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Abstract The influence of resistivity and viscosity effects
on Jeans self-gravitational instability of dusty plasma is
studied. The governing equations are constructed using
magnetohydrodynamic model for dusty plasma. The gen-
eral dispersion relation and Jeans criteria for instability are
obtained employing the plane wave solutions on linearized
perturbation equations. The Jeans criterion is found to be un-
affected due to resistivity and viscosity parameter. The dis-
persion relation is analyzed for various directions of propa-
gation with respect to magnetic field. The numerical calcula-
tions have been performed to show the effects of resistivity
and viscosity on the growth rate of Jeans instability. It is
observed that the presence of resistivity has destabilizing in-
fluence while viscosity has stabilizing effects on the growth
rate of the Jeans instability. The analytical results are veri-
fied by the numerical analysis using both real and normal-
ized astrophysical parameters. The present work is applica-
ble to various space and astrophysical plasma systems, par-
ticularly for molecular clouds, protostellar disks, interstellar
& circumstellar clouds and the ionosphere of the earth, etc.

Keywords Gravitational instability · Dusty
magnetohydrodynamic · Viscosity · Resistivity

1 Introduction

The dusty plasma is the fascinating research area as the
dust is omnipresent in astrophysical situations (Shukla and
Mamun 2002) for example in protostellar disks, interstellar
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and circumstellar clouds, molecular clouds, planetary atmo-
spheres, cometary tails, asteroid zones, interstellar media,
nebula and earth’s surroundings. The presence of dust adds
new changes in the phenomenon of “gravitational collaps-
ing” and requires revision of the study of gravitational ef-
fects in the astrophysical objects. In cosmic circumstances,
self-gravitation of the medium is important in understanding
the formation of dust clouds and equilibrium structures, as
well as for the study of collective processes. The propaga-
tion of waves and related instabilities corresponding to dusty
plasma has been studied widely in dusty plasma. Pandey
et al. (1994) have investigated the linear and nonlinear Jeans
instability of dusty plasma. The Jeans instability in colli-
sional dusty plasma has been investigated by Shukla and
Verheest (1999). The Jeans instability in partially ionized
self-gravitating plasma is observed to study the fragmen-
tation of molecular dusty clouds by Verheest et al. (2003).
The effect of non-thermal ion distributions on the Jeans in-
stability in dusty plasmas has been observed by Pillay and
Verheest (2005). Tsintsadze et al. (2008) have studied the
importance of thermal radiation on the Jeans instability for
magnetized dusty plasma with gravitational effects. Mamun
et al. (2010) have studied the effects of dust temperature and
fast ions on gravitational instability in self-gravitating mag-
netized dusty plasma.

In addition, magnetohydrodynamics (MHD) is the most
useful fluid model for determining the macroscopic equi-
librium and stability properties of plasma. Kossacki (1961)
has studied the magneto gravitational instability considering
the electrical conductivity of viscous rotating plasma using
MHD theory. In this direction, for ultra-cold dense quantum
plasma, Haas (2005) presented a modified quantum magne-
tohydrodynamic model to produce a quantum counterpart of
magnetohydrodynamics. Similarly, it is of much interest to
discuss MHD model for dusty plasma. Shukla and Rahman
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(1996) presented magnetohydrodynamics of dusty plasma.
In this work, a set of magnetohydrodynamic equations for
multi-component dusty plasma has been derived. The effec-
tive one-fluid model for dusty plasma has been used by many
researchers to study waves and instabilities. The modula-
tional instability with dust Alfvén ordinary and cusp solitons
in self-gravitating magneto-radiative plasma have been stud-
ied by Masood et al. (2010). The study of shear flow instabil-
ities in magnetized partially ionized dense dusty plasmas is
done by Birk and Wiechen (2002) using dust MHD model.
Linear and nonlinear properties of an obliquely propagat-
ing dust magnetosonic wave are discussed by Masood et al.
(2009) using dust MHD model. Zamanian et al. (2009) used
a Hall-MHD type of model to derive general dispersion rela-
tion describing the fast and slow dust-magnetosonic modes
and the shear dust-Alfvén waves including magnetization of
the system. In their studies they assumed that the dust par-
ticles have a magnetic dipole moment. Radiation (thermal)
instability in weakly ionized plasma with continuous ioniza-
tion and recombination is studied by Baruah et al. (2010).
Jamil et al. (2012) have studied the shear Alfvén waves in
quantum dusty magneto plasmas using quantum magneto-
hydrodynamic model.

In recent years, the importance of viscosity and resistive
parameters have been shown in many astrophysical dusty
objects (Fortov et al. 2012; Prasad and Rama 1997; Zabur-
daev 2001; Knobloch and Julien 2005) and laboratory dusty
plasma (Ji et al. 2001; Mikhailovskii et al. 2008). Magne-
torotational instability in dissipative dusty plasmas has been
studied by Ren et al. (2009a). With this background and con-
siderations, the present study is motivated by the Tsintsadze
et al. (2008) and Masood et al. (2010). Thus, considering
the significance of present problem in the collapse process
of dense astrophysical dusty plasma, we have studied the
self-gravitational instability of dusty magneto plasma using
magnetohydrodynamic model for dust incorporating the dis-
sipation effects due to viscosity and electrical resistivity.

The paper is organized as follows: Sect. 2 presents con-
cise summary of basic equations with magnetohydrody-
namic model for dusty system. The derivation of general
dispersion relation from linearized perturbation equations is
given in Sect. 3. Section 4 presents analytical and numer-
ical discussion of modified dispersion relation considering
different propagation directions (with respect to magnetic
field). The interpretation of the graphs plotted using actual
and normalized parameters of considered astrophysical sit-
uation are also given in the same section. Conclusion of the
work is presented in the last section.

2 The model

Let us consider a three component magnetized dusty plasma
having electrons, ions and dust grains. The governing equa-

tions used are the effective one-fluid MHD equations for
dusty plasma. Based on the condition of quasi neutrality and
the fact that the temperature of the dust grains is normally
less than the temperature of the electrons and ions, it is pos-
sible to neglect the gas dynamics. The electron and ion in-
ertia is ignored as we are interested in very low frequency
regime. We also ignore the displacement current term in
Ampere’s law owing to the same reason. The system is con-
sidered in the presence of an external one dimensional mag-
netic field B = B0ẑ, where ẑ is unit vector along z direc-
tion. In general, the dust grains have distributions in mass,
size and charge. However, for simplicity, we have assumed
that all the dust grains are of the same size, same mass md ,
and equal charge qde and are mobile with respect to the rest
species. The quasi neutrality condition is ni = ne + qdnd .
Here, nj is the number density of species j (j = i, e, and d

represent ions, electrons and dusty grains, respectively) and
qd is the charge on dust grains. The basic set of MHD equa-
tions for dusty plasma with these assumptions reads as fol-
lows.

The equation of motion for magnetized dusty fluid is
(Tsintsadze et al. 2008; Shukla and Rahman 1996)

ρd

(
∂

∂t
+ vd .∇

)
vd

= ρd∇ψ − ∇P + 1

4π
(∇ × B) × B + μρd∇2vd, (1)

The equation of continuity is given by

∂

∂t
ρd + ∇.(ρdvd) = 0, (2)

The equation for magnetic force is written as

∂B

∂t
= ∇ × (vd × B) + η∇2B (3)

The Poisson’s equation for self-gravitational potential is

∇2ψ = −4πGρd (4)

where pressure P = ∑
s ps = ndkB(Td +qdTi)+nekB(Te +

Ti) (Shukla and Rahman 1996) and ps (= nskBTs ) and Ts

are the pressure and temperature of s species (s = i, e, d), re-
spectively. The electrical resistivity of the conducting fluid is
expressed as η = c2/4πζ where ζ is the electrical conduc-
tivity, μ the fluid viscosity, vd , ρd , G, P and ψ represent
the equilibrium dust fluid velocity, dust fluid density, grav-
itational constant, fluid pressure and gravitational potential
respectively.

3 Linearized perturbation equations
and dispersion relation

For the process of linearization, all space and time depen-
dent variables are considered as made of two parts viz. equi-
librium and perturbed parts. The terms followed by ‘δ’ show
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the perturbed part and the terms with subscript ‘0’ represent
the equilibrium one.

ψ = ψ0 + δψ, B = B0 + δB, vd = vd0 + δvd ,

P = P0 + δP, ρd = ρd0 + δρd

(5)

The terms δB symbolize the perturbations in magnetic field,
δρd signifies the perturbations in fluid density, δP shows
perturbations in fluid pressure, δvd gives perturbations in
fluid velocity, δψ is perturbations in gravitational potential.
The viscous magnetized plasma is considered with vd0 = 0.
Further, we do not use ‘0’ in the equilibrium quantities. Us-
ing (1)–(5), we write the linearized perturbation equations
of finitely conducting, viscous dusty plasma as

ρd

∂δvd

∂t
= ρd∇δψ − ∇δP + 1

4π
(∇ × δB) × B

+ μρd∇2δvd, (6)

∂

∂t
δρd + ρd∇.δvd = 0, (7)

∇2δψ = −4πGδρd (8)

∂δB

∂t
= ∇ × (δvd × B) + η∇2δB (9)

However, we assume the variation of perturbation as
exp(ik.r + iωt), (where ω is the frequency of disturbance
and k = kxx̂ +kzẑ denotes wave number) and using this type
of perturbation (6)–(9) can be written as

ρdiωδvd = −ikδP + 1

4π
(ik × δB) × B

− μρdk2δvd + ρdikδψ (10)

iωδρd = −ρdik.δvd, (11)

iωδB = ik × (δvd × B) − ηk2δB (12)

and

−k2δψ = −4πGδρd, (13)

Using the linearized set of equations and assuming
ndkB(Td + qdTi) � nekB(Te + Ti), we obtain the follow-
ing expressions for the three components of δvd (vdx vdy

and vdz) and can be written in the matrix form as follows

[Xmn][Yn] = 0 m,n = 1,2,3, (14)

where [Xm,n] is 3 × 3 and [Yn] is 3 × 1 matrix, having ele-
ments as

X11 = −ω2 + k2
xT

2 + iωμk2 + iωk2V 2
dA

(iω + ηk2)
, X12 = 0,

X13 = kxkzT
2

X21 = 0, X22 = iω + μk2 + k2
zV

2
dA

(iω + ηk2)
,

X23 = 0,

X31 = kxkzT
2, X32 = 0,

X33 = −ω2 + k2
zT

2 + iωμk2

Y1 = vdx, Y2 = vdy, Y3 = vdz,

(15)

where ΩJd = (4πGρd)1/2 is the plasma dust Jeans fre-
quency, VdS = [(qdkBTi + kBTd)/md ]1/2 is the modified
dust acoustic speed and T 2 = V 2

dS − Ω2
Jd/k2. Moreover,

using iω = σ in the determinant of matrix (15) offers the
general dispersion relation as[
σ 4 + σ 3k2

(
2μ + V 2

dA

(σ + ηk2)

)

+ σ 2k2
(

T 2 + μ2k2 + μk2V 2
dA

(σ + ηk2)

)

+ σk2T 2
(

μk2 + (k.VdA)2

(σ + ηk2)

)]

×
(

σ + μk2 + (k.VdA)2

(σ + ηk2)

)
= 0 (16)

and VdA = √
B/4πρd is the dust Alfvén velocity. The gen-

eral dispersion relation of Jeans instability of dusty plasma
considering dissipation due to the resistive and viscous ef-
fects is represented by (16). If we consider the situations
where the value of viscosity is ignorable (μ = 0), the gravi-
tational mode of (16) can be written as

σ 4 + σ 2
{

V 2
dAσ

(σ + ηk2)
+ T 2

}
k2 + σ

(σ + ηk2)
k2T 2(k.VdA)2

= 0 (17)

Equation (17) shows fast and the slow dust magnetosonic
waves modified by gravitational potential and resistive ef-
fects. In absence of gravitational and resistive effects the
above Eq. (17) takes the shape as σ 4 + σ 2k2{V 2

dA + V 2
dS} +

k2V 2
dS(k.VdA)2 = 0 that represents typical dust magnetohy-

drodynamic wave. Equation (17) resembles the result given
by Ren et al. (2009b) for electron ion plasma excluding
quantum effect of electrons in that case. If we consider the
ignorable values of both resistivity and viscosity i.e. η = 0,
μ = 0 in that case (16) describes Jeans instability in dusty
plasma which is studied by Tsintsadze et al. (2008) exclud-
ing radiative effects in that case, and also recovers the result
given for electron ion plasma by Lundin et al. (2008) ex-
cluding effect of magnetization due to the spin and quantum
effects of electrons in that case. The analysis of (16) gives
the solutions, for non-viscous, infinitely conducting (η = 0,
μ = 0) case as

σ 2
F,S = 1

2

[−k2(T 2 + V 2
dA

)
± {

k4(T 2 + V 2
dA

)2 − 4k2T 2(k.VdA)2}1/2]
(18)

and the subscripts F and S stand for ‘fast’ and ‘slow’ respec-
tively. If we consider the situation where the propagation of
perturbation is along the magnetic field, there will be two in-
dependent propagating waves represented as σ 2‖F = −k2V 2

dA

and σ 2‖S = −k2T 2 respectively. If we observe these two
waves, it is obvious that one is non-gravitating (Alfvén)
mode and other is gravitating mode.
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Moreover, in the presence of resistivity and viscosity the
gravitational mode gets separated from Alfvén mode for
general propagation and can be written as

σ 4 + σ 3(2μ + η)k2

+ σ 2
{

2μηk4 + (k.VdA)2 + k2
(

V 2
dS − Ω2

Jd

k2

)
+ μ2k4

}

+ σk2
{
μ2ηk4 + ηk2

(
V 2

dS − Ω2
Jd

k2

)
+ μ(k.VdA)2

+
(

V 2
dS − Ω2

Jd

k2

)
μk2

}

+ k2
(

V 2
dS − Ω2

Jd

k2

){
μηk4 + (k.VdA)2} = 0 (19)

Since parameter μ, η, VdA are always positive, and, if value
of T 2 is positive, all coefficients of (19) are positive. Further,
it is well known that an equation with all positive real coef-
ficients, (19) can have no positive real roots. Therefore, in
the case of T 2 > 0 the solutions of (19) describes the stable
state of the medium. Since (19) is quartic equation in σ , it
follows that there are in general four modes in which a wave
can be propagated in the medium; and if σ1, σ2, σ3 and σ4

denote the frequencies of these four modes, in all cases the
following dependence must be satisfied by the roots of (19)

σ1σ2σ3σ4 = k2
(

V 2
dS − Ω2

Jd

k2

)(
μηk4 + k2V 2

dA

)
(20)

Therefore, we can say if (V 2
dS −Ω2

Jd/k2) < 0, at least one of
the real roots must be positive and the considered system is
unstable. If (19) has complex roots, we can obtain an equa-
tion that must be satisfied by real parts of the roots. In the
case of (V 2

dS − Ω2
Jd/k2) > 0, all coefficients of this equa-

tion are positive, and thus complex roots with positive real
parts cannot exist. Hence, the medium must be stable. Thus,
it is proved that the medium is stable in respect to small per-
turbations, if (V 2

dS − Ω2
Jd/k2) is positive, and unstable, if

(V 2
dS − Ω2

Jd/k2) is negative.
To investigate the instability of the system the general

dispersion relation can be discussed in following ways:
when the perturbation propagates perpendicular and along
the direction of magnetic field and when the perturbation
propagates to the oblique direction of the magnetic field.

4 Discussions

4.1 Propagation transverse to the magnetic field

First, we consider the situation where the perturbations are
propagating transverse to the direction of magnetic field, in

that case, we place kx = k, kz = 0 in (16) and we acquire

{
σ + μk2}2

{
σ 2 + k2

(
V 2

dS − Ω2
Jd

k2

)
+ σμk2

+ σk2V 2
dA

(σ + ηk2)

}
= 0 (21)

It is clear from the above dispersion relation that it sep-
arates the wave propagation into two different modes for
transverse propagation. The first mode is viscous mode
given as

σ + μk2 = 0 (22)

Equation (22) evidently shows the mode is due to viscosity
of the medium only. The second gravitating mode can be
written as

σ 3 + σ 2{η + μ}k2

+ σ

{
k2

{
V 2

dS − Ω2
Jd

k2

}
+ k2V 2

dA + μηk4
}

+ η

{
V 2

dS − Ω2
Jd

k2

}
k4 = 0 (23)

It is clear that the gravitating mode is modified due to the
presence of magnetic field (dust Alfvén velocity), viscosity
and resistivity effects. In absence of resistivity and viscosity
the dispersion relation reduces to

σ 2 + k2
(

V 2
dS − Ω2

Jd

k2

)
+ k2V 2

dA = 0 (24)

In absence of gravitational effect above dispersion rela-
tion matches with (19) obtained by Zamanian et al. (2009)
excluding intrinsic magnetization in that case. They studied
the dust dynamics using Hall MHD type model incorporat-
ing the magnetic moment of dust. The above dispersion rela-
tion is identical to (28) obtained by Tsintsadze et al. (2008).
It is clearly visible form (24) that the solution of the equation
has the following form:

σ = ±ik

{
V 2

dS + V 2
dA − Ω2

Jd

k2

}
(25)

This shows that in absence of gravitational effects there
will be two waves propagating in the opposite directions
which will be the combination of Alfvén and dust acoustic
modes. However, (23) is cubic equation and if the constant
term of (23) is less than zero, the condition of instability can
be written as[
(qdkBTi + kBTd)/md

]
< Ω2

Jd/k2 (26)

The above equation represents the condition of instability
and it is clear that the condition is not affected by viscosity
and resistivity parameter but from (23) it is clear that the
growth rate of instability will be modified by viscosity and
resistivity parameter of the system.
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If one observes the gravitating mode given by (23), it
is clearly visible that the growth rate of instability is de-
pending upon resistivity and viscosity. For our numerical
analysis of (23), we have chosen the plasma parameters
that are typical for a number of space and astrophysical
plasma systems, particularly for molecular clouds, proto-
stellar disks, interstellar and circumstellar clouds, the iono-
sphere of the Earth, etc. (Evans 1994; Verheest and Cadez
2002; Whittet 1992). The dust number density has been
assumed as nd0 = 10−1 m−3, md = 4 × 10−15 kg, G =
6.67 × 10−11 m3 kg−1 s−2, the magnetic field is of the order
of B = 3 × 10−10 T, dust Alfvén velocity VdA = 13.4 m/s,
and dust temperature is Td = 30 K, dust acoustic speed is
Vds � 2.8 m/s. Thus, the Jeans dust frequency is calcu-
lated considering the above parameters, which is found to
be ΩJd = 10−13 s−1.

The above mentioned astrophysical situations are rich
in dust and the magnetic field induced current in the mag-
neto dust fluid modifies the dynamics of the fluid. The vis-
cous and resistive processes are of much importance in the
dynamics of these astrophysical medium as the energy is
dissipated via. viscous and resistive processes. The distri-
bution of dust particles in the interstellar, protostellar, cir-
cumstellar and molecular local sheet of cloud (with the size
and charge distribution of dust) is connected with the over-
all energy dissipation properties and leads to wide range
of viscosity and conductivity. This can be achieved using
a number of ex situ and in situ technique. The observed
wide range of parameters suggests the local sheet to sheet
variation of specific dusty cloud characteristics. Review-
ing the literature for the interstellar dusty, molecular dusty
and protostellar disks and circumstellar clouds, (Verheest
and Cadez 2002; Mamun and Shukla 2000; Zhukhovitskii
et al. 2015; Mamun and Shukla 2001; Goerz 1989; Spitzer
1941; Angelis 1992) it is clear that the value of viscos-
ity and resistivity covers extensive range depending upon
the density, temperature and magnetic field of the region.
Therefore the range of viscosity and resistivity parameters
for the specific local sheet of cloud of astrophysical sit-
uation chosen as μ = 1010–16 m−2 s−1, η = 108–15 m2 s−1

(Evans 1994; Whittet 1992; Shukla 2002; Krugel 2002;
Verheest 2012; Crutcher 1998; Lizano and Galli 2014).
Here, we restrict ourselves to the case in which viscosity
and resistivity are almost of the same order. The numeri-
cal analysis of these environments is performed using both
the dimensionless and real (actual) parameters of the astro-
physical situation. However, the predictions of the analyti-
cal results are well described and verified by the numerical
results.

In particular, the relevance of the resistive and viscous
effects to the dusty interstellar, protostellar and circumstel-
lar clouds is discussed using the real parameters. The results
clearly show that for the above mentioned dusty situations

Fig. 1 Growth rate of Jeans instability with wave number for various
values of viscosity parameter for transverse propagation. The parame-
ters used are VdA = 13.4, VdS = 2.8, η = 1015, ΩJd = 10−13

Fig. 2 Growth rate of Jeans instability with wave number for various
values of resistivity parameter for transverse propagation. The param-
eters used are VdA = 13.4, VdS = 2.8, μ = 1013, ΩJd = 10−13

the gravitational instability is affected directly with the dis-
sipative effects. The parameters mentioned above are used
for the numerical calculation. The effect of viscous parame-
ter on the growth rate of self-gravitational instability (when
the perturbation propagates in the transverse propagation)
has been described in the form of Fig. 1 using (23). Equa-
tion (23) is cubic equation and the positive roots of (23) are
picked up to observe the growth rate of instability. Figure 1
clearly shows that the threshold of instability is independent
from the viscosity parameter. It is also verified from condi-
tion (26). It is clear from the figure that as the value of vis-
cosity parameter increases the growth rate of instability de-
creases and hence it shows stabilization effect on the growth
rate of gravitational instability. Similarly, Fig. 2 shows the
effect of resistivity parameter on the growth rate of gravita-
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Fig. 3 Growth rate of Jeans instability with wave number for var-
ious values of magnetic field parameter for transverse propagation.
The parameters used are VdA = 13.4, VdS = 2.8, η = 1015, μ = 1013,
ΩJd = 10−13

tional instability in the transverse direction of propagation.
The analysis of the figure displays that as the value resistiv-
ity increases the growth rate of instability also increases. It
is also obvious from the figure that the threshold of insta-
bility is independent from the resistive parameter. Figure 3
shows the effect of magnetic field strength on growth rate
and clearly shows the stabilizing effect on the instability. It
is also clear from Fig. 3 that the critical wave number is in-
dependent from the magnetic field. It is important to note
that the value of threshold for Jeans instability is estimated
as 35.714286.

Further, the normalization is performed with the help
of Jeans dust frequency and dust acoustic speed and can
be applied to the different ranges of plasma parameters.
Hence, the corresponding parameters, which stand for our
numerical analysis, are VdA/Vds = 4.78–5.5, μ∗ = 0.1–0.3,
η∗ = 0.1–0.3. These parameters have been constantly used
by various researchers to study effect of viscosity and re-
sistivity on waves and instabilities. Thus, the results of the
present investigation should help us to explain the basic fea-
tures of the dynamics of various parts of protostellar disks,
interstellar, circumstellar and molecular clouds.

The effects of electrical resistivity and viscosity correc-
tions on the growth rate of Jeans instability in dusty plasma
can be readily analyzed numerically using normalized pa-
rameters. The following dimensionless parameters are used

σ ∗ = σ

ΩJd

, k∗ = kVds

ΩJd

, η∗ = ηΩJd

V 2
ds

,

V ∗
dA = VdA

Vds

, μ∗ = μΩJd

V 2
ds

(27)

First, we write Eq. (23) in dimensionless form, using
Eq. (27). The normalized form of Eq. (23) can be written as

Fig. 4 The normalized growth rate of Jeans instability versus normal-
ized wavenumber in transverse propagation for various values of the
viscosity parameter (μ∗) for dusty fluid. The values of constant param-
eters are taken to be V ∗

dA = 4.78, η∗ = 0.3

σ ∗3 + σ ∗2(η∗ + μ∗)k∗2

+ σ ∗(k∗2 − 1 + k∗2V ∗2
dA + μ∗η∗k∗4)

+ η∗k∗2(k∗2 − 1
) = 0 (28)

For the purpose of study the influence of resistivity and vis-
cosity corrections in the transverse direction of propagation
on the growth rate of Jeans instability, we solve (28) numer-
ically. The solution of normalized dispersion relation (28)
relates to the frequency σ and wave vector k and thereby
determines the normal modes of plasma. The dispersion re-
lation can be solved with the initial value problem in which
k is given real and wave frequency ω can be written as
ω = ωr + iγ , where γ is the growth rate or damping rate.
Now, if we take real positive value of σ it will determine
growth rate, if we take real negative value of σ it deter-
mines damping rate and taking the imaginary value (either
positive or negative) it shows oscillations. So in the present
case to observe instability real positive roots are chosen that
will give growth rate of instability. Moreover, using (28)
the growth rate of Jeans instability has been examined in
Figs. 4, 5, and 6 for different values of dimensionless viscos-
ity, resistivity and magnetic field strength. In Fig. 4, we have
plotted the growth rate of instability against the normalized
wave number (k∗) for various values of dimensionless vis-
cosity parameter μ∗ keeping the fix value of dimensionless
resistivity η∗ and dimensionless dust Alfvén speed V ∗

dA. Fig-
ure 4 clearly displays the influence of viscosity parameter
μ∗ on the growth rate of Jeans instability. If we analyze this
figure with three curves for different viscosity values, we can
see that at k = 0 all curves show that the growth rate is unity,
which can also be verified analytically from the dispersion
relation. However, as the wave number advances the curve
proceeds picking up different values of growth rate for dif-
ferent values of viscosity and hence each curve moves in a
different way. The figure shows that for initial wave numbers
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Fig. 5 The normalized growth rate of Jeans instability versus normal-
ized wavenumber in transverse propagation for various values of the
viscosity parameter (η∗) for dusty fluid. The values of constant param-
eters are taken to be V ∗

dA = 4.78, μ∗ = 0.3

the peak value of the perturbation growth rate is constant for
all the values of viscosity parameter, but further, (with the
increase of wave number) the growth rate of instability de-
creases with increase in the parameter μ∗. So, one can con-
clude the influence of viscosity parameter is found as stabi-
lizing on the growth rate of Jeans instability of dusty plasma.
The unstable region is found to be decreased with growing
value of μ∗. However, it is to be noted that the threshold re-
mains the same for different values of viscosity, this is also
in agreement with the threshold condition given by (26). In
the same manner further, Fig. 5 represents the growth rate
of instability σ ∗ with the normalized wave number k∗ for
several values of resistivity parameter η∗. Figure shows that
with the increasing value of resistivity, growth rate increases
and hence electrical resistivity has destabilizing effect on the
Jeans instability. It is again clearly seen from the figure that
threshold of instability remains the same for all values of re-
sistivity, since the instability condition is independent from
the resistivity parameter. Further, the evaluation of these two
figures tells us that on similar background condition the ef-
fect of viscosity parameter is more dominating in compar-
ison to the resistivity parameter. It is to be mentioned here
that viscosity appears in the momentum equation, and the re-
sistivity comes in the induction equation. In the momentum
equation the viscous stresses due to viscous forces tending
to resist the relative movement of adjacent layers of the fluid,
and lead to stabilizing effect. While, the finite resistivity al-
lows plasma to slip up across the field lines, and thus the re-
strictive effect of the field in infinite conductivity disappears,
and finite resistivity shows a destabilizing influence. More-
over, Fig. 6 describes the effect of magnetic field on growth
rate of instability. An increase in the value of magnetic field
tends to decrease the instability growth rate. It describes that
the magnetic field has stabilizing effect on growth rate of
Jeans instability. The growth rate decreases fast with rise in

Fig. 6 The normalized growth rate of Jeans instability versus normal-
ized wavenumber in transverse direction for various values of the mag-
netic field parameter (V ∗

dA) for dusty fluid. The values of constant pa-
rameters are taken to be μ∗ = 0.1, η∗ = 0.1

the magnetic field. Actually, higher value of magnetic field
led to higher cyclotron frequency and thus a lesser amount
of energy is shared to the low frequency mode. However,
it is clearly seen from the figure as the magnetic field is
increased, the threshold value of wave vector remains con-
stant it can be verified by the threshold condition also that
the Jeans condition of instability does not depend upon the
magnetic field.

4.2 Propagation along the magnetic field

We consider only the wave mode which propagates along
the direction of the magnetic field. We put kx = 0, kz = k

in (16). The dispersion relation obtained in the longitudinal
propagation case can be written as

{
σ 2 + σμk2 + k2T 2}{σ + μk2 + k2V 2

dA

(σ + ηk2)

}2

= 0 (29)

The first factor of the (29) gives gravitational mode as

σ 2 + σμk2 + k2
{
V 2

dS − Ω2
Jd

k2

}
= 0 (30)

It is clear from above equation that the resistivity parame-
ter does not influence the Jeans instability of magneto dusty
plasma. Equation (30) is quadratic equation in σ with con-
stant term. When constant term of (30) is less than zero this
allows at least one positive real root which corresponds to
the instability of the system. Thus, when perturbation prop-
agates along the direction of magnetic field, the general con-
dition of instability is obtained from constant term of (30) is
given as

k2V 2
dS < 4πGρd (31)

It is clear from the above equation that the Jeans crite-
rion for the gravitational instability of a medium is unaf-
fected even if viscosity and resistivity effects are included.
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Fig. 7 Growth rate of Jeans instability with wave number for various
values of viscosity parameter for longitudinal propagation. The param-
eters used are VdS = 2.8, ΩJd = 10−13

The Jeans condition resembles the condition of instability
obtained by Zamanian et al. (2009) and Tsintsadze et al.
(2008) The condition also matches with the one obtained
by Ren et al. (2009a) as well as Lundin et al. (2008) for the
electron ion case excluding quantum effects in that case.

However, from (29) the Alfvén mode is given as

σ 2 + σ(μ + η)k2 + μηk4 + k2V 2
dA = 0 (32)

The solutions of Eq. (32) have the following form

σ1,2 = −1

2
(μ + η)k2 ± 1

2

[
(μ − η)2k4 − 4k2V 2

dA

]1/2 (33)

It is important to mention that in presence of viscosity and
resistivity the propagation of Alfven waves does not get af-
fected due to gravitational potential in the general propa-
gation. If we put η = 0, μ = 0 we have two Alfvén waves
along the z axis in opposite directions. The presence of terms
μ and η in (32) describes damping due to viscosity and elec-
trical resistance. Since the solution of (33) will always be an
imaginary number. Hence, the Alfvén waves cannot cause
instability in the considered system.

Further, in the longitudinal direction of propagation
growth rate of Jeans instability is observed using real (ac-
tual) parameters from (30). Figure 7 shows the effect of vis-
cous parameter on the growth rate of gravitational instability
and the growth rate decreases with the increase of viscosity
parameter and hence the viscosity shows stabilizing effect.
Figure 8 is plotted for the various real (actual) values of
dust acoustic speed and it shows that since the threshold of
instability depends on the value of Vds , figure shows differ-
ent threshold values for different value of Vds . These values
are estimated as 55.555556, 35.714286 and 26.31579. It is
clearly observed from figure that as the value of Vds in-
creases the growth rate of Jeans instability decreases. Thus,

Fig. 8 Growth rate of Jeans instability with wave number for various
values of dust acoustic speed for longitudinal propagation. The param-
eters used are μ = 1013, ΩJd = 10−13

Fig. 9 The normalized growth rate of Jeans instability versus normal-
ized wavenumber for various values of viscosity parameter (μ∗) in lon-
gitudinal direction

Vds describes stabilization effect and verifies the condition
(31) for gravitational instability.

For the purpose to observe the effects of viscosity cor-
rections (using the normalized parameters) on the growth
rate of Jeans instability of dusty plasma along the direction
of magnetic field, we discuss the dispersion relation indi-
cated by (30) numerically. Equation (30) is normalized us-
ing Eq. (27) as

σ ∗2 + σ ∗μ∗k∗2 + k∗2 − 1 = 0 (34)

The growth rate of instability is to be studied for longitu-
dinal propagation using (34). Numerical analysis of (34) is
displayed in the form of Fig. 9. Figure 9 displays the growth
rate of instability with the normalized wave number (k∗) for
different values of dimensionless viscosity in longitudinal
direction. Figure 9 clearly shows the growth rate decreases
with increasing the value of viscosity. So, the influence of
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viscosity on the growth rate of instability is stabilizing. Fig-
ure 9 displays that initially the highest value of the growth
rate and the threshold of instability remains the same for all
values of viscosities which are in agreement with the ana-
lytical results. The comparison of Fig. 7 obtained using real
(actual) parameters, and Fig. 9 obtained using normalized
parameters shows that both figures exhibit same conclusions
for the growth rate of Jeans instability.

However, for the longitudinal and transverse propagation,
we have presented graphs using both real (actual) data and
the normalized data. It is important to mention that the graph
plotted with the actual values can be used to study the dy-
namics of specific situation and specify how effective a par-
ticular physical effect would be for that system. On the other
hand the graphs plotted using normalized data can be ap-
plied to study various situations in the astrophysical region
using appropriate data from that region.

4.3 Propagation at an angle θ to the magnetic field:

We study the case when perturbation propagates in an ar-
bitrary direction with respect to the magnetic field B . The
coordinates are considered such that y axis is perpendicular
to the plane of propagation k and the magnetic field B . The
magnetic field B is considered along z axis and the angle
between k and B is θ as k = k (sin θx̂ + cos θ ẑ), therefore
(15) takes the shape as

X11 = −ω2 + k2 sin2 θT 2 + iωμk2 + iωk2V 2
dA cos2 θ

(iω + ηk2)
,

X12 = 0, X13 = k2 sin θ cos θT 2

X21 = 0, X22 = iω + μk2 + k2 cos2 θV 2
dA

(iω + ηk2)
,

X23 = 0,

X31 = k2 sin θ cos θT 2, X32 = 0,

X33 = −ω2 + k2 cos2 θT 2 + iωμk2

(35)

after solving this matrix (using σ = iω) we get the following
dispersion relation as

σ 4 + σ 3(2μ + η)k2 + σ 2(2μηk4 + V 2
dAk2 cos2 θ + k2V 2

dS

− Ω2
Jd + μ2k4) + σk2{μ2ηk4 + η

(
k2V 2

dS − Ω2
Jd

)
+ μk2V 2

dA cos2 θ + μ
(
k2V 2

dS − Ω2
Jd

)}
+ (

k2V 2
dS − Ω2

Jd

)(
μηk4 + k2V 2

dA cos2 θ
) = 0 (36)

Further, we will discuss the dispersion relation (36) nu-
merically at θ = π/4 and at θ = π/6 by normalizing it using
(27). The results are shown in the form of Figs. 10 and 11
which discusses the effect of viscosity and resistivity respec-
tively. Figure 10a shows the effect of viscosity parameter
when the angle between the magnetic field and propaga-
tion direction is θ = 30◦ and Fig. 10b describes the same
for θ = 45◦. Both the figures show stabilizing effect of vis-
cosity parameter on growth rate of Jeans instability. Since

Fig. 10 The normalized growth rate of Jeans instability versus nor-
malized wavenumber for various values of viscosity parameter (μ∗)
(a) at θ = π/6, (b) at θ = π/4. The values of constant parameters are
taken to be V ∗

dA = 4.78, η∗ = 0.1

Fig. 11 The normalized growth rate of Jeans instability versus nor-
malized wavenumber for various values of resistivity parameter (η∗)
(a) at θ = π/6, (b) at θ = π/4. The values of constant parameters are
taken to be V ∗

dA = 4.78, μ∗ = 0.1

the condition of instability does not depends upon angle θ

so the threshold will also stay the same for both the angles.
Similarly, Fig. 11a displays the effect of resistivity parame-
ter when direction of propagation is at an angle 30◦ to the
magnetic field and Fig. 11b shows the same for θ = 45◦. It
is clear that resistivity parameter shows destabilizing effect
for both the angles 30◦ and 45◦. Thus, we can conclude that
viscosity has stabilizing effect and resistivity has destabiliz-
ing effect on the growth rate of gravitational instability for
both θ = 30◦ and θ = 45◦.

5 Conclusions

In the present work, self-gravitational instability of a magne-
tized dusty plasma is examined. The general dispersion rela-
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tion is derived using the linearized perturbation method and
discussed to get condition of instability and it is found that
the Jeans criterion is unaffected with the resistivity and vis-
cosity parameters. Further, the general dispersion relation is
analyzed in different direction of propagation with respect to
magnetic field. When perturbation is considered to be propa-
gated in the transverse direction it splits into two modes one
is stable viscous and other is gravitating mode coupled with
Alfvén mode. In longitudinal direction of propagation resis-
tivity separates the Alfvén mode from gravitational mode.
In oblique direction of propagation the gravitating mode
is modified by resistivity, viscosity and magnetic field pa-
rameter. The numerical results show destabilizing influence
of resistivity parameter in the transverse, longitudinal and
oblique direction of propagation, while viscosity parameter
stabilizes the growth rate of Jeans gravitational instability in
transverse, longitudinal and oblique directions of propaga-
tion. The results are obtained from both the real parameters
of astrophysical plasma as well as the normalized dimen-
sionless data.
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