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Abstract In this paper we explore f (T ,T ), where T and
T denote the torsion scalar and the trace of the energy-
momentum tensor respectively. We impose the covariant
conservation to the energy-momentum tensor and obtain a
cosmological f (T ,T ) respectively. We impose the covari-
ant conservation to the energy-momentum tensor and obtain
a cosmological f (T ,T ) model. Then, we study the stability
of the obtained model for power-law and de Sitter solutions
and our result show that the model can be stable for some
values of the input parameters, for both power-law and de
Sitter solutions.

Keywords Phase space · Dark energy · f (T ,T ) gravity

1 Introduction

Nowadays the current acceleration of the expansion of the
universe is widely confirmed by several independent cos-
mological observational data as Cosmic Microwave Back-
ground Radiation (CMBR) (Spergel et al. 2007) and the
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Sloan Digital Sky Survey (SDSS) (Adelman-McCarthy et al.
2008). This stage of the universe is explained in the litera-
ture through two approaches. The first assumes that the uni-
verses if filled by an exotic ith negative pressure, named
dark energy known as the responsible of this acceleration
of the universe. The second approach, instead of assuming
an exotic component, consists to modify the GR by chang-
ing the usual Einstein-Hilbert gravitational term, and vari-
ous theories have been developed in this way and based on
the Levi-Civita’s connections, as (f (R), f (R,T ) (Bamba
et al. 2012; Houndjo and Piattella 2012; Momeni et al.
2011), f (G)) (Nojiri and Odintsov 2005) where R denotes
the curvature scalar, T the trace of the energy-momentum
tensor and G the Gauss-Bonnet invariant defined by G =
R2 − 4RμνR

μν + Rμνλσ Rμνλσ . There exists another type
theory based the Weitzenbock’s connections, equivalent to
GR, called Tele-parallel Theory (T T ). This theory has
been introduced by Ferraro et al. (Amorós et al. 2013;
Bamba et al. 2013; Bengochea and Ferraro 2009) where they
explained the UV modifications to the T T and also the infla-
tion. After this, Ferraro and Bengochea (Amorós et al. 2013;
Bamba et al. 2013; Bengochea and Ferraro 2009) have con-
sider the same model to describe the dark energy. other
works can be found in (Linder 2010; Jamil et al. 2012; Setare
et al. 2012; Hamani Daouda et al. 2011; Salako et al. 2013;
Rodrigues et al. 2014). In the same, modified versions of
this theory have been developed and the one to which we
are interested in this paper the f (T ,T ), T and T being
the torsion scalar and the trace of the energy-momentum
tensor, respectively. Specifically, this theory can be view
as an homologue to f (,T ). Beside several works devel-
oped within f (T ,T ) (Harko et al. 2014; Salako et al. 2015;
Nassur et al. 2015), we can note the one undertaken by Al-
varenga and collaborators (Alvarenga et al. 2013), where
they search for the model for which the covariant conser-
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vation of the energy-momentum tensor is realized. In that
paper they investigate the dynamics of scalar perturbations
about the obtained model and focused they attention to the
sub-Hubble modes and show that through the quasi-static
approximation the result are very different from the ones de-
rived in the frame of concordance ΛCDM, constraining the
validity of this kind of model.

In this paper we are interested to the coincidence cos-
mic problem and search for the f (T ,T ) model according to
what the tress tensor is conserved. In order to obtain a con-
sistent model, we explore the dynamics and stability about
the obtained model. To reach our goal, we assume that it
possible to have anti-gravity interactions between the dark
energy and the matter because of their unknown nature. We
also introduce arbitrarily the terms of interaction between
these components because we have not sure of the form of
interaction between them. We realize a system of three dy-
namic equations which take into account the dark energy,
the dark matter and the ordinary matter. Consequently, we
reconstruct four models and we show that the dynamic equa-
tions have two possible attractive solutions namely the phase
dominated by the dark matter and that dominated by the dark
energy. During this investigation, we have realized that some
dynamic systems are unstable; meaning that a model pro-
vides that everything disappear in the Universe and leads to
an Universe more and more poor in energy. Other models
show that the Universe should be filled by dark energy. An-
other important feature emerging from this work is the sta-
bility study of ΛCDM model under consideration by consid-
ering two interesting cosmological solutions i.e. the power-
law and the de Sitter solutions. We have analyzed the con-
strains on the input parameters and as results, we have found
that the stability is always realized.

This paper is organized as follows: In Sect. 2 we have
reconstructed a model by vanishing the covariant derived
of energy-momentum tensor. The stability of the obtained
critical points of the dynamic systems has been explored in
Sect. 3 and the perturbation functions have been determined
within the model under consideration in Sect. 5. Section 4
is devoted to cosmological dynamic study of the considered
model. Finally, we have ended our investigation by a con-
clusion in Sect. 7.

2 Generality on f (T,T ) gravity within FLRW
Cosmology

The modified theories of Tele-Parallel gravity are those for
which the scalar torsion of Tele-Parallel action is substituted
by an arbitrarily function of this latter. As it is done in Tele-
Parallel, the modified versions of this theory are also de-
scribed by the orthonormal tetrads which components are

defined on the tangent space of each point of the manifold.
The line element is written as

ds2 = gμνdxμdxν = ηij θ
iθj , (1)

with the following definitions

dμ = e
μ

i θ i; θi = ei
μdxμ. (2)

Note that ηij = diag(1,−1,−1,−1) is the Minkowskian
metric and the {ei

μ} are the components of the tetrad which
satisfy the following identity:

e
μ

i ei
ν = δμ

ν , e i
μ e

μ
j = δi

j . (3)

In General Relativity, one use the following Levi-Civita’s
connection which preserves the curvature whereas the tor-
sion vanishes

◦
Γ ρ

μν = 1

2
gρσ (∂νgσμ + ∂μgσν − ∂σ gμν). (4)

But in the Tele-Parallel theory and its modified version, one
keeps the scalar torsion by using Weizenbock’s connection
defined as:

Γ λ
μν = e λ

i ∂μei
ν = −ei

μ∂νe
λ

i . (5)

From this connection, one obtains the geometric objects.
The first is the torsion defined by

T λ
μν = Γ λ

μν − Γ λ
νμ, (6)

from which we define the contorsion as

Kλ
μν ≡ ˜Γ λ

μν − ◦
Γ λ

μν = 1

2

(

Tμ
λ
ν + Tν

λ
μ − T λ

μν

)

, (7)

where the expression
◦
Γ λ

μν designs the above defined con-
nection. Then we can write

K
μν

λ = −1

2

(

T
μν
λ − T

νμ
λ + T

νμ
λ

)

. (8)

The two previous geometric objects (the torsion and the con-
torsion) are used to define another tensor by

S
μν

λ = 1

2

(

K
μν

λ + δ
μ
λ T αν

α − δν
λT αμ

α

)

(9)

From the fact that we are talking about the modified versions
of Tele-Parallel gravity, one use a general algebraic function
of scalar torsion instead the scalar torsion only as it is done
in the initial theory. So, the new action is written as

S =
∫

e

[

T + f (T ,T )

2κ2
+Lm

]

d4x (10)

where κ2 = 8πG is the usual constant coupling to Newton
gravitational constant. Varying the action with respect to the
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tetrad, one obtains the equations of motion as (Harko et al.
2014; Salako et al. 2015; Nassur et al. 2015):
[

∂ξ

(

eeρ
a S σξ

ρ

) − eeλ
aSρξσ Tρξλ

]

(1 + fT )

+ eeρ
a (∂ξT )S σξ

ρ fT T + 1

4
eeσ

a (T )

= −1

4
eeσ

a

(

f (T )
) − eeρ

a (∂ξT )S σξ
ρ fT T

+ fT

(

eΘσ
a + eeσ

a p

2

)

+ κ2

2
eΘσ

a, (11)

with fT = ∂f/∂T , fT = ∂f/∂T , fT T = ∂2f/∂T ∂T ,
fT T = ∂2f/∂T 2 et Θσ

a is the energy-momentum tensor of
matter field. By using some transformations, we can estab-
lish the following relations:

ea
νe−1∂ξ

(

eeρ
a S σξ

ρ

) − Sρξσ Tρξν = −∇ξ S σ
νξ − Sξρσ Kρξν,

(12)

Gμν − 1

2
gμν T = −∇ρSνρμ − Sσρ

μKρσν. (13)

By the end, from the combination of Eqs. (12) and (13), the
field equations (11) can be written as:

Aμν(1 + fT ) + 1

4
gμν T = Beff

μν (14)

where

Aμν = gσμea
ν

[

e−1∂ξ

(

eeρ
a S σξ

ρ

) − eλ
aSρξσ Tρξλ

]

= −∇σ Sνσμ − Sρλ
μKλρν = Gμν − 1

2
gμνT , (15)

Beff
μν = Sρ

μν fT T ∂ρT − Sρ
μν fT T ∂ρT − 1

4
gμνf

+ fT

(

Θμν + gμν p

2

)

+ κ2

2
Θμν .

So the relation (14) can take the following form:

(1 + fT )Gμν = T eff
μν (16)

where

T eff
μν = Sρ

μν fT T ∂ρT − Sρ
μν fT T ∂ρT − 1

4
gμν(T + f )

+ T gμν fT

2
+ fT

(

Θμν + gμν p

2

)

+ κ2

2
Θμν. (17)

3 Reconstructing of model

In this section, we are interested to T +QT N models which
can reproduce the different features of ΛCDM.

In order to point out the expression of the covariant
energy-momentum tensor from which one hopes extract a
algebraic function, we take the covariant derivative of (16)
which leads to:

∇μ
[

(1 + fT )Gμν

]

= ∇μT eff
μν

= ∇μ

[

T gμν fT

2
+ Sρ

μν fT T ∂ρT − Sρ
μν fT T ∂ρT

− 1

4
gμν(T + f ) + fT

(

Θμν + gμν p

2

)

+ κ2

2
Θμν

]

.

(18)

These previous equations lead to the following expression

∇μΘμν

= −2

(fT + κ2)

{

∇μ

[

T gμν fT

2
+ Sρ

μνfT T ∂ρT

− Sρ
μν fT T ∂ρT − 1

4
gμν(T + f )

]

+
(

Θμν + gμν p

2

)

∇μfT + fT
2

∇μ(gμν p)

− Gμν∇μ(1 + fT )

}

. (19)

The f (T ,T ) = 0 + f (T ) gravity field equations namely
(f (T ) = 0 or fT T = fT T = fT = 0) become

∇μΘμ
ν = 1

2(fT + κ2)

{

1

4
δμ
ν ∇μf (T )

−
(

Θ
μ
ν + δ

μ
ν p

2

)

∇μfT − fT
2

δμ
ν ∇μ p

}

, (20)

where we have used the barotropic equation of state p = ωρ.
By fixing ν = 0, one gets:

ρ̇ + 3Hρ(1 + ω)

= −ρ̇

2(fT + κ2)

{

1

4
(1 − 3ω) fT

+
(

1 + ω

2

)

ρ (1 − 3ω)fT T + fT
2

ω

}

(21)

To ensure cancellation of the divergence of the energy-
momentum tensor, we vanish the second member of Eq. (21),
and obtain the following differential equation

1

2
f (T ) + fT T (1 − ω)

(1 + ω)
= 0, (22)

whose general solution reads

f (T ) = Q T
(1+3ω)
2(1+ω) , (23)
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f (T ,T ) = T − 2Λ + Q T
(1+3ω)
2(1+ω) . (24)

We report here that Q is the integration constant. At the
moment, we are pointing out the exact expression of the
constant Q by using the wonderful conditions mentioned
in (Linder 2010; Jamil et al. 2012; Setare et al. 2012;
Hamani Daouda et al. 2011; Salako et al. 2013; Rodrigues
et al. 2014) which stipulates that the algebraic function
f (T ) = T N must satisfy the following initial conditions

(f )t=ti = Ti,

(

df

dt

)

t=ti

=
(

dT

dt

)

t=ti

, (25)

with ti the early time and Ti the initial valor of the scalar
torsion associated. By making use of this initial condition
(25) and (24), one expresses the constant Q as

Q = 2Λ T
− (1+3ω)

2(1+ω)

0 , (26)

and the associated algebraic function is

f (T ,T ) = T + 2Λ

[( T
T0

)
(1+3ω)
2(1+ω) − 1

]

. (27)

We emphasize here the constant Q is positive because of the
positivity of Λ parameter. Moreover, if it vanishes (Q = 0),
we come back to the TT equivalent of RG.

4 Dynamic study of the systems

We are working in this section whit the cosmological flat
metric of FLRW described by

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2), (28)

from which we obtain the diagonal matrix for the tetrads as

{

ea
μ

} = diag[1, a, a, a]. (29)

The determinant of the matrix (29) is e = a3 and the non
zero components of torsion and contorsion are given by

T 1
01 = T 2

02 = T 3
03 = ȧ

a
, (30)

K01
1 = K02

2 = K03
3 = ȧ

a
. (31)

The calculus of components of S
μν

α also gives:

S 11
0 = S 22

0 = S 33
0 = ȧ

a
. (32)

Therefore, the scalar torsion is expressed as

T = −6H 2, (33)

where H = ȧ/a denotes the Hubble parameter. We report

also the expression of the trace of energy-momentum ten-

sor related to matter, Θ = T = (1 − 3ω)ρ. We assume now

that the ordinary component of Universe is a perfect fluid

with the equation of state p = ωρ and c2
s = ṗ/ρ̇ so that the

energy-momentum is given by

Θμν = diag(1,−ω,−ω,−ω)ρ. (34)

To point out an application of this theory in Cosmology,

we insert as needful the flat metric of FLRW (28) in the

field equations (11); and obtain consequently the Friedmann

modified equations below

H 2 = 8πG

3
ρ − 1

6

(

f + 12H 2fT

) + fT

(

ρ + p

3

)

,

Ḣ = − 4πG(1 + fT /8πG)(ρ + p)

1 + fT − 12H 2fT T + H(dρ/dH)(1 − 3c2
s )fT T

,

(35)

where ρ = ρm + ρ̃ + ρr , while ρm, ρ̃ and ρr represent the

energy densities of matter, dark energy and the radiation re-

spectively. We also suppose that these three components of

the above defined fluid are in interactions. The continuity

equations taking into account the different interactions are

written as

ρ̇m + 3H(ρm + pm) = E1,

˙̃ρ + 3H(ρ̃ + p̃) = E2, (36)

ρ̇r + 3H(ρr + pr) = E3,

where Ei , i = 1,2,3 are the term of interaction between the

two fluids. Now, we can define the cosmological density pa-

rameters

y = κ2ρm

3H 2
, x = κ2ρ̃

3H 2
, z = κ2ρr

3H 2
(37)

and

Ḣ

H 2
= − 3/2(1 + fT /8πG)(x + y + z + x ω̃ + ωr z)

1 + fT − 12H 2fT T + H(dρ/dH)(1 − 3c2
s )fT T

.

(38)
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By using the e-folding parameter, Z = lna, a being the scale
factor, the continuity equations (36) become

dx

dZ
= 3x

(

(1 + fT /8πG)(x + y + z + x ω̃ + ωr z)

1 + fT − 12H 2fT T + H(dρ/dH)(1 − 3c2
s )fT T

)

− 3x(1 + ω̃) + κ2 E1

3H 3

dy

dZ
= 3y

(

(1 + fT /8πG)(x + y + z + x ω̃ + ωr z)

1 + fT − 12H 2fT T + H(dρ/dH)(1 − 3c2
s )fT T

)

− 3y + κ2 E2

3H 3

dz

dZ
= 3z

(

(1 + fT /8πG)(x + y + z + x ω̃ + ωr z)

1 + fT − 12H 2fT T + H(dρ/dH)(1 − 3c2
s )fT T

)

− 3z(1 + ωr) + κ2 E3

3H 3
,

(39)

where we have used unit of κ2 = 1 and then Z ≡ N ≡ lna

is used as e-folding parameter. The interacting parameters
Ei , i = 1,2,3 are generally functions of the energy densi-
ties and the Hubble parameter i.e. Ei = Ei(H,ρi). We start
the analysis of the system of equations in (39) by vanishing
the first member of each of these equations in order to ex-
tract critical points. Therefore, one perturbs these equations
in first order around the critical points and deduce the stabil-
ity of the system. In our calculation procedure, we force the
following parameters ωm = 0, ωr = 1

3 and ω̃ to be non zero
but negative. We are interested to the stable critical points
i.e. the points for which the eigenvalues of Jacobian matrix
associated to the system of equations are negative. Such of
points are useful because they represent the attractive solu-
tions of dynamic system.

5 Analysis of stability in phase space

In this section, we will erect four models by choosing dif-
ferent forms of coupling parameters Ei and we will analysis
the stability of the corresponding dynamic system around
the critical points and plot the evolutionary phase diagram
associated. To reach this target, we must search for the crit-
ical points of (39) and make the system linear around the
above points.

5.1 Interacting model I

We consider the models with the following interaction terms

E1 = −6bHρ̃, E2 = E3 = 3bHρ̃, (40)

where b is a coupling parameter assumed to be positive real
in the input parameters. Then, Eq. (40) shows that matter

Fig. 1 Model I: variation of x, y, z as a function of the N = ln(a).
The initial conditions chosen are x(0) = 0.7, y(0) = 0.3, z(0) = 0.01,
ω̃ = −1.2, ωr = 1

3 and b = 0.5

and the radiation have energy densities which increase with
the time whereas the energy density of dark energy is going
to disappears completely. So, the dark energy declines for
matter and radiation.

Using (27) and (40), the system (39) takes the form

dx

dN
= −3x(1 + ω̃) + 3x(x + y + z + ω̃x + ωrz) − 6bx,

dy

dN
= −3y + 3y(x + y + z + ω̃x + ωrz) + 3bx, (41)

dz

dN
= −3z(1 + ωr) + 3z(x + y + z + ω̃x + ωrz) + 3bx.

The critical points (Table 1) are found for this model by
vanishing the first member of (41) and there are the follow-
ing four points recorded in the below board.

The point P11 is stable when one the following conditions
is satisfied

ω̃ < −3, b < 1/18, (42)

ω̃ ≥ −3, ω̃ < −10/9, b < 1/18, (43)

ω̃ ≥ −10

9
, ω̃ < 0, b < −1

2
(1 + ω̃). (44)

P12 is an unstable critical point because even if λ1 < 0
we have λ2 < 0 and b > 1. P13 is stable if b > 1, ω̃ > −3b.
In parallel P14 is not stable because λ1 > 0.

It follows that the matter density dominates for the model
I whose parameters stay for the conditions −1 < wd <

− 1
3 ,wu > 0, b = 0.5, wtot > 0. This conclusion is confirmed

by Fig. 1 where the matter density dominates whereas the ra-
diation density is above the dark energy density. Figure 2
shows the phase diagram of the interaction between dark
energy and the both matter and radiation. According to the
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Table 1 Critical points and the
eigenvalues for the first model Point (xc, yc, zc) λ1 λ2 λ2

P11 (0,0,0) 3(b − 1) −3(b − 1) −3(1 + 2b + ω̃)

P12 (0, (1 − b),0) −1 3(1 − b) −3(ω̃ + 3b)

P13 (0,0, 3
4 ( 4

3 − b)) 1 4 − 3b 1 − 3ω̃ − 9b

P14 (
(1+ω̃+2b)

1+ω̃
,0,0) 3(1 + ω̃ + 2b) 3(ω̃ + 3b) −1 + 3(ω̃ + 3b)

Fig. 2 Model I: Phase space for ω̃ = (−1,−1.2,−1.5), b = 0.5, ωr = 1
3

model I, the dark energy density behaves like quintessence
while matter and radiation densities fall with expansion.

5.2 Interacting model II

We study another model with the choice of the interaction
terms under the following form

E1 = −3bHρ̃, E2 = 3bH(ρ̃ − ρm),

E3 = 3bHρm.
(45)

This model shows indeed the situation in which the dark
energy looses his density in favor of the matter whereas the
radiation density increases because of its interaction with the
matter:

dx

dN
= 3x(x + y + z + ω̃x + ωrz) − 3bx − 3x(1 + ω̃),

dy

dN
= 3y(x + y + z + ω̃x + ωrz) + 3b(x − y) − 3y, (46)

dz

dN
= 3z(x + y + z + ω̃x + ωrz) + 3by − 3z(1 + ωr).
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Table 2 Critical points and the
eigenvalues for the model II Points λ1 λ2 λ3 (xc, yc, zc)

P21 3(b − 1) −3(b − 1) −3(1 + 2b + ω̃) (0,0,0)

P22 −1 3(1 − b) −3(ω̃ + 3b) (0,0,1)

P23 1 4 − 3b 1 − 3ω̃ − 9b (0, (1 − 3b),3b)

P24 3(1 + ω̃ + 2b) 3(ω̃ + 3b) −1 + 3(ω̃ + 3b)
(− 3(2+ω̃)(b−ω̃−1)(b−ω̃−7/3)

3 ω̃3+(16−3b)ω̃2+(−6b+27)wd+14+b2+b
,

− b3(b−ω̃−7/3)(b−ω̃−1)

3 ω̃3+(16−3b)ω̃2+(−6b+27)ω̃+14+b2+b
,

3(b−ω̃−1)b2

14+16 ω̃2−6 ω̃b+b2−3 ω̃2b+3wd
3+27 ω̃+b

)

Table 3 Critical points and the
eigenvalues for the model III Points λ1 λ2 λ3 (xc, yc, zc)

P31 −3 −4 −3(1 + ω̃) (0,0,0)

P32 3 −1 −3ω̃ (0,1,0)

P33 3ω̃ 3(1 + ω̃) +9b − 1 + 3 ω̃ (0,0,1)

P34 4 1 − 9b −9b + 1 − 3ω̃ (1,0,0)

P35 – – –

P35 – – –
( (ω̃+6b− 1

3 )

b(+6b− 1
3 +2 ω̃)

,
−3b+18b2+ω̃2−2 ω̃ 1

3 +9 ω̃b+ 1
9

3b(6b− 1
3 +2 ω̃)

,− ω̃(+3b− 1
3 +ω̃)

3b(6b− 1
3 +2 ω̃)

)

Fig. 3 Model I: variation of x, y, z as a function of the N = ln(a).
The initial conditions chosen are x(0) = 0.7, y(0) = 0.3, z(0) = 0.01,
ω̃ = −1.2, ωr = 1

3 and b = 0.5

We have free critical points (Table 2). P21, P24 are con-
ditionally stable if b > 1 + ω̃ (for P21) and ω̃ > −2 and then
b < 1 + ω̃ (for P24). But P22 and P23 are unstable because
λ1 > 00.

Figures 3 and 4 show the dynamic of the model II. We
notice for this model that there is a great domination of
dark energy while the energy densities of the radiation and
the matter have declined considerably. This situation is well
compatible with the recent observational data which show
that the dark energy is the very important responsible of the
expansion of Universe. We also point out from these figures
that if N ∼ 2, the radiation declines and goes towards zero.
Figure 4 is related to the phase diagram of radiation and dark

energy interaction. For the model in study, the behavior of
the dark energy is similar to quintessence while the matter
and radiation tumble during the expansion.

5.3 Interacting model III

Let us take the following interaction terms (Jamil et al. 2011)

E1 = −6bκ2H−1ρ̃ρr , E2 = E3 = 3bκ2H−1ρ̃ρr . (47)

The system in (39) becomes

dx

dN
= 3x(x + y + z + ω̃x + ωrz) − 3x − 3ω̃x − 18bxz,

dy

dN
= 3y(x + y + z + ω̃x + wrz) − 3y + 9bxz, (48)

dz

dN
= 3z(x + y + z + ω̃x + ωrz) − 3z − 3ωrz + 9bxz.

P31 (Table 3) is stable for wd > −1. P32 , P34 are unsta-
ble. P33 is systematically stable when wd < −1, b <

1−3wd

9(1+α)
.

We present here the dynamic of model III through Figs. 5
and 6. Here we note a gradual increase for the dark energy
whereas the energy densities of the radiation and the matter
are tending to zero. These facts are compatible with the re-
cent observational data showing that Universe is accelerated
expansion because of the strong presence of dark energy in
Universe. This analysis shows also that becomes nonexis-
tent because of the strong domination of dark energy. The
phase diagram of interaction between dark energy and the
both matter and radiation is plotted in Fig. 6. In parallel
with the previous models, this model is also one of those
where the behavior the energy density of dark energy is that
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Fig. 4 Model II: Phase space for ω̃ = (−1,−1.2,−1.5), b = 0.5, ωr = 1
3

Fig. 5 Model III: variation of x, y, z as a function of the N = ln(a).
The initial conditions chosen are x(0) = 0.7, y(0) = 0.3, z(0) = 0.01,
ω̃ = −1.2, ωr = 1

3 and b = 0.5

of quintessence while the densities of radiation and matter
are going to vanish during the expansion.

5.4 Interacting model IV

Let’s search for new model generalized by the new follow-
ing interaction terms:

E1 = −3bκ2H−1ρ̃ρr ,

E2 = 3bκ2H−1(ρ̃ρr − ρmρr), (49)

E3 = 3bκ2H−1ρmρr .

The system in (39) takes the form

dx

dN
= 3x(x + y + z + ω̃x + ωrz) − 3x − 3ω̃x − 9bxz,

dy

dN
= 3y(x + y + z + ω̃x + ωrz) − 3y + 9b(xz − yz),

(50)
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Fig. 6 Model III: Phase space for ω̃ = (−1,−1.2,−1.5), b = 0.5, ωr = 1
3

Table 4 Critical points and the eigenvalues for the model IV

Points λ1 λ2 λ3 (xc, yc, zc)

P41 −3 −4 −3(1 + ω̃) (0,0,0)

P42 3 −1 −3ω̃ (1,0,0)

P43 3ω̃ 3ω̃ − 1 3ω̃ − 1 (0,1,0)

P44 3(1 + ω̃) −9b + 1 −3ω̃ − 9b + 1 (0,0,1)

P45 – – – ( 1
3

4
3 ω̃

b(1+ω̃)
, 4

9b
,− 1

3
1+ω̃

b
)

P46 – – – (
ω̃+3b+3−1/3

3b
,− (− 1

3 +ω̃)(ω̃+3b+− 1
3 )

3b(3b− 1
3 )

,
ω̃(− 1

3 +ω̃)

3b(3b− 1
3 )

)

P47 −3ω̃
√

3
√

b(−4/9+3b+b)
b

−
√

3
√

b(−4/9+3b+b)
b

(0, 4
9b

,− 1
3b

)

Fig. 7 Model IV: variation of x, y, z as a function of the N = ln(a).
The initial conditions chosen are x(0) = 0.7, y(0) = 0.3, z(0) = 0.01,
ω̃ = −1.2, ωr = 1

3 and b = 0.5

dz

dN
= 3z(x + y + z + ω̃x + ωrz) − 3z − 3ωrz + 9byz.

One obtains seven critical points (Table 4).

We remark for this model that P41 is stable for ω̃ > −1,
P42 is also stable for ω̃ < −1 while P43 and P47 are unsta-
ble. P44 is stable for ω̃ < −1 and b > 1

9 . It is also possible
to determine the stability of point P45. The stabilities of the
point P47 and also P35 from the model III are not easy to
be studied because the matrix of Jacobi in these cases is not
diagonal and the behaviors of its eigenvalues are not triv-
ial. This means that we can not theoretically know if these
points are stable or not. Consequently these cases are analyt-
ically and numerically impossible to be studied. Therefore,
the dynamic behaviors of the model IV behavior have been
plotted in Figs. 7 and 8 which show that the density of the
dark energy quickly rise up to N ∼ 0,5 and after decreases
sharply (same behavior with quintessence) whereas the en-
ergy densities of radiation and matter decrease and tend to
zero when N ∼ 1,8.

6 Stability of T + T N model

This section is devoted to the study of the stability of model
f (T ,T ) = T +T N by using the power-law and the de Sitter
solutions.
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Fig. 8 Model IV: Phase space for ω̃ = (−1,−1.2,−1.5), b = 0.5, ωr = 1
3

We are interested here to the perturbation of both geo-
metric parts and matter of the generalized equations of mo-
tion. To do so, we have focused our attention on the Hub-
ble parameter for geometric perturbation and energy density
for ordinary primordial matter perturbation and we have fol-
lowed the same way as it is done in (De Felice et al. 2009;
De la Cruz-Dombriz 2012)

H(t) = Hb(t)
(

1 + δ(t)
)

,

ρ(t) = ρb(t)
(

1 + δm(t)
)

.
(51)

Hb(t) and ρb(t) denote the Hubble parameter and the en-
ergy density of the ordinary matter of the background re-
spectively. Taking into consideration the interaction term,
the continuity equation of the ordinary matter becomes the
following differential equation

ρ̇b(t) + 3Hb(t)ρb(t)(1 + ω + q) = 0 , (52)

whose resolution leads to:

ρb(t) = ρ0 e−3(1+ω+q)
∫

Hb(t)dt , (53)

where ρ0 is an integration constant. In order to study the
linear perturbation about H(t) and ρ(t), we develop T N in
a series of Tb = ρb(1 − 3ω) as:

f (T ) = f b + f b
T (T − Tb) + O2. (54)

The function T N and its derivatives are computed at T =
Th. According to the Einstein-Hilbert term, the strangeness
here is the effect coming from T N . By putting (51) into (54)
in the first generalized Friedmann equation; one gets

3H 2 = ρ − 1

2

(

f + 12H 2fT

) + 3fT

(

ρ + p

3

)

, (55)

which gives after simplification

6H 2
b (t)δ(t) =

[

ρb + ρbf
b
T

(

3 − ω

2

)

+ ρ2
b

(

1 − 2ω − 3ω2)f b
T T

]

δm(t). (56)

Considering that the ordinary matter is essentially the dust,
we obtain the simple expression

6H 2
b (t)δ(t) = [

ρb + 3ρbf
b
T + 2ρ2

bf b
T T

]

δm(t). (57)

For matter perturbation function, we have the following dif-
ferential equation

˙δm(t) + 3(1 + ω + q)Hb(t)δ(t) = 0. (58)

Eliminating δ(t) between (56) and (58), we obtain also the
differential equation

2Hbδ̇m(t) + (1 + ω + q)

[

ρb + ρbf
b
T

(

3 − ω

2

)

+ ρ2
b

(

1 − 2ω − 3ω2)f b
T T

]

δm(t) = 0. (59)

The direct resolution of this differential equation gives

δm(t) = C0 exp

{

−
(

1 + ω + q

2

)∫

ρb

Hb

[

1 + f b
T

(

3 − ω

2

)

+ ρb

(

1 − 2ω − 3ω2)f b
T T

]

dt

}

, (60)

where C0 is an integration constant. From Eq. (58) one can
extract

δ(t) = C0CT
6Hb

exp

{

−
(

1 + ω + q

2

)∫

CT dt

}

, (61)
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with

CT = ρb

Hb

[

1 + f b
T

(

3 − ω

2

)

+ ρb

(

1 − 2ω − 3ω2)f b
T T

]

.

(62)

6.1 Stability of de Sitter solutions

In this case, the Hubble parameter is written as

Hb(t) = H0 → a(t) = a0e
H0t . (63)

The expression (53) becomes,

ρb(t) = ρ0e
−3(1+ω+q)H0t . (64)

From relation dρb = −3(1 + ω + q)H0ρbdt and within an
elementary transformation, we get
∫

CT dt = − 1

3H0(1 + ω + q)

∫

1

ρb

CT dρb

= − 1

3H 2
0 (1 + q + ω)

{

ρb

+ Q
(3 − ω)

2
ρN

b (1 − 3ω)N−1

+ Q
(

1 − 2ω − 3ω2)(N − 1)(1 − 3ω)N−2ρN
b

}

.

(65)

By replacing this expression in (60), we obtains

δm(t) = C0 exp

{

1

6H 2
0

[

ρb + Q
(3 − ω)

2
ρN

b (1 − 3ω)N−1

+ Q
(

1 − 2ω − 3ω2)(N − 1)(1 − 3ω)N−2ρN
b

]}

.

(66)

Therefore the perturbation function about the geometry can
be obtained and given by

δ(t) = C0CT
6H0

exp

{

1

6H 2
0

[

ρb + Q
(3 − ω)

2
ρN

b (1 − 3ω)N−1

+ Q
(

1 − 2ω − 3ω2)(N − 1)(1 − 3ω)N−2ρN
b

]}

,

(67)

with

CT = 1

H0

{

ρb + Q N (3 − ω)

2
ρN

b (1 − 3ω)N−1

+ QN (N − 1)
(

1 − 2ω − 3ω2)(1 − 3ω)N−2ρN
b

}

(68)

and

f (T ) = Q T N (69)

with Q the one defined in (26) and N = −(1 − 3ω)/((1 +
ω)). For some suitable values of the input parameters consis-
tent with cosmological observational data, we plot the curve
characterizing the behavior of the perturbation function at
the left side in Fig. 2. We see that as the universe expands,
i.e., increasing Z, the matter and geometric perturbations
functions, δm and δ respectively, goes towards positive val-
ues more less than 0.1 when the time evolves.

6.2 Stability of power-law solutions

Here, the scale factor is written as

a(t) ∝ tn → Hb(t) = n

t
, (70)

and the ordinary energy density (53) becomes

ρb = ρ0t
−3n(1+ω+q) (71)

By making the substitution of ρb in (59), one gets after res-
olution, the following expression

δm(t) = C1 exp

{

−A

(

A1

2 + B
t2+B + A2

2 +NB
t2+NB

)}

,

(72)

with C1 an integration constant, and

A = (1 + ω + q)

2n
, A1 = ρ0,

B = −3n(1 + ω + q),

A2 = QNρN
0

{

(18ω3 + 9ω2 − 14ω + 3)

2(1 − 3ω)2−N

+ N
(1 − 3ω)(1−N )

}

.

(73)

The use of the relation (58) leads to

δ(t) = C1

6n2

(

A1t
2+N + A2t

2+BN )

× exp

{

−A

(

A1

2 + B
t2+B + A2

2 +NB
t2+NB

)}

.

(74)

As we have done in the previous section, we present here the
evolution of the perturbation functions in Fig. 9 for suitable
values of input parameters.
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Fig. 9 The graph at the left side of the figure presents the evolution
of the perturbation functions δm and δ within the de Sitter solutions,
while the one at the right side shows the evolution of the perturbation

functions within the power-law solutions. The graph are plotted for
n = 2/3, Λ = 1.7 × 10−121, ρ0 = 0.1 × 10−121, ω = 0 and C1 = 1

7 Conclusion

We undertook in this work cosmological analysis about a
model in the framework of the so-called f (T ,T ) theory.
In order to obtain a viable f (T ,T ) model, we first impose
the covariant conservation of the energy-momentum, from
which, we get a model of the type T +f (T ), being a sort of
trace depending function correction to the TT. The obtained
model includes parameters depending on the cosmological
constant Λ and the parameter ω of the ordinary equation
of state. These parameters play a main role in the whole
study developed in this manuscript. By the way, we study
the dynamics of the cosmological system, analyzing the sta-
bility about the critical points. We solve the equations and
it appears that for some specific expressions of the interac-
tion term one can obtain attractor solutions. We numerically
integrate the equations and show that the evolution of the
dark energy density mimics three diffract behaviors: phan-
tom, quintessence and cosmological constant in some inter-
active forms. We argue that this interaction is purely phe-
nomenological and is consistent with the observational data.
Our result shows that for both de Sitter and power-law so-
lutions, the perturbations functions converge traducing the
stability of the model.

Moreover, the stability of the model is checked within the
de Sitter and power-law solutions by performing linear per-
turbation about the physical critical points. We see that for
the both considered solutions, the model presents stability

through the convergence of the geometric and matter pertur-
bation functions δ and δm.
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