattaert and Verheest 2005). The plane wave approxima-
tion under spherically symmetric geometry is a simpler way
(than other existing analytical methods and strategies) of
concentrating on only one dimension (radial), thereby en-
abling us for the structure solutions in which the other two
dimensions (azimuthal and co-latitudinal) do not enter at all.
Another advantage in the analysis of translationally invari-
ant systems derives from the fact that the natural represen-
tation of the system physical variables is in terms of plane
waves with canonically minimum reduced degrees of free-
dom (only ξ , in the present case). This simplicity translates
into faster computer run times with less memory require-
ments for exact analysis. The name “plane wave” is appro-
priate because the field vectors in the wave have the same
value everywhere on each plane of constant ξ , for any fixed
time τ , such that ξ is typically greater than the size of wave-
scale length. In a broader and stricter sense, its phase is the
same over a plane normal to the direction of wave propa-
gation, even if the strength of the wave varies within that
plane; but, function of ξ only. These planes propagate in
the radial direction at constant phase velocity of the consid-
ered fluctuations. Even for non-homogeneous, but isotropic
and slowly-varying plasma medium with trifling viscosity,
such approximations indeed represent a good starting point
to the actual solutions. We adopt the short-wavelength ap-
proximation in the form of the Fourier plane waves, vali-
dated by kξ � 1, which in principle, implicates the wave-
length λ � ξ (Ostashev and Wilson 2016). Armed with this

technique, with ξ ∼ λJ as inhomogeneity scale length, the
relevant sinusoidal fluctuations can be written as follows,

F1(ξ, τ ) = F̃1(ξ)e−iωτ+ikξ . (25)

Here, ω is the fluctuation frequency normalized to the
Jeans frequency ωJ (= √

4πGmdndo) and k is the wave
vector (angular wave number) normalized to the critical
Jeans wave vector kJ (= 2π/λJ ). Now, applying Eq. (25)
in Eqs. (19)–(24), we get

Ñe1(ξ) = Neo(ξ) exp
{
θo(ξ)

}
θ̃1(ξ), (26)

Ñi1(ξ) = −Nio(ξ) exp
{−θo(ξ)

}
θ̃1(ξ), (27){

−iΩ + ∂Mdo(ξ)

∂ξ
+ Mdo(ξ)

(
∂

∂ξ
+ 2

ξ

)}
Ñd1(ξ)

+
{
Ndo(ξ)

(
∂

∂ξ
+ 2

ξ
+ ik

)
+ ∂Ndo(ξ)

∂ξ

}
M̃d1(ξ) = 0,

(28)

where, Ω = {ω−kMdo(ξ)} is the Doppler-shifted frequency
of the fluctuations.

{
−iΩ + ∂Mdo(ξ)

∂ξ
+ Mdo(ξ)

∂

∂ξ

}
M̃d1(ξ)

= −qd

q

(
∂

∂ξ
+ ik

)
θ̃1(ξ) − md

q

(
∂

∂ξ
+ ik

)
η̃1(ξ), (29)

∂2θ̃1(ξ)

∂ξ2
+

(
2

ξ
+ 2ik

)
∂θ̃1(ξ)

∂ξ
+

(
2ik

ξ
− k2

)
θ̃1(ξ)

=
(

λJ

λDe

)2[
Ñe1(ξ) − Ñi1(ξ) + ZdÑd1(ξ)

]
, and (30)

∂2η̃1(ξ)

∂ξ2
+

(
2

ξ
+ 2ik

)
∂η̃1(ξ)

∂ξ
+

(
2ik

ξ
− k2

)
η̃1(ξ)

=
(

λJ

λDe

)2
Gmd

q
Ñd1(ξ). (31)

We solve Eq. (30) for Ñd1(ξ), ∂/∂ξ{Ñd1(ξ)}, ∂2/

∂ξ2{Ñd1(ξ)}; Eq. (31) for η̃1(ξ); and use them in Eqs. (28)–
(29). After rigorous calculation and simplification with the
assumption that {−iΩ + ∂Mdo(ξ)/∂ξ + Mdo(ξ)∂/∂ξ} ×
M̃d1(ξ) ∼ 0 (for fairly massive quasi-stationary grains in
cold-dust approximation), we get the non-local electrostatic
eigenfunction equation as,

∂4θ̃1(ξ)

∂ξ4
+

(
α2

α1

)
∂3θ̃1(ξ)

∂ξ3
+

(
α3

α1

)
∂2θ̃1(ξ)

∂ξ2

+
(

α4

α1

)
∂θ̃1(ξ)

∂ξ
+

(
α5

α1

)
θ̃1(ξ) = 0. (32)
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The various coefficients, involved in Eq. (32), are ex-
pressed as,

α1 = M2
do(ξ)

Zd

(
λDe

λJ

)2

, (33)

α2 =
(

λDe

λJ

)2 1

Zd

{
M2

do(ξ)

(
2

ξ
+ ik

)
+ A2

}
, (34)

α3 =
(

λDe

λJ

)2 1

Zd

[
A1 + A2

(
2

ξ
+ ik

)

+ M2
do(ξ)

{
2ik

ξ
− k2 − 4

ξ2
−

(
λJ

λDe

)2(
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
)}]

−
(

1 + Gm2
d

Zdq2

)(
2ik

ξ
− k2

)−1

×
{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}
, (35)

α4 =
(

λDe

λJ

)2 1

Zd

{
A1

(
2

ξ
+ 2ik

)

+ A2

(
2ik

ξ
− k2 − 2

ξ2

)
+ 4M2

do(ξ)

ξ3

}

− A2

Zd

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

−
(

1 + Gm2
d

Zdq2

){
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}
, (36)

α5 = A2

Zd

∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

− A1

Zd

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

+ M2
do(ξ)

Zd

∂2

∂ξ2

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

+
(

λDe

λJ

)2 1

Zd

{
A1

(
2ik

ξ
− k2

)
+ 2ikA2

ξ2

− M2
do(ξ)

4ik

ξ3

(
1 +

(
λJ

λDe

)2 Z2
dNdoξ

2

2M2
do(ξ)

)}

− qd

q

{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}

×
[

1 + md

q

(
2ik

ξ
− k2

)−1{(
2ik

ξ
− k2

)

−
(

λJ

λDe

)2{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}]
, (37)

A1 = −Ω2 − 2iΩ
∂Mdo(ξ)

∂ξ
+

{
∂Mdo(ξ)

∂ξ

}2

+ Mdo(ξ)
∂2Mdo(ξ)

∂ξ2
+

{
∂Mdo(ξ)

∂ξ
− iΩ − Mdo(ξ)

ξ

}

× Mdo(ξ)
2

ξ
, and (38)

A2 = −2iΩMdo(ξ)

(
1 − Mdo(ξ)

2

ξ

)
+ 3Mdo(ξ)

∂Mdo(ξ)

∂ξ
.

(39)

In Eq. (32), the term involving the lowest-order non-
locality, (∂0/∂ξ0), is the last term, where all other higher-
order non-local terms would be absent in case of homoge-
neous equilibrium (local stability analysis). In all other re-
maining terms, different orders of non-locality appear in the
form of different-order ∂/∂ξ -operations. We equate the co-
efficient of the last term to derive the non-local dispersion
relation of the considered fluctuations as,

α5 = A2

Zd

∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

− A1

Zd

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

+ M2
do(ξ)

Zd

∂2

∂ξ2

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}

+
(

λDe

λJ

)2 1

Zd

{
A1

(
2ik

ξ
− k2

)
+ 2ikA2

ξ2

− M2
do(ξ)

4ik

ξ3

(
1 +

(
λJ

λDe

)2 Z2
dNdoξ

2

2M2
do(ξ)

)}

− qd

q

{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}

×
[

1 + md

q

(
2ik

ξ
− k2

)−1{(
2ik

ξ
− k2

)

−
(

λJ

λDe

)2{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}]

= 0. (40)

The presence of equilibrium gradients in Eq. (40) re-
flects conversely that astrophysical plasma equilibria are in-
deed inhomogeneous and non-uniform in nature. It gives the
eigenvalue equation describing the non-local electrostatic
fluctuations in simplified form as,

DE(ω, k) ≡ ω2 + E1ω + Eo = 0, (41)

where,

Eo = kMdo(ξ)

{
kMdo(ξ) − 2i

∂Mdo(ξ)

∂ξ

}
−

{
∂Mdo(ξ)

∂ξ

}2

− Mdo(ξ)
∂2Mdo(ξ)

∂ξ2
+ M2

do(ξ)
2

ξ

(
1

ξ
− ik

)

− 2

ξ
Mdo(ξ)

∂Mdo(ξ)

∂ξ
+

(
λJ

λDe

)2
qdZd

q

×
{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}
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×
{

1 + md

q

(
2ik

ξ
− k2

)−1}

+
[

2ik

ξ
− k2 −

(
λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}]−1[{

−3
∂Mdo(ξ)

∂ξ
− 2ikMdo(ξ)

− M2
do(ξ)

2

ξ

}
Mdo(ξ)

{
2ik

ξ2
+

(
λJ

λDe

)2

× ∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}

+ M2
do(ξ)

{
4ik

ξ3

(
1 +

(
λJ

λDe

)2 Z2
dNdoξ

2

2M2
do(ξ)

)

−
(

λJ

λDe

)2
∂2

∂ξ2

{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}}]

, (42)

and

E1 = 2i
∂Mdo(ξ)

∂ξ
− 2Mdo(ξ)

(
k − i

ξ

)

+
[

2ik

ξ
− k2 −

(
λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}]−1

2iMdo(ξ)

[
2ik

ξ
+

(
λJ

λDe

)2

× ∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}]
. (43)

In case of infinite degree of spherical curvature (ξ → 0),
Eqs. (42)–(43) get respectively modified to the following,

{
Eo ≈ ∞, and

E1 ≈ ∞.
(44)

Again, for the zeroth-degree of spherical curvature
(ξ → ∞), Eqs. (42)–(43) get reduced, respectively, to

Eo ≈
[
kMdo(ξ)

{
kMdo(ξ) − 2i

∂Mdo(ξ)

∂ξ

}
−

{
∂Mdo(ξ)

∂ξ

}2

− Mdo(ξ)
∂2Mdo(ξ)

∂ξ2

]
ξ=∞

+
(

λJ

λDe

)2
qdZd

q

×
[
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

]
ξ=∞

(
1 + md

qk2

)

−
[
k2 +

(
λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}
ξ=∞

]−1

×
[{

−3Mdo(ξ)
∂Mdo(ξ)

∂ξ
− 2ikM2

do(ξ)

}

×
{(

λJ

λDe

)2
∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}

− M2
do(ξ)

{(
λJ

λDe

)2
∂2

∂ξ2

{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}}]

ξ=∞
, and (45)

E1 ≈
[

2i
∂Mdo(ξ)

∂ξ
− 2kMdo(ξ)

]
ξ=∞

− 2i
[
Mdo(ξ)

]
ξ=∞

[
k2 +

(
λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}
ξ=∞

]−1(
λJ

λDe

)2

×
[

∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}]
ξ=∞

. (46)

Now, the following special cases may be worth mention-
ing and explaining. In the Jeans limit (k → 0), the coeffi-
cients of Eq. (41) get modified to the following respective
forms,

Eo ≈ −
{

∂Mdo(ξ)

∂ξ

}2

+ M2
do(ξ)

2

ξ2

(
1 − ξ

Mdo(ξ)

∂Mdo(ξ)

∂ξ

)

+ {
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}−1

×
[{

3Mdo(ξ)
∂Mdo(ξ)

∂ξ
+ M2

do(ξ)
2

ξ

}

×
{

∂

∂ξ

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}

+ M2
do(ξ)

{
∂2

∂ξ2

{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}}]

− Mdo(ξ)
∂2Mdo(ξ)

∂ξ2
, and (47)

E1 ≈ 2i
∂Mdo(ξ)

∂ξ
+ i

2

ξ
Mdo(ξ) − 2iMdo(ξ)

{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}−1 ∂

∂ξ

{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}
. (48)
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Again, in the electrostatic limit of the fluctuations
(k → ∞), Eqs. (42)–(43) get reduced to the following re-
spective forms,
{

Eo ≈ ∞, and

E1 ≈ ∞.
(49)

In case of homogeneous equilibrium configuration; for
which Mdo, θo = 0, Neo, Nio, Ndo = 1, and ∂/∂ξ(Neo,Nio,

Ndo,Mdo, θo) = 0; Eq. (41) becomes,

ω =
{(

λJ

λDe

)(
Zdqd

q

)1/2}
k

{
1 − 1

k2

(
md

qd

)

×
(

1 − 2i

kξ

)−1}1/2

. (50)

Now, for investigating the stability behavior, we use ω =
ωr + iωi in Eq. (50), which on simplification results in

ωr =
{(

λJ

λDe

)(
Zdqd

q

)1/2}
k

{
1 −

(
md

2qd

)
1

k2

}
, and

(51)

ωi = −
{(

λJ

λDe

)(
Zdqd

q

)1/2
md

qd

}
1

k2ξ
. (52)

Here, it is observed from Eq. (51) that, the real part
of frequency depends on the ratio of the Jeans-to-Debye
lengths, wave vector, charge and mass of the grains. Like-
wise, it is seen from Eq. (52) that, the imaginary part of
frequency depends on ratio of the Jeans-to-Debye lengths,
charge and mass of the grains, wave vector and in addition,
on the geometrical configuration as well. We can see that
ωi < 0, so the fluctuations should show damping behaviors.
For infinite degree of curvature (ξ → 0), for a given k, one
finds, ωr = ωr , and ωi → 0. So, it is clear that, the damp-
ing or growth of the fluctuations depend on the cloud ge-
ometry. Again, for the zero-degree of curvature (ξ → ∞),
ωr = ωr , and |ωi | → ∞. Under such geometrical configura-
tions, the fluctuations show infinite damping nature. In the
Jeans limit (k → 0), one gets ωr → 0, and |ωi | → ∞. On
the other hand, in the electrostatic limit (k → ∞), one finds
ωr → ∞, and ωi → 0. In this limit, one can further see that
ωr ∝ k, which reveals purely acoustic behavior of the fluc-
tuations. Now, the ratio between imaginary-to-real frequen-
cies (DPE

= ωi/ωr , or GPE
= ωi/ωr ), which is defined as

damping (or, growth) rate per period (Carbonell et al. 2004)
depending on the nature of the mode evolution, reads as,

DPE
= 2

kξ

{
1 +

(
2qd

md

)
k2

}
. (53)

For a given k, Eq. (53) further reduces to

DPE
= ωi

ωr

∝ 1

ξ
. (54)

So, at ξ, k → 0, one finds DPE
→ ∞; and at ξ, k → ∞,

one sees DPE
→ 0. So, in case of homogeneous equilibrium,

it is observed that the damping rate per period is infinitely
large at the center, in the Jeans limit. The damping rate per
period is zero for infinite distance, which corresponds to the
electrostatic limit. The phase velocity and group velocity of
the fluctuations in homogeneous equilibrium configuration
are respectively given by,

VpE
= ω

k
=

{(
λJ

λDe

)(
Zdqd

q

)1/2}{
1 −

(
md

2qd

)
1

k2

}
, and

(55)

VgE
= ∂ω

∂k
=

{(
λJ

λDe

)(
Zdqd

q

)1/2}{
1 +

(
md

2qd

)
1

k2

}
.

(56)

Equations (55) and (56) reveal that the phase velocity and
group velocity are inversely proportional to the wave vector.
For a given k, VpE

∝ (−VgE
), which shows that VpE

and
VgE

are of opposite evolutionary phase. At ξ → 0,∞, we
see that VpE

and VgE
remain unchanged. Again, at k → 0,

it is found that |VpE
|, VgE

→ ∞. As k → ∞, we find
that VpE

, VgE
→ (λJ /λDe)(Zdqd/q)1/2. Thus, in the Jeans

limit, VpE
and VgE

are of infinite strength. In contrast, in
the electrostatic limit, both are constant thereby revealing
the acoustic-nature of the fluctuations. The phase disper-
sion and group dispersion (Nishikawa and Wakatani 1990;
Chen 2007) are derived respectively as,

�pE
= ∂VpE

∂k
=

{(
λJ

λDe

)(
md

qd

)(
Zdqd

q

)1/2} 1

k3
, and

(57)

�gE
= ∂VgE

∂k
= −

{(
λJ

λDe

)(
md

qd

)(
Zdqd

q

)1/2} 1

k3
. (58)

Equations (57)–(58) show that �pE
∝ (−�gE

) ∝ k−3.
Thus, the phase and group dispersions are of opposite evolu-
tionary phase, each depending inversely upon the wave vec-
tor cubed. At, ξ → 0,∞; we see that �pE

, �gE
remain un-

changed as VpE
and VgE

. Similarly, �pE
, |�gE

| → ∞, at
k → 0, and �pE

, �gE
→ 0, at k → ∞. It provides an ana-

lytic scheme to see the dispersion properties of the electro-
static fluctuations in the limiting case of pure homogeneity.

4.2 Self-gravitational fluctuations

To study the self-gravitational potential fluctuations, we
deduce self-gravitational eigenfunction equation by us-
ing Eqs. (26)–(31). In the derivation, we solve Eq. (31)
for Ñd1(ξ), ∂/∂ξ{Ñd1(ξ)}, ∂2/∂ξ2{Ñd1(ξ)}, Eq. (30) for
θ̃1(ξ) and use them in Eqs. (28)–(29). After rigorous cal-
culation with the assumption of {−iΩ + ∂Mdo(ξ)/∂ξ +
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Mdo(ξ)∂/∂ξ}M̃d1(ξ) ∼ 0 (for relatively massive quasi-
stationary cold dust grains), we obtain

∂4η̃1(ξ)

∂ξ4
+

(
β2

β1

)
∂3η̃1(ξ)

∂ξ3
+

(
β3

β1

)
∂2η̃1(ξ)

∂ξ2

+
(

β4

β1

)
∂η̃1(ξ)

∂ξ
+

(
β5

β1

)
η̃1(ξ) = 0, (59)

where, the various coefficients involved in Eq. (59) are,

β1 = M2
do(ξ), (60)

β2 = M2
do(ξ)

(
2

ξ
+ 2ik

)
+ A2, (61)

β3 = A1 +
(

2

ξ
+ 2ik

)
A2 + 2M2

do(ξ)k

ξ

(
i − 2i

ξ
− 2

ξ2k

)

−
(

λJ

λDe

)2{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}
Gm2

dqd

q2

×
[(

2ik

ξ
− k2

)
−

(
λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}]−1(

Zdq

Gmd

+ md

q

)
, (62)

β4 = A1

(
2

ξ
+ 2ik

)
+

(
2ik

ξ
− 2

ξ2
− k2

)
A2

+ M2
do

(
4

ξ3
− 4ik

ξ2

)
−

(
λJ

λDe

)2{
ik

∂Ndo(ξ)

∂ξ

− k2Ndo(ξ)

}
Gm2

dqd

q2

(
2

ξ
+ 2ik

)[(
2ik

ξ
− k2

)

−
(

λJ

λDe

)2{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}]−1

×
(

Zdq

Gmd

+ md

q

)
, and (63)

β5 = A1

(
2ik

ξ
− k2

)
− 2ik

ξ2
A2 + M2

do

4ik

ξ3
−

(
λJ

λDe

)2

×
{
ik

∂Ndo(ξ)

∂ξ
− k2Ndo(ξ)

}
Gm2

d

q2

(
2

ξ
+ 2ik

)

×
[

1 + Zdqdq

Gmd

(
2ik

ξ
− k2

)[(
2ik

ξ
− k2

)

−
(

λJ

λDe

)2{
Neo(ξ)eθo(ξ) + Nio(ξ)e−θo(ξ)

}]−1]
. (64)

Similar to the electrostatic counterpart, we equate the co-
efficient of the lowest-order non-locality term in Eq. (59) to
zero and get the eigenvalue equation as follows,

DS(ω, k) ≡ ω2 + S1ω + So = 0, (65)

where,

So = Mdo(ξ)

{
k2Mdo(ξ) − ∂2Mdo(ξ)

∂ξ2
− 2

ξ

(
∂Mdo(ξ)

∂ξ

+
(

ik − 1

ξ

)
Mdo(ξ)

)}
− ∂Mdo(ξ)

∂ξ

{
2ikMdo(ξ)

+ ∂Mdo(ξ)

∂ξ

}
−

(
k2 − 2ik

ξ

)−1[2ik

ξ2

{
2ikM2

do(ξ)

+ 3Mdo(ξ)
∂Mdo(ξ)

∂ξ

}
+

(
λJ

λDe

)2{
ik

∂Ndo(ξ)

∂ξ

− k2Ndo(ξ) + ikNdo(ξ)
2

ξ

}
Gm2

d

q2

×
[

1 + Zdqdq

Gmd

(
2ik

ξ
− k2

)[(
2ik

ξ
− k2

)

−
(

λJ

λDe

)2{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)
}]−1]]

, (66)

and

S1 = 2i
∂Mdo(ξ)

∂ξ
− 2kMdo(ξ) + 2

ξ
iMdo(ξ)

−
(

k2 − 2ik

ξ

)−1 4Mdo(ξ)k

ξ2
. (67)

It is seen that the coefficients of the non-local fluctua-
tions, given by Eqs. (66)–(67), get modified in case of in-
finite degree of geometrical curvature (ξ → 0), as shown
below,
{

So ≈ ∞, and

S1 ≈ ∞.
(68)

Again, for the zeroth-degree of curvature (ξ → ∞),
Eqs. (66)–(67) become,

So ≈
[
Mdo(ξ)

{
k2Mdo(ξ) − ∂2Mdo(ξ)

∂ξ2

}

− ∂Mdo(ξ)

∂ξ

{
2ikMdo(ξ) + ∂Mdo(ξ)

∂ξ

}]
ξ=∞

−
(

λJ

λDe

)2{
i

k

∂Ndo(ξ)

∂ξ
− Ndo(ξ)

}
ξ=∞

Gm2
d

q2

×
[

1 + Zdqdq

Gmd

[
1 +

(
λJ

λDe

)2 1

k2

{
Neo(ξ)eθo(ξ)

+ Nio(ξ)e−θo(ξ)

}
ξ=∞

]−1]
, and (69)
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S1 ≈ 2i

[
∂Mdo(ξ)

∂ξ

]
ξ=∞

− 2k
[
Mdo(ξ)

]
ξ=∞. (70)

In the Jeans limit (k → 0), Eqs. (66)–(67) get reduced to
the following forms,

So ≈ −Mdo(ξ)

(
∂2Mdo(ξ)

∂ξ2
− 2

ξ

∂Mdo(ξ)

∂ξ
+ Mdo(ξ)

2

ξ2

)

−
{

∂Mdo(ξ)

∂ξ

}2

, and (71)

S1 ≈ 2i
∂Mdo(ξ)

∂ξ
+ 2

ξ
iMdo(ξ). (72)

Similarly, in the electrostatic limit (k → ∞), Eqs. (66)–
(67) get altered to the following respective forms,
{

So ≈ ∞, and

S1 ≈ ∞.
(73)

For homogeneous equilibrium with Mdo, θo = 0; Neo,
Nio, Ndo = 1, and ∂/∂ξ(Neo,Nio,Ndo,Mdo, θo = 0),
Eq. (65) becomes,

ω =
(

λJ

λDe

)2

2m
1/2
d Zd

(
1

k

)(
1 + 2i

kξ

)1/2

. (74)

Now, again using ω = ωr + iωi in Eq. (74) and after sim-
plification, we get

ωr =
{(

λJ

λDe

)2

2Zdm
1/2
d

}
1

k
, and (75)

ωi =
{(

λJ

λDe

)2

2Zdm
1/2
d

}
1

k2ξ
. (76)

Thus, the real and imaginary parts of frequency depend
on the ratio of the Jeans-to-Debye lengths, charge and mass
of the grains, wave vector and geometrical configuration.
For a given k, at ξ → 0; one has ωr = ωr , ωi → ∞. Again,
at ξ → ∞; we see that ωr = ωr , ωi → 0. This reveals that
near the center of the cloud, self-gravitational fluctuations
have infinite growing character. Similar to the electrostatic
analysis, at k → 0; one gets ωr,ωi → ∞. Also, at k → ∞;
one derives ωr,ωi → 0. Now, damping (or, growth) rate per
period (Carbonell et al. 2004) depending on the nature of the
mode-evolution comes out as,

DPG
= 1

kξ
. (77)

For a given k, the damping rate per period given by
Eq. (77) becomes

DPG
= ωi

ωr

∝
(

1

ξ

)
. (78)

So, when ξ, k → 0, DPG
→ ∞; and ξ, k → ∞,

DPG
→ 0. Thus, in case of homogeneous equilibrium, it is

observed that, both at the center and in the large-wavelength
regime, the damping rate per period is infinitely large. At
infinite distance and in the small-wavelength regime, the
damping rate per period is zero. The phase velocity and
group velocity of the fluctuations under homogeneous equi-
librium configuration are deduced as,

VpG
= ω

k
=

{(
λJ

λDe

)2

2Zdm
1/2
d

}
1

k2
, and (79)

VgG
= ∂ω

∂k
=

{(
λJ

λDe

)2

2Zdm
1/2
d

}(
− 1

k2

)
. (80)

Thus, it is seen that VpG
= −VgG

. This indicates that,
for homogeneous equilibrium without any Jeans swindle,
VpG

∝ (−VgG
), which in turn reveals that VpG

and VgG

propagate with opposite phase. Further, we see that, at
k → 0, both VpG

, VgG
→ ∞; and at k → ∞, both VpG

,
VgG

→ 0. This implies that, in the small-wavelength regime,
no self-gravitational fluctuations propagate. The corre-
sponding phase dispersion and group dispersion (Nishikawa
and Wakatani 1990; Chen 2007) are now obtained and given
by

�pG
= ∂VpG

∂k
= −

{(
λJ

λDe

)2

4Zdm
1/2
d

}(
1

k3

)
, and (81)

�gG
= ∂VgG

∂k
=

{(
λJ

λDe

)2

4Zdm
1/2
d

}(
1

k3

)
. (82)

From Eqs. (81)–(82), we see that �pG
= (−�gG

)α(k−3).
Thus, �pG

and �gG
are of opposite evolutionary phase and

depend on k. If k → 0, we see that �pG
, �gG

→ ∞; and at
k → ∞, one finds that �pG

, �gG
→ 0, like VpG

and VgG
.

It is noted that �pG
and �gG

are independent of any kind
of geometrical curvature influences in correlation with the
electrostatic counterparts.

5 Results and discussions

An evolutionary model to study the properties of global
electro-gravitational modes in self-gravitating inhomoge-
neous interstellar DMC with all the characterizing equilib-
rium parameters varying radially is constructed under spher-
ical symmetry. To study excitation and evolution of the fluc-
tuations globally, we numerically integrate the electrostatic
eigenfunction equation [Eq. (32)] with suitable initial in-
put values by the fourth-order Runge–Kutta method (Otto
and Denier 2005). Before the numerical illustrations, dif-
ferent normalization constants are estimated methodolog-
ically from the judicious inputs available in the literature
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Table 1 Normalization constants with estimated typical values

S. No. Physical property Normalization constant Typical value

1 Distance Jeans length [λJ ] 4.21 × 109 m

2 Time Jeans time [ω−1
J ] 1.09 × 1012 s

3 Electrostatic potential Plasma thermal potential [T/q] 1.00 V

4 Self-gravitational potential Plasma thermal potential [T/q] 1.00 V

5 Population densities of electron, ion and grain Equilibrium plasma population density [n0] 1.00 × 107 m−3

6 Electric pressure Plasma thermal pressure [n0T ] 1.47 × 10−12 N m−2

7 Mass density Equilibrium mass density [mdnd0] 1.00 × 10−15 kg m−3

8 Dust flow velocity Dust sound phase speed [CSS = (T /md)1/2] 4.00 × 10−3 m s−1

(Vaisberg et al. 1987; Hoyle and Wickramasinghe 1991;
Verheest 2000; Spitzer 2004) as shown in Table 1.

Figure 2 shows the profile of the normalized electro-
static potential fluctuations (θ̃1(ξ)) with variation in nor-
malized distance (ξ) and in normalized wave vector (k)

of the fluctuations. Different initial values used are (θ)i =
−1.00×10−2, (θξ )i = −1.00×10−3, (Ne)i = 9.50×10−1,
(Ni)i = 9.00×10−1, (Nd)i = 1.00×10−3, (Md)i = 1.01×
10−3, (η)i = −1.00 × 10−5, (η)i = −1.00 × 10−5, (θξ )i =
−1.00 × 10−3, (θ1ξ )i = 1.00 × 10−4, (θ1ξξ )i = −1.00 ×
10−7, and (θ1ξξξ )i = −1.00 × 10−9. The other input pa-
rameters kept constant are md = 2.50 × 10−14 kg and Zd =
1.00×102 (Vaisberg et al. 1987; Hoyle and Wickramasinghe
1991; Verheest 2000; Spitzer 2004). The level of fluctua-
tions is found maximum at 3.5 (on the Jeans scale), which is
the lowest-order cloud surface boundary (CSB) (Karmakar
2012; Borah and Karmakar 2015). On the exterior, the fluc-
tuations show a damped periodic oscillatory behavior. The
oscillatory behavior indicates that the electro-gravitational
interaction is not static, but dynamic in a periodic fashion
via gravito-electrostatic coupling interplay. The periodic os-
cillations are due to the compression of one species and rar-
efaction of the other, and vice versa. The damping nature in
the Cloud Exterior Plasma (CEP) is attributable to the de-
crease in the dynamic coupling strength. In the k-space, no
fluctuation propagates up to k = 1 (which corresponds to
λ = 6.28λJ ). This large-wavelength region is dominated by
the self-gravitational fluctuations, which are due to the in-
ertial dust grains, concentrated near the center. So, k = 1 is
a critical point for propagation of the eigenfluctuations un-
dergoing quasi-linear transformation into pure gravitational
form via self-gravity. As k increases, the fluctuations grow
linearly with a super-growth at k = 3.5 (λ = 1.79λJ ). The
growth occurs in the Cloud Interior Plasma (CIP) due to
the combined effect of the self-gravity, equilibrium inho-
mogeneities and gravity-induced plasma polarization. For
k > 3.5, the instability decays due to the gradually decreas-
ing charge density in the CEP outward.

Figure 3 consecrates the profile of the normalized (a) real
part of frequency, (b) imaginary part of frequency and

Fig. 2 Profile of the normalized electrostatic potential fluctua-
tions (θ̃1(ξ)) with variation in normalized distance (ξ) and in nor-
malized wave vector (k) of the fluctuations. Different initial val-
ues used here are (θ)i = −1.00 × 10−2, (θξ )i = −1.00 × 10−3,
(Ne)i = 9.50 × 10−1, (Ni)i = 9.00 × 10−1, (Nd)i = 1.00 × 10−3,
(Md)i = 1.01 × 10−3, (η)i = −1.00 × 10−5, (η)i = −1.00 × 10−5,
(θξ )i = −1.00 × 10−3, (θ1ξ )i = 1.00 × 10−4, (θ1ξξ )i = −1.00 × 10−7

and (θ1ξξξ )i = −1.00 × 10−9. The other input parameter values kept
constant are md = 2.50 × 10−14 kg and Zd = 1.00 × 102

(c) imaginary-to-real frequency ratio of the fluctuations with
variation in normalized distance (ξ) and normalized wave
vector (k). The different input initial values used are the
same as Fig. 2. The real part (Fig. 3(a)) is maximum at
ξ = 3.5. This reveals that the CSB is the most unstable inter-
facial zone (as seen before in Fig. 2, too). It decreases from
the center to ξ = 1.5 outward. This is due to the fact that
the global mode-spectrum is dominated by the Jeans modes
near the center. In the CEP, the real part of frequency gets at-
tenuated due to the dispersive nature of the medium. The in-
stability decays from the center with a super-decay at k = 3
(λ = 2.09λJ ), which coincides with the Jeans mode. In this
local neighborhood, discrete oscillations are found to exist
as mode-mode coupler. After k = 3, the instability grows
linearly with wave vector, which is the electrostatic acous-
tic mode-behavior. This linear growth of the global instabil-
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Fig. 3 Profile of the normalized (a) real part of frequency, (b) imaginary part of frequency and (c) imaginary-to-real frequency ratio of the
fluctuations with variation in normalized distance (ξ) and in normalized wave vector (k). Different input initial values used are the same as Fig. 2

ity is due to the density inhomogeneity and gravity-induced
polarization effects (Bally and Harrison 1978; Vranjes and
Tanaka 2005). In the long-wavelength region, the global in-
stability behaves as the usual Jeans mode; and in the short-
wavelength region, the Jeans mode is quasi-linearly con-
verted into acoustic mode via gravitational condensation
of large-wavelength waves. So, the instability evolves as
a hybrid structure due to mode-mode coupling of electro-
gravitational fluctuations. Moreover, we see a three-scale
behavior in the ξ -space (Fig. 3(b)). The imaginary frequency
decreases from the center to ξ = 1.5, and then, it increases
linearly with a maximum and saturated value at ξ = 4 out-
ward. The instability is damped in the long-wavelength re-
gion with a super-decay at k = 4 (λ = 1.57λJ ) and grows
linearly in the short-wavelength region. Figure 3(c) shows
the ratio of imaginary-to-real frequency. In the ξ -space, the
ratio again shows three-scale behavior with a transition from

slight damping to growth rate per period. The growth rate
per period is 1 at ξ = 3.5. So, the linear theory is applicable
for the CIP, and beyond the CSB, the nonlinear theory has
to be applied for the CEP. In the k-space, the frequency ra-
tio grows with a super-growth at k = 3 (λ = 2.09λJ ). Here-
after, there is a sharp damping with a super-decay at k = 4
(λ = 1.57λJ ) and then, it shows a linear growing behavior.

Figure 4 shows the same as Fig. 3, but in the large-
wavelength regime (k → 0). It is seen that, in the ultra-
low k limit, non-dispersive nature of the fluctuations pre-
vails due to the Jeans instability, with domination in the
large-wavelength regime, together with all other properties
re-organized accordingly.

Similarly, Fig. 5 indicates the same as Fig. 3, but in
the highlighted small-wavelength regime (k → ∞). In this
ultra-high k limit, the dispersive characteristics of the fluc-
tuations are prevalent. The real part of frequency (Fig. 5(a))
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Fig. 4 Same as Fig. 3, but in the large-wavelength regime (k → 0)

grows quasi-linearly with some background discrete oscil-
lations, which depicts the acoustic behavior, which cor-
responds to small wavelength. The imaginary part dis-
plays damping oscillatory behavior in the small-wavelength
regime (Fig. 5(b)). The ratio of imaginary-to-real frequency,
likewise, signifies the damping nature of the instability in
the ultra-high k limit (Fig. 5(c)).

Figure 6 displays the profile constructs of the normal-
ized (a) phase velocity and (b) group velocity of the fluctu-
ations with variation in normalized distance (ξ) and in nor-
malized wave vector (k). The different input initial values
used are the same as Fig. 2. We see that the phase velocity
decreases from the center to ξ = 1.5 due to the strong self-
gravitational attractive force sourced by the massive grains.
In the ξ -region, spanned with 1.5 < ξ < 3.5, the phase ve-

locity increases linearly with the maximum value at ξ = 3.5,
thereby showing the most unstable nature of the CSB. In
the CEP, the phase velocity decreases due to the small drift-
ing of charged species from the CIP to CEP due relatively
high self-gravity. In the k-space, the phase velocity decays
sharply from k = 0 to k = 1.5. For k > 1, it decays with very
small gradient. Thus, the fluctuations are dispersive in nature
with maximum dispersive behavior in the large-wavelength
region (k = 1) due to strong self-gravitational effects. The
velocity of the wave envelope is found to be maximum at
ξ = 3.5 due to the most unstable nature of the CSB. The
group velocity shows nonlinear behavior in the CEP, as the
growth rate per period exceeds unity beyond the CSB. It
is seen that the group velocity shows almost constant, but
with slight damping nature, in the long-wavelength region.
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Fig. 5 Same as Fig. 3, but in the small-wavelength regime (k → ∞)

In 2.1 < k ≤ 4.5, the group velocity increases linearly with
the maximum value at k = 4.5 (λ = 1.39λJ ). The velocity of
the imbalance is damped out in the very short-wavelength
regime (k > 4.5) due to very small drifting of the charged
species in the CEP.

Figure 7 graphically displays the spatial profiles of the
real part (A, B, C, D) and imaginary part (a, b, c, d) (rescaled
by dividing with 1.28) of the θ(ξ)-fluctuation frequency
with variation in (a) Zd and (b) md , correspondingly, un-
der the same condition as Fig. 2. Different lines in (a) cor-
respond to Zd = 100 (blue), 102 (red), 104 (green), and
106 (black), respectively. Again, different lines in (b) link
to md = 2.49 × 10−14 kg (blue), 2.50 × 10−14 kg (red),
2.51 × 10−14 kg (green), and 2.52 × 10−14 kg (black), re-
spectively. The real and imaginary parts of fluctuation fre-
quency (Fig. 7(a)) increase with increase in Zd , and de-

crease (Fig. 7(b)) with increase in md . It may be noted
that, as Zd increases, the electrostatic repulsive force in-
creases. Hence, the growth rate increases. As md increases,
the self-gravitational attractive force increases. This dom-
inates the fluctuation growth rate. As a result, the growth
rate decreases. Thus, grain charge (Zd ) behaves as destabi-
lizing source and grain mass (md ) acts as a stabilizing source
of the fluctuations. The observed features are quite in good
agreement with those obtained by others in the past (Shad-
mehri and Dib 2009). From Fig. 7(a), the values of real and
imaginary parts at the CSB are (ωr)E , (ωi)E ∼ 2.25 each.
Similarly, from Fig. 7(b), we see (ωr)E , (ωi)E ∼ 2.2 each
at the CSB. It is found that, for both the cases (Figs. 7(a)–
7(b)), the real part shows constant value for 0 ≤ ξ ≤ 0.5λJ

and variation increases as frequency evolves away from the
region ξ = 0.5λJ .
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Fig. 6 Profile of the normalized (a) phase velocity and (b) group velocity of the fluctuations with variation in normalized distance (ξ) and in
normalized wave vector (k). The different input initial values used are the same as Fig. 2

Fig. 7 Spatial profile of the real part (A, B, C, D) and imaginary
part (a, b, c, d) of the θ(ξ)-fluctuation frequency with variation in
(a) Zd and (b) md , correspondingly, under the same condition as Fig. 2.
Different lines in (a) correspond to Zd = 100 (blue), 102 (red), 104

(green), and 106 (black), respectively. Again, different lines in (b) link
to md = 2.49×10−14 (blue), 2.50×10−14 (red), 2.51×10−14 (green),
and 2.52 × 10−14 kg (black), respectively

Figure 8 gives the profiles of the normalized self-
gravitational potential fluctuations (η̃1(ξ)) with normalized
distance (ξ) and normalized wave vector (k). Different ini-
tial values used here are (θ)i = −1.00 × 10−3, (θξ )i =
−1.00 × 10−4, (Ne)i = 8.10 × 10−1, (Ni)i = 8.00 × 10−1,
(Nd)i = 1.00×10−2, (Md)i = 5.00×10−3, (η)i = −1.00×
10−4, (ηξ )i = −9.00×10−2, (η1)i = 1.00×10−2, (η1ξ )i =
−1.00 × 10−5, (η1ξξ )i = −1.00 × 10−9, and (η1ξξξ )i =
−1.00 × 10−10. The other input parameters kept constant
are the same as in Fig. 2. It is interesting to see that the CSB
is the most unstable interfacial zone, as the self-gravitational

fluctuation is again maximum at ξ = 3.5, like in the elec-
trostatic counterparts, presented before. It is clear that the
electrostatic (Fig. 2) and self-gravitational (Fig. 8) fluctu-
ations evolve with opposite polarities on strength due to
the electro-gravitational coupling of the electrostatic repul-
sive and self-gravitational attractive effects. In the CEP, the
self-gravitational fluctuations decrease due to decrease in
dust density distribution as well as the coupling between the
two counteracting forces. The self-gravitational fluctuations
show a unique characteristic feature of almost zero-value
from the center up to ξ = 0.5 and k = 0.5 in the CIP. The
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Fig. 8 Profile of the normalized self-gravitational potential fluc-
tuations (η̃1(ξ)) with normalized distance (ξ) and in normal-
ized wave vector (k) of the fluctuations. Different initial val-
ues used here are (θ)i = −1.00 × 10−3, (θξ )i = −1.00 × 10−4,
(Ne)i = 8.10 × 10−1, (Ni)i = 8.00 × 10−1, (Nd)i = 1.00 × 10−2,
(Md)i = 5.00 × 10−3, (η)i = −1.00 × 10−4, (ηξ )i = −9.00 × 10−2,
(η1)i = 1.00×10−2, (η1ξ )i = −1.00×10−5, (η1ξξ )i = −1.00×10−9

and (η1ξξξ )i = −1.00 × 10−10. The other input parameter values kept
constant are the same as Fig. 2

fluctuation grows linearly in the large-wavelength region
(0.5 < k ≤ 2) with a super-growth at k = 2 (λ = 3.14λJ ).
For k > 2, the self-gravitational instability decays gradually
due to low-concentration of the massive grains in the CEP.

Figure 9 exhibits profiles of the normalized (a) real part
of frequency, (b) imaginary part of frequency, (c) imagi-
nary part of frequency with different view-orientation and
(d) imaginary-to-real frequency ratio of the fluctuations with
normalized distance (ξ) and normalized wave vector (k).
The different input initial values used are the same as in
Fig. 8. The real part shows the maximum value at the center,
and it decreases linearly with distance (Fig. 9(a)). So, it is
clear that near the center, the Jeans mode plays the dominat-
ing role due to the large-accumulation of the massive grains.
In the k-space, the real frequency part shows a linearly
damping characteristic feature from the center with a super-
decay at k = 2.5 (λ = 2.51λJ ). Then, the real part increases
linearly with wave vector. The long-wavelength region, in
which damping behavior is prominent, is the Jeans mode-
dominated region. Furthermore, the short-wavelength re-
gion, in which instability grows linearly, is the electrostatic
mode-dominated region. Thus, a unique transition from the
Jeans mode to electrostatic mode via quasi-linear coupling
is found to survive in the DMC (Fig. 9(a)). So, the instabil-
ity evolves as a hybrid structure due to intrinsic mode-mode
coupling of electro-gravitational nature. The imaginary part
shows the maximum value at ξ = 3.5, which re-confirms
the most unstable nature of the CSB (Fig. 9(b)). In the
k-space, the imaginary part gradually grows with a super-

growth value at k = 3.7 (λ = 1.69λJ ). Beyond it, the insta-
bility damps out. Figure 9(c) shows the imaginary frequency
in a different orientation to observe the evolution pattern
more clearly. Figure 9(d) shows the profile of imaginary-to-
real frequency ratio with variation in ξ and k. In the ξ -space,
it again shows a transition from growth-to-damping rate per
period. The growth rate per period is 1 at ξ = 1.5. So, the
linear theory is widely applicable for ξ ≤ 1.5. The growth
rate is maximum at ξ = 3.5, which again reveals the unsta-
ble CSB. Beyond the CSB, the growth turns into damping.
In the k-space, the imaginary-to-real frequency ratio grows
linearly from the center and shows a super-growth at k = 3.4
(λ = 1.84λJ ). So, in the long-wavelength region, the Jeans
mode plays the dominating role. Beyond the super-growth
point, there is a sharp damping with super-decay at k = 6
(λ = 1.04λJ ).

Figure 10 shows the same as Fig. 9, but in the large-
wavelength regime (k → 0). All the profiles in the ultra-low
k limit show dispersive nature. The imaginary part shows
the growing nature of the instability in the large-wavelength
regime (Fig. 10(b)). This observation reveals that, the self-
gravitational fluctuation instability, i.e., the Jeans instability
grows only in the large-wavelength regime.

Figure 11 shows the profile in the small-wavelength
regime (k → ∞) under the same condition as Fig. 9. In the
ultra-high k limit, the real part shows hybrid characteristics
of the instabilities with rhythmic transitions from the Jeans
to electrostatic modes (Fig. 11(a)). In the extremely high-
k limit, the instability behaves as purely acoustic mode like
the electrostatic counterpart. The imaginary part (Fig. 11(b))
and imaginary-to-real frequency ratio (Fig. 11(c)) in the
ultra-high k limit show similar behaviors as the electrostatic
ones.

Figure 12 graphically presents the profile of normalized
(a) phase velocity and (b) group velocity of the fluctuations
with normalized distance (ξ) and normalized wave vec-
tor (k). The different input initial values used are the same as
Fig. 8. In the ξ -space, the phase velocity (Fig. 12(a)) shows
a linearly damping behavior from the center outwards due to
decrease in the dust concentration. In the k-space, the phase
velocity shows resonantly sharp decay from the center with
a super-decay at k = 1.5 (λ = 4.18λJ ). After that, it shows
slow variation. This shows that the Jeans mode dominates in
the long-wavelength region and it is highly dispersive for the
regime, k ≤ 1.5. Also, the velocity of the Jeans mode ampli-
tude is maximum at the center and it linearly decreases out-
wards (Fig. 12(b)). This again signifies that the Jeans mode
dominates in the CIP with the maximum value at the center.
In the k-space, the group velocity shows a sharp damping
from the center with a super-decay at k = 1.5 (λ = 4.18λJ ).
Again, after that, it grows linearly. Therefore, the group ve-
locity shows dispersive nature of the fluctuations with mode-
mode coupling characteristics of the wave-amplitude toward
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Fig. 9 Profile of the normalized (a) real part of frequency, (b) imag-
inary part of frequency, (c) imaginary part of frequency with different
orientation and (d) imaginary-to-real frequency ratio of the fluctuations

with normalized distance (ξ) and in normalized wave vector (k). The
different input initial values used are the same as Fig. 8

shorter-wavelengths via self-gravitational condensation of
larger wavelength perturbations.

Figure 13 shows the same as Fig. 7, but for the η(ξ)-
fluctuations. It is seen that the real and imaginary parts
of the fluctuation frequency decrease with increase in Zd

(Fig. 13(a)), and increase with increase in md (Fig. 13(b)).
For both the cases (Figs. 13(a)–13(b)), the real part shows
no rational variation in the regime 0 ≤ ξ ≤ 0.5λJ . The
variation increases as the frequency shifts away from ξ =
0.5λJ . The imaginary part reveals that, with increase in Zd

(Fig. 13(a)), the growth rate remains the same in the CIP
(0 ≤ ξ ≤ 3.5λJ ); but after CSB, it decreases with increase
in Zd . It is observed that, the growth rate increases from the
center outward with increase in md (Fig. 13(b)). The elec-
trostatic repulsive force in the cloud increases with increase
in Zd , which dominates over the self-gravitational counter-

parts. Thus, the growth rate decreases with increase in Zd in
the CEP. Again, when md increases, the self-gravitational at-
tractive force increases; which in turn, increases the growth
rate. From Fig. 13(a), the real and imaginary parts at the
CSB are (ωr)G ∼ 1.7, and (ωi)G ∼ 2.0, respectively. Simi-
larly, from Fig. 13(b), one gets (ωr)G ∼ 1.75, and (ωi)G ∼
2.0 at the CSB.

Thus, it is confirmed by all the techniques, that the CSB
is most unstable electrostatic potential boundary, which is
non-rigid in nature. It is also observed that the ratio of
imaginary-to-real frequency at the CSB for the electrostatic
case (Fig. 3(c)) is (ωi/ωr)E ∼ 1. The same for the self-
gravitational counterpart (Fig. 9(d)) is (ωi/ωr)G ∼ 1.12.
The ratio of both the values is R = (ωi/ωr)E/(ωi/ωr)G ∼
0.89. At the CSB, we get the real frequency ratio of the
two classes of fluctuations as, (fZd

)r = (ωr)E/(ωr)G =
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Fig. 10 Same as Fig. 9, but in the large-wavelength regime (k → 0)

2.25/1.7 ∼ 1.32 (from Figs. 7(a), 13(a)), and (fZd
)i =

(ωi)E/(ωi)G = 2.25/2 ∼ 1.12 (from Figs. 7(a), 13(a)).
Thus, at the CSB, the electrostatic instabilities are more
dominant than the corresponding self-gravitational ones
with increasing Zd -value. Similarly, at the CSB, we obtain
(fmd

)r = (ωr)E/(ωr)G = 2.2/1.75 ∼ 1.25 (from Figs. 7(b),
13(b)), and (fmd

)i = (ωr)E/(ωr)G = 2.2/2 ∼ 1.1 (from
Figs. 7(b), 13(b)). It implies that, at the CSB, the electro-
static instabilities dominate over the self-gravitational coun-
terparts, although elsewhere, the net fluctuations can evolve
in a dissimilar intermixed pattern.

6 Conclusions and remarks

We present a self-consistent evolutionary description of
the non-local electro-gravitational instabilities supported in
an inhomogeneous, non-uniform, self-gravitating charged

DMC. We carry out a non-local linear normal mode analy-
sis to study their excitation and evolution mode characteris-
tics globally with hydrodynamic viewpoint. Then, we derive
eigenvalue and eigenfunction equations for both the distinct
classes of electrostatic and self-gravitational fluctuations.
A numerical scheme for illustrations is constructed with
suitable and judicious initial input values. It identifies three
distinct categories of non-local eigenfluctuations. Here, it is
admitted that the role of neutral dynamics in the intrinsic
process of quasi-linear mode-modification is ignored. Be-
sides, details of positively charged species surrounded by
the density of electrons needed to make the plasma roughly
neutral are dropped for simplification. Despite the facts and
faults, the following concluding remarks may summarily be
worth mentioning.

1. An analytic non-local linear model to investigate the
discrete behavior of the collective dynamics of global
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Fig. 11 Same as Fig. 9, but in the small-wavelength regime (k → ∞)

gravito-electrostatic fluctuations in spherical charged
dust cloud is developed on the astrophysical fluid scales
of space and time.

2. Eigenvalue and eigenfunction equations are method-
ologically derived by applying the standard inhomoge-
neous (modified) Fourier technique exactly.

3. The considered DMC macroscopically is shown to be in
unstable state, as the calculated mass (MD ∼ 1021 kg)
and scale length (RD ∼ 1011 m) are found greater than
that of the Avinash-Shukla critical values for astrophys-
ical objects to be in stable equilibrium state.

4. Both electrostatic and self-gravitational potential fluc-
tuations are found to be maximum at the CSB, exist-
ing at radial coordinate ξ = 3.5λJ ∼ 1.47 × 1010 m,
but with opposite polarities in strength. This implies
that the CSB is the most unstable interfacial zone (cou-
pling the CIP and CEP) due to the strong coupling of

the self-gravitational attractive and electrostatic repul-
sive effects contributed by the collective charged grainy
plasma species.

5. Three distinct and spatio-spectrally isolated classes of
non-local eigenmodes—dispersive, non-dispersive and
hybrid types—are identified and characterized with il-
lustrations.

6. Dispersive features are prominent in the ultra-high k-
regime, and non-dispersive characteristics dominate in
the ultra-low k-regime.

7. The ratio of global electrostatic-to-self-gravitational po-
tential fluctuations comes out as, θ̃1/η̃1 ∼ 7 × 101. This
shows that the strength of self-gravitational potential
fluctuations is much smaller than that of the electro-
static counterpart. This, in turn, implicates that the exis-
tence of considerably massive dust grains is needed for
bounded structures to form.
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Fig. 12 Profile of the normalized (a) phase velocity and (b) group velocity of the fluctuations with normalized distance (ξ) and in normalized
wave vector (k). The different input initial values used are the same as Fig. 8

Fig. 13 Same as Fig. 7, but now for the η(ξ)-fluctuations. The different input initial values used are the same as Fig. 8

8. The density and electro-gravitational coupling play the
stabilizing role.

9. The density inhomogeneity, self-gravity and non-local
wave characterization indicate a unique type of hybrid
instability due to mode-mode coupling via quasi-linear
processes. This type of instabilities leads to the mech-
anisms responsible for the formation of bounded struc-
tures like star clusters and other galactic associations via
gravito-electrostatic polarization.

10. The entire DMC is a mixture of both the Jeans and
electrostatic modes, coupled via discrete oscillatory fea-
tures, but of intermixed pattern. Near the center, the

Jeans mode plays the dominating role, and the electro-
static mode prevails outward.

11. The Jeans mode is more unstable in the long-wavelength
region; whereas, the electrostatic mode is more unstable
in the short-wavelength region.

12. In the Jeans limit and electrostatic limit for the special
case of homogeneous equilibrium, the fluctuations ex-
hibit extreme behaviors immaterial of the geometrical
curvature considered.

13. The growth rate of the electrostatic fluctuations in-
creases and that of the gravitational fluctuations de-
creases with the increase in electrical charge of the mas-
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sive dust grains. However, it shows reverse characteris-
tics with the increase in mass of the massive dust grains.

14. The grain-charge has destabilizing influential role for
the electrostatic fluctuations; but stabilizing role for the
self-gravitational ones. In contrast, the grain-mass plays
stabilizing influential role for the former; but, destabi-
lizing protagonist for the latter.

15. Lastly, we believe that our results can provide exten-
sive inputs for exploration of self-gravitational cloud
collapse dynamics (via fragmentation and filamentation
processes) leading to the formation mechanism of di-
verse galactic eigenunits and eigenstructures. It can fur-
ther find application to see instability-triggered energy
cascading processes in thermal regions of diverse astro-
physical objects and their circumvented atmospheres. It
is moreover empathized that further refinements with
inclusion of neutral particle dynamics, bi-polar grain
charge fluctuations, kinematic viscosity and non-static
cloud rotational behavior in the framework of multi-
fluid approach using the WKB method are necessary.
These are in progress for more accurate outcomes yet to
be reported elsewhere.
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