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Abstract In this paper, by applying the WKB approxima-
tion and Hamilton-Jacobi ansatz to the Proca equation, we
investigate the tunneling of vector bosons across the event
horizon of Kerr-Newman black hole and also the result-
ing vector particles’ Hawking radiation. Universality of the
properties of the emitted spectra of different types of parti-
cles is established for Kerr-Newman black hole. The coor-
dinate problem for Hawking radiation of the vector particles
is also investigated using three coordinate systems. The ther-
mal spectrum of the radiated vector bosons determined using
a direct computation corresponds to a temperature which is
twice the Hawking temperature of Kerr-Newman black hole
for scalar particles. If the well behaved Eddington coordi-
nate system and Painleve coordinate system are used, the
correct result of Hawking temperature is obtained. The rea-
son for the discrepancy in the results of naive coordinate and
well behaved coordinates is also discussed.

Keywords Kerr-Newman black hole · Hawking radiation ·
Proca equation

1 Introduction

In the early 1970s, on the basis of quantum theory Stephen
Hawking discovered that black hole emits particles and the
energy spectrum of the emitted particles is thermal (Hawk-
ing 1974, 1975). Page (1976) also showed that black holes
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emit all sorts of particles e.g. neutrinos, photons, gravitons,
electrons, positrons etc. and calculated the emission rate
for the particles having zero or negligible rest mass emit-
ted from the Kerr black hole. The emission of vector parti-
cles e.g. W±, Zo which constitute a fundamental part of the
standard model for electroweak interactions should also be
an important aspect of the study of Hawking radiation.

Various methods have been proposed for the study of
Hawking radiation as tunneling across the event horizon
of the black hole (Hartle and Hawking 1976; Kraus and
Wilczek 1995; Parikh and Wilczek 2000; Srinivasan and
Padmanabhan 1999; Sankaranarayanan et al. 2001, 2002;
Padmanabhan 2004; Angheben et al. 2005; Kerner and
Mann 2008; Kruglov 2014a,b; Ge-Rui et al. 2015). The tun-
neling method provides a conceptual means of understand-
ing the underlying physical process of black hole radiation.
Creation of the positive and negative energy virtual pair of
particles is similar to the particle-antiparticle pair creation.
Just like the antiparticle counterpart the negative energy vir-
tual particle might be considered as a positive energy vir-
tual particle moving forward in time and tunneling out of
the black hole event horizon. At the moment when the nega-
tive energy virtual particle is just created the positive energy
virtual particle vanishes and another positive energy virtual
particle is created and it is emitted as a part of the Hawking
radiation. The principle of conservation of energy is obeyed
in the process. Kruglov (2014a,b) investigated the radiation
of vector particles from black holes using the WKB approx-
imation to the Proca equation. For the Schwarzschild back-
ground geometry the emission temperature is in agreement
with the Hawking temperature corresponding to scalar par-
ticle emission. Ge-Rui et al. (2014, 2015) investigated vec-
tor particles tunneling from the BTZ black holes and four
dimensional Schwarzschild black hole respectively. They
could recover the expected Hawking temperature. Sakalli
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and Ovgun (2015a,b,c) also studied the Hawking radia-
tion of vector particles from a 3-dimensional rotating black
hole with scalar hair using the Hamilton-Jacobi ansatz. The
tunneling spectrum of the vector particles was determined
and the standard Hawking temperature could be recovered.
They investigated quantum tunneling of massive vector par-
ticles from Schwarzschild black hole in the Kruskal coordi-
nates and the Lemaitre coordinates and also from Lorentzian
wormholes in 3 + 1 dimensions. Gursel and Sakalli (2015)
studied Hawking radiation of massive vector particles from
Warped anti de Sitter black hole in 2+1 dimensions. Xiang-
Qian and Ge-Rui (2015) investigated massive vector par-
ticles tunneling from Kerr and Kerr-Newman black holes.
Angheben et al. (2005) found that naive coordinate leads
to an incorrect result for Hawking radiation of scalar par-
ticles, however, when isotropic coordinate or invariant ra-
dial distance is used the correct result is obtained. Wang
et al. (2010) and Ibungochouba et al. (2013) also observed
that naive coordinate leads to incorrect result whereas well
behaved Painleve and Eddington coordinate systems give
the correct results in the case of tunneling of scalar parti-
cles across the event horizons of Kerr-Newman and Kerr-de
Sitter black hole respectively. The Painleve coordinate sys-
tem has many attractive features. Firstly, the metric com-
ponents are analytic, hence non-diverging at the black hole
event horizon. Secondly, the constant time slice are flat Eu-
clidean space. The second one is very important because the
WKB may be used to calculate the tunneling rate and WKB
approximation is obtained from the quantum mechanics of
flat space time (Zhang and Zhao 2005a,b; Ren and Zhao
2006, 2007). Thirdly, there exists a time like Killing vector
field which is important to the energy conservation. Lastly,
particle tunneling of a barrier is a spontaneous process in
quantum mechanic. This new coordinate system will elim-
inate the singularity of the metric components at the black
hole event horizon and the components of metric may satisfy
Landau’s coordinate clock synchronization condition (Lan-
dau and Lifshitz 1975).

In this paper by applying the WKB approximation and
Hamilton-Jacobi ansatz to the Proca equation we observe the
spectrum of the vector bosons emitted via tunneling across
the event horizon of Kerr-Newman black hole. It is observed
that similar to the tunneling of scalar particles the coordi-
nate problem exists in the case of vector particles’ tunneling
across the event horizon.

The layout of the paper is as follows. In Sect. 2, we give
a brief review of the Kerr-Newman black hole and using the
naive coordinate the imaginary part of the action is deter-
mined and the probability of tunneling across the event hori-
zon is calculated. In Sects. 3 and 4 the tunneling probabili-
ties are calculated using the Eddington and Painleve coordi-
nate systems respectively. A brief discussion of our findings
are given in Sect. 5.

2 Kerr-Newman black hole

The line element of Kerr-Newman black hole in Boyer-
Lindguist coordinates can be written in the form

ds2 = −� − a2 sin2 θ

R2
dt2 + R2

�
dr2 + R2dθ2

+ (r2 + a2)2 − �a2 sin2 θ

R2
sin2 θdφ2

− 2a sin2 θ
r2 + a2 − �

R2
dt dφ, (1)

where R2 = r2 + a2 cos2 θ , and � = r2 + a2 + Q2 − 2Mr ,
and the parameters M , Q and J = Ma denote the mass,
charge and angular momentum of the black hole respec-
tively. The event horizon is given by

r± = M ±
√

M2 − Q2 − a2. (2)

For the Kerr-Newman black hole horizon the semi-classical
Hawking temperature (Ibungochouba et al. 2014) is given
by

TH = 1

4π
· r+ − r−
(r2+ + a2)

. (3)

The Kerr-Newman black hole has a frame dragging effect in
the coordinate system and matter field in the ergosphere near
the event horizon r = r+ could be dragged. It is not conve-
nient to study the Hawking thermal radiation effect and a
suitable approach to study Hawking radiation would be in
the dragging coordinate system. For this we used the drag-
ging coordinate system, let dφ

dt
= − g03

g33
, the line element of

Kerr-Newman black hole (1) becomes

ds2 = − R2�

(r2 + a2)2 − �a2 sin2 θ
dt2

k + R2

�
dr2 + R2dθ2

= g00dt2
k + g11dr2 + g22dθ2, (4)

where B = (r2 + a2)2 − �a2 sin2 θ and angular velocity at
the black hole event horizon is given by

Ω+ = a

r2+ + a2
. (5)

From Eq. (4), the contravariant components are given by

g00 = − B

�R2
, g11 = �

R2
, g22 = 1

R2
. (6)

The line element (4) must satisfy the Landau’s condition
of the coordinate clock synchronization. We know that the
black hole event horizon and the infinite red-shift surface
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are coincident with each other, which means the geomet-
rical optics limit may be used. Applying WKB approx-
imation, the relationship between the tunneling probabil-
ity and the imaginary part of the action may be derived
as Γ ∼ e−2 ImS (Keski-Vakkuri and Kraus 1997). We will
study massive vector particles in this space-time. Within the
semi-classical approximation, the wave function Ψ satisfies
the Proca equation as

1√−g
∂a

(√−gΨ ab
) + m2

�2
Ψ b = 0, (7)

where Ψab = ∂aΨb − ∂bΨa and Ψ ab is an anti-symmetric
tensor. From Eq. (2), we obtain the components of wave
function Ψ are as follows

Ψ 0 = − B

�R2
Ψ0, Ψ 1 = �

R2
Ψ1, Ψ 2 = 1

R2
Ψ2

Ψ 01 = − B

R2R2
Ψ01, Ψ 02 = − B

�R2R2
Ψ02

Ψ 12 = �

R2R2
Ψ12.

(8)

Then the Proca equations are reduced to

B

(
∂2Ψ2

∂θ∂tk
− ∂2Ψ0

∂θ2

)
+ �B

(
∂2Ψ1

∂r∂tk
− ∂2Ψ0

∂r2

)

+ Ψ01

[
�B

∂

∂r
log

√−g + �R2R2 ∂

∂r

(
B

R2R2

)]

+ Ψ02

[
B

∂

∂θ
log

√−g + �R2R2 ∂

∂θ

(
B

�R2R2

)]

+ m2BR2

�2
Ψ0 = 0,

B

(
∂2Ψ0

∂tk∂r
− ∂2Ψ1

∂t2
k

)
− �

(
∂2Ψ2

∂θ∂r
− ∂2Ψ1

∂θ2

)

− Ψ12

[
�

∂

∂θ
log

√−g + R2R2 ∂

∂θ

(
�

R2R2

)]

(9)

+ Ψ10

[
�

∂

∂t
log

√−g + R2R2 ∂

∂t

(
�

R2R2

)]

− �m2R2

�2
Ψ1 = 0,

B

(
∂2Ψ0

∂tk∂θ
− ∂2Ψ2

∂t2
k

)
− �2

(
∂2Ψ1

∂r∂θ
− ∂2Ψ2

∂r2

)

− Ψ20

[
�R2R2 ∂

∂t

(
B

�R2R2

)
+ B

∂

∂t
log

√−g

]

− Ψ21

[
�2 ∂

∂r
log

√−g + �R2R2 ∂

∂r

(
�

R2R2

)]

− �m2R2

�2
Ψ2 = 0.

The vector function can be defined as

Ψa = (c0, c1, c2) exp

[
i

�
S(tk, r, θ)

]
. (10)

Using WKB approximation, the action can be written as

S(tk, r, θ) = S0(tk, r, θ) + �S1(tk, r, θ)

+ �
2S2(tk, r, θ) . . . . (11)

Using Eqs. (10) and (11) in (9), the higher order terms of
o(�) are neglected. Then resulting equations can be obtained
as follows

c2
∂S0

∂θ

∂S0

∂tk
− c0

(
∂S0

∂θ

)2

+ �c1
∂S0

∂r

∂S0

∂tk

− �c0

(
∂S0

∂r

)2

− m2R2c0 = 0,

c0B
∂S0

∂tk

∂S0

∂r
− Bc1

(
∂S0

∂tk

)2

− �c2
∂S0

∂θ

∂S0

∂r

+ �c1

(
∂S0

∂θ

)2

+ �m2R2c1 = 0, (12)

c0B

(
∂S0

∂tk

)(
∂S0

∂θ

)
− Bc2

(
∂S0

∂tk

)2

− �2c1

(
∂S0

∂r

)(
∂S0

∂θ

)
+ �2c2

(
∂S0

∂r

)2

+ �m2R2c2 = 0.

It is very difficult to find the action S0 directly from Eqs. (12)
because it is a functions of tk, r and θ . So we assume the
solution as

S0 = −ωtk + W(r) + K(θ) + ζ, (13)

where ω is the energy of the vector particles and ζ is a com-
plex constant. Putting Eq. (13) into Eq. (12), we obtain the
matrix equation

Λ(c0, c1, c2)
T = 0, (14)

where Λ is a 3 × 3 matrix and superscript T means the tran-
sition to the transposed vector. Then the components of Λ

matrix are given below

Λ00 = K2
θ + �W 2

r + m2R2, Λ01 = �ωWr,

Λ02 = Kθω,Λ10 = −ωBWr, Λ12 = −�KθWr,

Λ11 = −ω2B + �K2
θ + �m2R2,

Λ20 = −BωKθ, Λ21 = −�2WrKθ ,

Λ22 = −Bω2 + �2W 2
r + �R2m2,

(15)
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where Wr = ∂W
∂r

and Kθ = ∂K
∂θ

. Equation (14) is a homoge-
neous system linear equations and admits non-trivial solu-
tion if and only if detΛ(c0, c1, c2) = 0. Then we get

(
�m2R2 − Bω2 + �2W 2

r + �K2
θ

)

× [(
�m2R2 − Bω2)(K2

θ + m2R2 + �W 2
r

)

+ BK2
θ ω2 + �Bω2W 2

r

] = 0. (16)

And integrating, we obtain

W± =
∫

√
L − BK2

θ ω2

�2m2R2
dr, (17)

where W+ stands for outgoing spin-1 particle (moving away
from the black hole) and W− corresponds to the ingo-
ing (moving towards the black hole) spin-1 particle. Using
Eq. (17) in Eq. (13), we get

S0 = −ωtk + K(θ) + ζ +
∫

√
L − BK2

θ ω2

�2m2R2
dr, (18)

where L = (Bω2 − �m2R2)(K2
θ + m2R2). From Eq. (18),

we see that there is a pole at the event horizon r = r+ and
imaginary part of the action can be derived from the pole.
Using Feyman prescription and completing the integral, the
imaginary part of the action can be derived as

ImS0 = πω(r2+ + a2)

r+ − r−
. (19)

Applying WKB approximation, the tunneling probability
will be

Γ ∼ e−2 ImS0 = e
−2πω(r2++a2)

r+−r− = e−βω, (20)

where T = 1
β

= 1
2π

· r+−r−
(r2++a2)

, which is equal to twice the

Hawking temperature for a Kerr-Newman black hole given
in Eq. (3).

3 Eddington coordinate

For describing tunneling probability near the event horizon,
we will consider a well behaved coordinate system named
as Eddington coordinate. Let

dtk = du −
√

B

�
dr, (21)

the line element (4) can be expressed as

ds2 = −R2�

B
du2 + 2R2

√
B

dudr + R2dθ2, (22)

then the contravariant components are given by

g01 = g10 =
√

B

R2
, g11 = �

R2
, g22 = 1

R2
. (23)

For the vector particle, the wave function Ψ satisfies the
Proca equation as

1√−g
∂a

(√−gΨ ab
) + m2

�2
Ψ b = 0. (24)

The components of wave function are given by

Ψ 0 =
√

B

R2
Ψ1, Ψ 1 =

√
B

R2
Ψ0 + �

R2
Ψ1,

Ψ 2 = 1

R2
Ψ2, Ψ 01 = B

R2R2
= Ψ01

Ψ 02 =
√

B

R2R2
Ψ12,

Ψ 12 =
√

B

R2R2
Ψ02 + �

R2R2
Ψ12.

(25)

Then Proca equation can be written as

B

(
∂2Ψ0

∂r2
− ∂2Ψ1

∂r∂u

)
+ B

(
∂2Ψ2

∂θ∂r
− ∂2Ψ1

∂θ2

)

+ Ψ10

[
B

∂

∂r
log

√−g + R2R2 ∂

∂r

(
B

R2R2

)]

+ Ψ12

[
R2R2 ∂

∂θ

( √
B

R2R2

)
+ √

B
∂

∂θ
log

√−g

]

+ m2
√

BR2Ψ1

�2
= 0,

B

(
∂2Ψ1

∂u2
− ∂2Ψ0

∂u∂r

)
+ √

B

(
∂2Ψ2

∂θ∂u
− ∂2Ψ0

∂θ2

)

+ �

(
∂2Ψ2

∂θ∂r
− ∂2Ψ1

∂θ2

)
+ Ψ10R

2R2 ∂

∂u

(
B

R2R2

)

+ Ψ02

[√
B

∂

∂θ
log

√−g + R2R2 ∂

∂θ

(
B

R2R2

)]
(26)

+ Ψ12

[
�

∂

∂θ
(log

√−g) + R2R2 ∂

∂θ

(
�

R2R2

)]

+ m2R2
√

BΨ0

�2
+ �m2R2Ψ1

�2
= 0,

√
B

(
∂2Ψ1

∂u∂θ
− ∂2Ψ2

∂u∂r

)
+ �

(
∂2Ψ1

∂r∂θ
− ∂2Ψ2

∂r2

)

+ √
B

(
∂2Ψ2

∂r∂u
− ∂2Ψ0

∂r∂θ

)
+ Ψ21

[
�

∂

∂r
(log

√−g)
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+ R2R2 ∂

∂r

(
�

R2R2

)]
+ Ψ02

[√
B

∂

∂r
(log

√−g)

+ R2R2 ∂

∂r

(
B

R2R2

)]
+ m2R2Ψ2

�2
= 0.

Let us define vector function as

Ψa = (c0, c1, c2) exp

[
i

�
S(u, r, θ)

]
. (27)

Using WKB approximation, the action can be written as

S(u, r, θ) = S0(u, r, θ) + �S1(u, r, θ)

+ �
2S2(u, r, θ) . . . . (28)

Using Eqs. (27) and (28) in Eq. (26), the leading order terms
of o(�) become

Bc0

(
∂S0

∂r

)2

− Bc1

(
∂S0

∂r

)(
∂S0

∂u

)

+ √
Bc2

(
∂S0

∂θ

)(
∂S0

∂r

)
− √

Bc1

(
∂S0

∂θ

)2

− m2
√

Bc1R
2 = 0,

Bc1

(
∂S0

∂u

)2

− Bc0

(
∂S0

∂u

)(
∂S0

∂r

)

+ �c2

(
∂S0

∂θ

)(
∂S0

∂r

)
− �c1

(
∂S0

∂θ

)2

+ √
Bc2

(
∂S0

∂θ

)(
∂S0

∂u

)
− c0

√
B

(
∂S0

∂θ

)2

(29)

− m2
√

BR2c0 − m2�R2c1 = 0,

√
Bc1

(
∂S0

∂u

)(
∂S0

∂θ

)
− √

Bc2

(
∂S0

∂u

)(
∂S0

∂r

)

+ �c1

(
∂S0

∂r

)(
∂S0

∂θ

)
− �c2

(
∂S0

∂r

)2

+ √
Bc2

(
∂S0

∂r

)(
∂S0

∂u

)
− √

Bc0

(
∂S0

∂r

)(
∂S0

∂θ

)

− m2R2c2 = 0.

Due to symmetry of the space-time, we assume a solution of
the form

S0 = −ωu + W̃ (r) + K̃(θ) + Ξ, (30)

where Ξ is an complex constant. Using Eq. (30) into
Eqs. (29), we obtain the matrix equation as

Λ̃(c0, c1, c2)
T = 0, (31)

where Λ̃ is a 3 × 3 matrix. Its components are given below

Λ̃00 = BW̃ 2
r , Λ̃20 = Λ̃02 = √

BK̃θW̃r ,

Λ̃01 = Λ̃10 = BW̃rω − √
BK̃2

θ − m2
√

BR2,

Λ̃11 = Bω2 − �K̃2
θ − m2�R2,

Λ̃12 = Λ̃21 = �K̃θW̃r − √
BK̃θω,

Λ̃22 = −�W̃ 2
r − m2R2,

(32)

where W̃r = ∂W̃
∂r

and K̃θ = ∂K̃
∂θ

. Equation (31) is a homo-
geneous system of linear equations and there exists non-
trivial solution only when det Λ̃ = 0. Integrating the result-
ing equation and using WKB approximation we obtain tun-
neling probability as

Γ ∼ e−2 ImS0 = e
−4πω(r2++a2)

r+−r− = e−βω, (33)

where T = 1
β

= 1
4π

· r+−r−
(r2++a2)

, which is exactly equal to the

Hawking radiation temperature given in Eq. (3).

4 Painleve coordinate

Next we consider Painleve coordinate system. For this we
consider the following coordinate transformation

dtk = dt + F(r, θ)dr + G(r, θ)dθ, (34)

where F(r, θ) and G(r, θ) are the two functions to be deter-
mined and they must satisfy the integrability condition

∂F (r, θ)

∂θ
= ∂G(r, θ)

∂r
. (35)

We know that the constant-time slices are flat Euclidean
space, so we get the condition

g22 + F 2(r, θ) = 1, (36)

we obtain another form of the Kerr-Newman metric as

ds2 = g00dt2 + 2
√

g00(1 − g11)dtdr + dr2

+ [
g00G

2(r, θ) + g22
]
dθ2 + 2g00G(r, θ)dtdθ

+ 2
√

g00(1 − g11)G(r, θ)drdθ, (37)

so the contravariant components of Eq. (37) are

g00 = R2G2 − B

R2R2
, g11 = �

R2
, g22 = 1

R2

g12 = g21 = 0, g02 = g20 = − G

R2
,

g01 = g10 =
√

BR2(R2 − �)

R2R2
.

(38)
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We consider a vector particle moving in this space-time us-
ing the Proca equation

1√−g
∂a

(√−gΨ ab
) + m2

�2
Ψ b = 0. (39)

The components of the wave function are given by

Ψ 0 = R2G2 − B

R2R2
Ψ0 +

√
BR2(R2 − �)

R2R2
Ψ1 − G

R2
Ψ2,

Ψ 1 =
√

BR2(R2 − �)

R2R2
Ψ0 + �

R2
Ψ1,

Ψ2 = − G

R2
Ψ0 + 1

R2
Ψ1,

Ψ 01 = B(R2 − �)

R2R2R2
Ψ10 − G

√
BR2(R2 − �)

R2R2R2
Ψ20

+ R2G2 − B

R2R2

�

R2
Ψ01 − G�

R2R2
Ψ21, (40)

Ψ 02 = − G

R2R2

√
BR2

(
R2 − �

)
Ψ10

+ 1

R2R2R2

(
R2G2 − B

)
Ψ02 + G2

R2R2
Ψ20

+ 1

R2R2R2

√
BR2

(
R2 − �

)
Ψ12,

Ψ 12 = − G�

R2R2
Ψ10 +

√
BR2(R2 − �)

R2R2R2
Ψ02 + �

R2R2
Ψ12.

Then the Proca equation can be expressed as

∂

∂r
Ψ 01 + ∂

∂θ
Ψ 02 + Ψ 01 ∂

∂r
(log

√−g)

+ Ψ 02 ∂

∂θ
(log

√−g) + m2Ψ 0

�2
= 0,

∂

∂t
Ψ 10 + ∂

∂θ
Ψ 12 + Ψ 12 ∂

∂θ
(log

√−g) + m2Ψ 1

�2
= 0,

∂

∂t
Ψ 20 + ∂

∂r
Ψ 12 + Ψ 21 ∂

∂r
(log

√−g) + m2Ψ 2

�2
= 0.

(41)

Assuming the vector function by

Ψa = (c0, c1, c2) exp

[
i

�
S(t, r, θ)

]
(42)

and utilizing WKB approximation, the action may be written
as

S(t, r, θ) = S0(t, r, θ) + �S1(t, r, θ)

+ �
2S2(t, r, θ) . . . . (43)

For the separation of variables in Eqs. (41), we assume

S0 = −ωt + H(r) + Θ(θ) + Υ, (44)

where Υ is a complex constant. Substituting Eqs. (42)–(44)
into Eqs. (41), we derive the matrix equation

Λ∗(c0, c1, c2)
T = 0, (45)

where the matrix components are given by

Λ∗
00 = −B(R2 − �)

R2R2R2
H 2

r + �(R2G2 − B)

R2R2R2
H 2

r

+ HrΘθG
√

BR2(R2 − �)

R2R2R2

− G

R2R2

√
BR2

(
R2 − �

)
HrΘθ − G2Θ2

θ

R2R2

+ G

R2R2

√
BR2

(
R2 − �

)
HrΘθ

+ m2

R2R2

(
R2G2 − B

) + (R2G2 − B)

R2R2R2
Θ2

θ ,

Λ∗
01 = −ωB(R2 − �)

R2R2R2
Hr + G�ΘθHr

R2R2

+ �ω

R2R2R2

(
R2G2 − B

)
Hr

+
√

BR2(R2 − �)

R2R2

(
GωΘθ + m2)

+
√

BR2(R2 − �)

R2R2R2
Θ2

θ ,

Λ∗
02 = −G�H 2

r

R2R2
− G2Θθ

R2R2
− m2G

R2

+ ωΘθ(R
2G2 − B)

R2R2R2

−
√

BR2(R2 − �)

R2R2R2
ΘθHr,

Λ∗
10 = �(R2G2 − B)

R2R2R2
ωHr + G�ΘθHr

R2R2

+ B(R2 + �)

R2R2R2
ΘθHr (46)

+ GωΘθ

R2R2R2

√
BR2

(
R2 − �

)

+
√

BR2(R2 − �)

R2R2R2

(
R2m2 − Θ2

θ

)
,

Λ∗
11 = �(R2G2 − B)

R2R2R2
ω2 − B(R2 − �)

R2R2R2
ω2

+ 2�GωΘθ

R2R2
+ �Θ2

θ

R2R2
+ m2�

R2
,
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Λ∗
12 =

√
BR2(R2 − �)

R2R2R2

(
Gω2 + ωΘθ

)

− �GωHr

R2R2
− �ΘθHr

R2R2
,

Λ∗
20 = Hr

√
BR2(R2 − �)

R2R2R2

(
GωR2 − Θθ

)

− G

R2R2

(
ωΘθ + �H 2

r

)

+ (R2G2 − B)ωΘθ

R2R2R2
+ m2G

R2
,

Λ∗
21 =

√
BR2(R2 − �)

R2R2R2

(
Gω2R2 + ωΘθ

)

+ �Hr

R2R2
(Θθ − Gω),

Λ∗
22 = 2ωHr

√
BR2(R2 − �)

R2R2R2
+ m2

R2

− (Gω2 + �H 2
r )

R2R2
− (R2G2 − B)ω2

R2R2R2
,

where Hr = ∂H
∂r

and Θθ = ∂Θ
∂θ

. The homogeneous Eq. (45)
has non-trivial solutions for detΛ∗ = 0 using Feyman pre-
scription and the WKB approximation, the tunneling proba-
bility can be obtained as

Γ ∼ e−2 ImS0 = e
−4πω(r2++a2)

r+−r− = e−βω, (47)

where T = 1
β

= 1
4π

· r+−r−
(r2++a2)

, which is equal to the Hawking

temperature given in Eq. (3). From these results given in
Eqs. (20), (33) and (44), we observe that well behaved co-
ordinate system is required to study Hawking radiation tem-
perature using the Proca equation.

5 Discussion and conclusion

By applying the WKB approximation and Hamilton-Jacobi
ansatz to the Proca equation the tunneling of vector bosons
(e.g. W±, Zo) across the event horizon of Kerr-Newman
black hole and the resulting Hawking radiation are studied.
The tunneling probability of the vector particles is deter-
mined using the imaginary part of the action of the emitted
particles. The energy spectrum of the emitted vector par-
ticles is observed to be thermal. However, as in the case
of scalar particles there exists coordinate problem in vec-
tor particles’ Hawking radiation from Kerr-Newman black
hole. Three coordinate systems, namely naive, Eddington
and Painleve are used to study the tunneling of the vector
particles. A direct calculation gives twice the correct value
of the Hawking temperature. However, if Painleve coordi-
nate system and Eddington coordinate system are used, the
correct value of Hawking temperature can be obtained. It is

due to the fact that the well behaved coordinate system has
some special features. For example, in the well behaved co-
ordinate system, the constant time slices are flat Euclidean
space and there exist time like Killing vector fields in the Ed-
dington and Painleve coordinate systems. Also for Edding-
ton and Painleve coordinate systems the metric components
are analytic, hence non-diverging at the event horizon.

The discrepancy between well behaved coordinates and
naive coordinate can be seen in a curve manifold, the non-
locally integrable function 1/r does not lead to a covariant
distribution of the form 1/r + i0. It is necessary to make use
of invariant distance or change the line element into some
well behaved coordinate system. The metric components in
such coordinate systems are regular at the black hole event
horizon surface and it has time like Killing vector, which are
the enough conditions to be utilized in the Hawking radia-
tion calculation via Proca equation. Similar conclusions are
also seen in (Wang et al. 2010; Ibungochouba et al. 2013;
Ren and Zhao 2006, 2007).
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