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Abstract Spatially homogeneous Bianchi type-II, VIII and
IX perfect fluid cosmological models in f (R,T ) modi-
fied theory of gravity have been investigated for a special
choice of f (R,T ) = f1(R) + f2(T ) with f1(R) = λ1R and
f2(T ) = λ2T . This special choice leads to a cosmological
constant Λ, which depends on stress energy tensor of mat-
ter source. To get the deterministic model of Universe, we
assume that the expansion scalar (θ ) in the model is propor-
tional to shear scalar (σ ). This condition leads to relation be-
tween metric potentials, which yields a time dependent de-
celeration parameter. Various physical and geometrical fea-
tures of the models are also discussed.

Keywords Bianchi type-II, VIII and IX · Modified
gravity · Variable Λ · Perfect fluid

1 Introduction

The recent scenario of accelerated expansion of the Universe
supported by astronomical observations (Riess et al. 1998;
Perlmutter et al. 1999) has been playing a vital role in mod-
ern cosmology. It is now believed that dark energy is the
best candidate to explain cosmic acceleration. The Universe
consists of 76 % dark energy and 20 % dark matter. The ex-
act nature of the dark energy is still a mystery. It supposed
that dark energy has a strong negative pressure to explain the
observed acceleration in the expansion rate of the Universe.

In recent years, dark energy models are attracting more
and more attention of researchers. In particular, models with
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variable equation of state (EoS), that is ω(t) = p
ρ

, where
p is the pressure and ρ is the energy density of the Uni-
verse. The cosmological constant Λ and a scalar field with
some potential known as the quintessence matter are sup-
posed to be the most favorite candidates for the ‘dark en-
ergy’, the agent driving this alleged expansion. However,
the cosmological constant Λ is facing the coincidence prob-
lem. Another option is to explain the late time acceleration
to modify Einstein’s theory of gravitation termed as “modi-
fied gravity approach”. Hence there have been several modi-
fications of general relativity to provide natural gravitational
alternative for dark energy. The modifications are based
on the Einstein–Hilbert action to obtain alternative theo-
ries of Einstein such as f (R) gravity (Carroll et al. 2004;
Nojiri et al. 2006), f (T ) gravity (Bengocheu et al. 2009;
Linder 2010) and f (G) gravity (Bamba et al. 2010a, 2010b;
Rodrigues et al. 2014; Nojiri and Odintsov 2011a, 2011b)
where R, T and G are the scalar curvature, the torsion scalar
and the Gauss-Bonnet scalar respectively. The maximal ex-
tension of the Hilbert-Einstein action have been proposed
by Harko and Lobo (2010) by considering the gravitational
Lagrangian as a arbitrary function of Ricci scalar R and of
the matter Lagrangian Lm. The relativistic covariant model
of interacting dark energy based on the principle of least ac-
tion is given in f (R,Lm) gravity (Poplawski 2006). In this
theory, the cosmological constant is a function of trace of
the energy tensor and hence the model was denoted “Λ(T )

gravity”. This is more general than the f (R) gravity as it re-
duces to the latter when we neglect the pressure. A detailed
review of f (R) gravity and their properties with different
models are discussed in detail by many authors (Lobo 2009;
Felice and Tsujikawa 2010; Nojiri and Odintsov 2011a,
2011b).

Recently, Harko and Lobo (2010) proposed a new
f (R,T ) modified theory of gravity, wherein the gravi-
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tational Lagrangian is given by an arbitrary function of
the Ricci scalar R and the trace of the stress-energy ten-
sor T . Several authors have investigated different cosmo-
logical models in f (R,T ) modified theory of gravitation.
Rao and Neelima (2013) have obtained Bianchi type-VI0

Universe filled with perfect fluid in f (R,T ) gravity. Reddy
and Santhi Kumar (2013) have discussed some anisotropic
cosmological models in a modified theory of gravitation.
Reddy et al. (2013) have studied LRS Bianchi type-II Uni-
verse with cosmic strings and bulk viscosity in a modified
theory of gravity. Reddy et al. (2014) have investigated
anisotropic bulk viscous cosmological models in a modi-
fied gravity. Mishra and Sahoo (2014) have studied Bianchi
type-VIh perfect fluid cosmological model in f (R,T ) grav-
ity. Shri Ram and Chandel (2015) have discussed dynamics
of magnetized string cosmological model in f (R,T ) grav-
ity theory. Rao and Divya Prasanthi (2015) have investigated
Kantowski-Sachs bulk viscous string cosmological models
in f (R,T ) theory of gravity. Ahmed and Pradhan (2014),
Rao and Suryanarayana (2015) and Rao et al. (2015) have
obtained various cosmological models in f (R,T ) gravity
with specific choice of f (R,T ) = f1(R) + f2(T ).

Bianchi type cosmological models are important in the
sense that these are homogeneous and anisotropic, from
which the process of isotropization of the Universe is studied
through the passage of time. The simplicity of the field equa-
tions and relative ease of solutions made Bianchi space times
useful in constructing models of spatially homogeneous and
anisotropic cosmologies. The anomalies found in the cosmic
microwave background (CMB) and large scale structure ob-
servations stimulated a growing interest in anisotropic cos-
mological models of the Universe. Rao et al. (2008) have
studied Bianchi type-II, VIII and IX cosmological model in
Saez-Ballester theory of gravitation. Rao and Vijaya Santhi
(2012) have obtained Bianchi type-II, VIII and IX magne-
tized cosmological models in Brans-Dicke theory of gravita-
tion. Rao and Sireesha (2012) have studied Bianchi type-II,
VIII and IX string cosmological models with bulk viscosity
in a scalar tensor theory of gravitation. Recently, Rao et al.
(2014) have studied perfect fluid cosmological models in a
modified theory of gravitation. Katore (2015) has discussed
Bianchi type II, VIII and IX string cosmological models in
F(R) gravity.

Very recently, Sahoo and Sivakumar (2015) have studied
LRS Bianchi type-I cosmological model in f (R,T ) theory
of gravity with Λ(T ). Sahoo et al. (2015) have investigated
Kaluza-Klein cosmological model in f (R,T ) gravity with
Λ(T ). So, in this work we investigate Bianchi type-II, VIII
and IX cosmological models in f (R,T ) modified theory
gravitation. Here we consider a special choice of the func-
tion f (R,T ) = f1(R) + f2(T ) (Harko et al. 2011), where
f1(R) = λ1R and f2(T ) = λ2T . This choice leads us to an
evolving cosmological constant (Λ) which depends on trace
of the energy momentum tensor.

2 f (R,T ) theory of gravitation

In f (R,T ) modified theory of gravity, the gravitational La-
grangian is given by an arbitrary function of the Ricci scalar
R and the trace of the stress-energy tensor T . The field
equations of f (R,T ) gravity are derived from the Hilbert-
Einstein type variation principle. The action for the f (R,T )

gravity is

S = 1

16π

∫
f (R,T )

√−gd4x +
∫

Lm

√−gd4x, (1)

where f (R,T ) is an arbitrary function of Ricci scalar R and
T be the trace of stress-energy tensor (Tij ) of the matter.
Lm is the matter Lagrangian density. The energy momentum
tensor Tij is defined as

Tij = −
(

2√−g

)
δ(

√−g)Lm

δgij
. (2)

Here we assume that the dependence of matter Lagrangian
is merely on the metric tensor gij rather than its derivatives,
we obtain

Tij = gijLm − ∂Lm

∂gij
. (3)

The f (R,T ) gravity field equations are obtained by varying
the action S with respect to metric tensor gij

fR(R,T )Rij − 1

2
f (R,T )gij + (gij� − ∇i∇j )fR(R,T )

= 8πTij − fT (R,T )Tij − fT (R,T )Θij , (4)

where

Θij = −2Tij + gijLm − 2gαβ ∂2Lm

∂gij ∂gαβ
. (5)

Here fR(R,T ) = ∂f (R,T )
∂R

, fT (R,T ) = ∂f (R,T )
∂T

and � =
∇μ∇μ, where ∇μ denotes the covariant derivative.

From Eq. (4), we get

fR(R,T )R + 3�fR(R,T ) − 2f (R,T )

= 8πT − (T + Θ)fT (R,T ), (6)

where Θ = Θi
i . Equation (6) gives a relation between Ricci

scalar R and the trace of energy momentum tensor T .
Then with the use of (5), we obtain the variation of stress-

energy. Using matter Lagrangian Lm, the stress-energy ten-
sor of the matter given by

Tij = (ρ + p)uiuj − pgij , (7)

where ui = (0,0,0,1) is the four velocity and satisfies the
condition uiui = 1 and ui∇j ui = 0, where ρ and p are the
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energy density and pressure of the fluid respectively. Here
the matter Lagrangian can be taken as Lm = −p since, there
is no unique definition of the matter Lagrangian.

Then with the use of (5), we obtain for the variation of
stress-energy of perfect fluid as

Θij = −2Tij − pgij . (8)

On the physical nature of the matter field, the field equa-
tions also depend through the tensor Θij . Hence in the case
of f (R,T ) gravity depending on the nature of the matter
source, we obtain several theoretical models corresponding
to different matter contributions for f (R,T ) gravity. How-
ever, Harko et al. (2011) gave three classes of these models:

f (R,T ) =
⎧⎨
⎩

R + 2f (T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

In this paper, we focus on second case, i.e f (R,T ) =
f1(R) + f2(T ), where f1(R) and f2(T ) are the arbitrary
functions of Ricci scalar R and the trace of stress-energy
tensor T respectively. If the matter source is a perfect fluid
then the gravitational field equations (4) of f (R,T ) gravity
reduced to

f1
′(R)Rij − 1

2
f1(R)gij

= 8πTij + f2
′(T )Tij +

[
f2

′(T )p + 1

2
f2(T )

]
gij , (9)

where prime denotes differentiation with respect to the ar-
gument. The equation for standard f (R) gravity can be re-
covered for p = 0 (the dust case) and f2(T ) = 0.

If we consider a particular form of the functions f1(R) =
λ1R and f2(T ) = λ2T , where λ1 and λ2 are constants, then
f (R,T ) = λ1R + λ2T . Thus, the field equations (2) will
reduce to

Ri
j − 1

2
δi
jR =

(
8π + λ2

λ1

)
T i

j + λ2

λ1

(
p + 1

2
T

)
δi
j . (10)

Einstein field equations with cosmological constant term are
usually expressed as

Rij − 1

2
Rgij = −8πTij + Λgij (11)

By comparing Eqs. (10) and (11), we observed that

Λ = Λ(T ) = λ2

λ1

(
p + 1

2
T

)
; −8π = 8π + λ2

λ1
(12)

i.e., p + 1
2T behaves as cosmological constant and rather

than simply being a constant it evolves through the cosmic
expansion. Poplawski (2006) has discussed the dependence
of the cosmological constant Λ on the trace of the energy

momentum tensor T , where cosmological constant in the
gravitational Lagrangian is considered as a function of the
trace energy-momentum tensor, and consequently the model
is denoted as gravity model. Recent observational data fa-
voring the cosmological model with variable cosmological
constant.

3 Metric and field equations

We consider the anisotropic Bianchi type-II, VIII and IX
space-times in the form

ds2 = dt2 − R2[dθ2 + f 2(θ)dφ2] − S2[dϕ + h(θ)dφ
]2

(13)

where (θ,φ,ϕ) are the Eulerian angles, and R and S are
functions of time t only.

It represents, Bianchi type II if f (θ) = 1 and h(θ) = θ ,
Bianchi type VIII if f (θ) = coshθ and h(θ) = sinhθ , and
Bianchi type IX if f (θ) = sin θ and h(θ) = cos θ .

The Universe is assumed to be filled with a distribution
of perfect fluid represented by the energy-momentum tensor

Tij = (ρ + p)uiuj − pgij , (14)

where ui = (0,0,0,1) is the four velocity and satisfies the
condition uiui = 1, ρ and p are the energy density and
isotropic pressure of the fluid respectively.

Using comoving coordinates and Eq. (14), the field equa-
tions (10) for the metric (13) can be written as

R̈

R
+ S̈

S
+ ṘṠ

RS
+ S2

4R4
=

(
8π + λ2

λ1

)
p − Λ (15)

2
R̈

R
+ Ṙ2 + δ

R2
− 3S2

4R4
=

(
8π + λ2

λ1

)
p − Λ (16)

2
ṘṠ

RS
+ Ṙ2 + δ

R2
− S2

4R4
=

(
8π + λ2

λ1

)
ρ + Λ (17)

Using the transformation dt = R2S dτ , the field equa-
tions (15)–(17) can be written as

1

R4S2

(
R′′

R
+ S′′

S
− 2

R′S′

RS
− 2

R′2

R2
− S′2

S2

)
+ S2

4R4

=
(

8π + λ2

λ1

)
p − Λ (18)

1

R4S2

(
2
R′′

R
− 3

R′2

R2
− 2

R′S′

RS

)
+ δ

R2
− 3S2

4R4

=
(

8π + λ2

λ1

)
p − Λ (19)
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1

R4S2

(
R′2

R2
+ 2

R′S′

RS

)
+ δ

R2
− S2

4R4

=
(

8π + λ2

λ1

)
ρ + Λ (20)

where dot denotes differentiation with respect to time and
prime ( ′ ) denotes the differentiation with respect to τ .

4 Solution of the field equations

In order to solve the field equations completely, we assume
that the shear scalar (σ ) in the models is proportional to ex-
pansion scalar (θ ), this condition leads us to write

R = Sn (21)

where R and S are the metric potentials and n is an arbitrary
constant.

Using above condition (21), in field equations (18) and
(19), we get

S′′

S
− S′2

S2
+ δ

(
S2n+2

n − 1

)
− S4

n − 1
= 0 (22)

4.1 Bianchi type-II (δ = 0) cosmological model

If δ = 0, Eq. (22) can be written as

S′′

S
− S′2

S2
− S4

n − 1
= 0, where n �= 1 (23)

From Eq. (23), we get

S = [
c1cosech(k2 − 2τk1)

] 1
2 (24)

where c1 = k1
√

2(n − 1) and k1, k2 are integrating con-
stants.

From Eqs. (21) and (24), we get

R = [
c1cosech(k2 − 2τk1)

] n
2 (25)

Now the metric (13) can be rewritten as

ds2 = dt2 − [
c1cosech(k2 − 2τk1)

]n[
dθ2 + dφ2]

− [
c1cosech(k2 − 2τk1)

][dϕ + θdφ]2 (26)

From Eqs. (19), (20), (24) and (25), we get

Λ = λ2

4(8π + λ2)

(
c2

1 − 2(3n + 1)k2
1

c2n+1
1

)

× [
cosech(k2 − 2τk1)

]1−2n (27)

Fig. 1 Plot of pressure and energy density versus τ

Using Eqs. (24) and (25) in field equations (19)–(20), we get

p = λ1

8π + λ2

×
{

k2
1

2

(
(2 − n)(1 + n)coth2(k2 −2τk1) − 2(3n + 1)

(c1cosech(k2 − 2τk1))2n+1

)

−
(

λ2(c
2
1 − 2(3n + 1)k2

1)

(8π + λ2)c
2n+1
1

− 1

4

)

× (
c1cosech(k2 − 2τk1)

)1−2n
}

(28)

ρ = λ1

8π + λ2

{(
λ2(c

2
1 − 2(3n + 1)k2

1)

(8π + λ2)c
2n+1
1

− 1

4

)

× (
c1cosech(k2 − 2τk1)

)1−2n

−
(

n(n + 2)k2
1coth2(k2 − 2τk1)

(c1cosech(k2 − 2τk1))2n+1

)}
. (29)

Thus the metric (26) together with (27), (28) and (29) consti-
tutes a homogeneous and anisotropic Bianchi type-II perfect
fluid cosmological model in f (R,T ) gravity with cosmo-
logical constant (Λ).

Figure 1 explains behavior of pressure and energy den-
sity in terms of τ . It is observed that pressure is varying in
negative region through out the evolution of Universe. As
it is evident from host of the observational data believed
that dark energy is the best candidate to explain cosmic ac-
celeration and it is supposed that dark energy has a strong
negative pressure to explain the observed acceleration of the
Universe. Also, we observed that energy density is decreas-
ing function of τ and vanishes for large values of τ . Figure 2
depicts the character cosmological constant in terms τ , it is
observed that cosmological constant is varying from nega-
tive to positive region and attains a value in positive region.
Which is in accordance with the lambda cold dark matter
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Fig. 2 Evolution of cosmological constant versus τ

(ΛCDM) model where a positive value of the cosmological
constant is required to explain the accelerated nature of the
Universe. So one can select the positive value of Λ consis-
tent with the observational data.

4.2 Bianchi type-VIII (δ = −1) cosmological model

If δ = −1, then Eq. (22) can be written as

S′′

S
− S′2

S2
−

(
S2n+2

n − 1

)
− S4

n − 1
= 0. (30)

We can solve the above equation and get the deterministic
solution only for n = −1.

So from Eq. (30), we get

S′2 = (c2S)2 − S6 (31)

where c2 = √
k3 − 1 and k3 is an integration constant.

From Eq. (31), we get

S = [
c2sech(2c2τ + k4)

] 1
2 (32)

where k4 is an integrating constant.
Consequently from Eq. (21), we get

R = [
c2sech(2c2τ + k4)

]− 1
2 (33)

Now the metric (13) can be rewritten as

ds2 = dt2 − [
c2sech(2c2τ + k4)

]−1[
dθ2 + cosh2θdφ2]

− [
c2sech(2c2τ + k4)

][dϕ + sinhθdφ]2 (34)

From Eqs. (19), (20), (32) and (33), we get cosmological
term

Λ = λ2c
2
2

4(8π + λ2)

{[
4c2sech(2c2τ + k4)

− c2
2sech2(2c2τ + k4) − 3

]
sech2(2c2τ + k4)

}
(35)

Fig. 3 Plot of pressure versus τ

Fig. 4 Evolution of energy density versus τ

Using Eqs. (32) and (33) in field equations (19)–(20), we get
pressure and energy density

p = λ1c
3
2sech2(2c2τ + k4)

4(8π + λ2)2

[(
24π + 7λ2

8π + λ2

)
sech(2c2τ + k4)

− (
3 + 2sech2(2c2τ + k4)

)]
(36)

ρ = λ1c2sech(2c2τ + k4)

4(8π + λ2)2

× {[−3 + (λ2 − 24π)c2sech(2c2τ + k4)

− λ2c
2
2sech2(2c2τ + k4)

](
c2sech(2c2τ + k4)

)

+ 4
(
c2

2 + 1
)
(8π + λ2)

}
. (37)

Thus the metric (34) together with (35)–(37) constitutes
a homogeneous and anisotropic Bianchi type-VIII perfect
fluid cosmological model in f (R,T ) gravity with cosmo-
logical constant.

The behavior of pressure and energy density versus τ is
plotted in Figs. 3 and 4 respectively. We observed that pres-
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sure have negative values throughout the evolution, this be-
havior is similar to Bianchi type-II case. Energy density is
decreasing function τ and vanishes for large values of τ .

4.3 Bianchi type-IX (δ = 1) cosmological model

If δ = 1, then Eq. (22) can be written as

S′′

S
− S′2

S2
+

(
S2n+2

n − 1

)
− S4

n − 1
= 0. (38)

Here also, we can solve the above equation and get the de-
terministic solution only for n = −1.

So from Eqs. (30) and (38), we get

S′2 = (c3S)2 − S6 (39)

where c3 = √
k5 + 1. From Eq. (39), we get

S = [
c3sech(2c3τ + k6)

] 1
2 (40)

where k4 is an integrating constant.
Consequently from Eq. (21), we get

R = [
c3sech(2c3τ + k6)

]− 1
2 . (41)

Now the metric (13) can be rewritten as

ds2 = dt2 − [
c3sech(2c3τ + k6)

]−1[
dθ2 + sin2 θdφ2]

− [
c3sech(2c3τ + k6)

][dϕ + cos θdφ]2. (42)

From Eqs. (19), (20), (40) and (41), we get cosmological
term

Λ = λ2c
2
3

4(8π + λ2)

{[
4c3sech(2c3τ + k6)

− c2
3sech2(2c3τ + k6) + 3

]
sech2(2c3τ + k6)

}
. (43)

Using Eqs. (40) and (41) in field equations (19)–(20), we get
pressure and energy density

p = λ1c
3
3sech2(2c3τ + k6)

4(8π + λ2)2

[(
24π + 7λ2

8π + λ2

)
sech(2c3τ + k6)

+ (
3 − 2sech2(2c3τ + k6)

)]
(44)

ρ = λ1c3sech(2c3τ + k6)

4(8π + λ2)2

× {[
3 + (λ2 − 24π)c3sech(2c3τ + k6)

− λ2c
2
3sech2(2c3τ + k6)

](
c3sech(2c3τ + k6)

)

+ 4
(
c2

3 − 1
)
(8π + λ2)

}
. (45)

Thus the metric (42) together with (43)–(45) constitutes a
homogeneous and anisotropic Bianchi type-IX perfect fluid

Fig. 5 Plot of pressure and energy density versus τ

Fig. 6 Evolution of cosmological constant versus τ

cosmological model in f (R,T ) gravity with cosmological
constant.

Figure 5 describes the behavior of pressure and energy
density versus τ . We observed that pressure and energy den-
sity are decreasing functions of τ , and vanishes for large
values of τ . From Fig. 6, it is observed that the cosmolog-
ical constant have positive values throughout the evolution.
This behavior is consistent with the cosmological constant is
a small but positive value is required to explain the present
day scenario of accelerated expansion given by lambda cold
dark matter (ΛCDM) model.

5 Some other important properties of the models

5.1 Bianchi type-II (δ = 0) cosmological model

The spatial volume and average scale factor for the model
are

V = √−g = (
c1cosech(k2 − 2k1τ)

) 2n+1
2 (46)
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a = V 1/3 = (
c1cosech(k2 − 2k1τ)

) 2n+1
6 (47)

The expansion scalar (θ ) for flow vector (ui ) and shear
scalar (σ 2) are given by

θ = ui
;i = k1(2n + 1)cot(k2 − 2k1τ)

(c1cosech(k2 − 2k1τ))
2n+1

2

(48)

σ 2 = 1

2
σ ijσij = 7k2

1(2n + 1)2cot2(k2 − 2k1τ)

18(c1cosech(k2 − 2k1τ))2n+1
(49)

The Hubble’s parameter (H ) is given by

H = ȧ

a
= k1(2n + 1)cot(k2 − 2k1τ)

3(c1cosech(k2 − 2k1τ))
2n+1

2

(50)

The deceleration parameter (q) is given by

q = −aä

ȧ2
= −3

(
2sech2(k2 − 2k1τ)

2n + 1
−1

)
sinh(k2 − 2k1τ)

c1
.

(51)

5.2 Bianchi type-VIII (δ = −1) cosmological model

The spatial volume and average scale factor for model (34)
are

V = √−g = [
c2sech(2c2τ + k4)

]−1
2 coshθ (52)

a = V 1/3 = {[
c2sech(2c2τ + k4)

]−1
2 coshθ

} 1
3 (53)

The expansion scalar (θ ) for flow vector (ui ) and shear
scalar (σ 2) are given by

θ = ui
;i = (

c2tanh(2c2τ + k4)
)√

c2sech(2c2τ + k4) (54)

σ 2 = 1

2
σ ijσij

= 7

18

(
c2tanh(2c2τ + k4)

)2(
c2sech(2c2τ + k4)

)
(55)

The Hubble’s parameter (H ) is given by

H = ȧ

a
= (c2tanh(2c2τ + k4))

√
c2sech(2c2τ + k4)

3
(56)

The deceleration parameter (q) is given by

q = −aä

ȧ2

= (sech(2c2τ + k4))
1
3

c2

[
1 − 6cosech2(2c2τ + k4)

]
(57)

5.3 Bianchi type-IX (δ = 1) cosmological model

The spatial volume and average scale factor for model (37)
are

V = √−g = [
c3sech(2c3τ + k6)

]−1
2 sin θ (58)

a = V
1
3 = {[

c3sech(2c3τ + k6)
]−1

2 sin θ
} 1

3 (59)

The expansion scalar (θ ) for flow vector (ui ) and shear
scalar (σ 2) are given by

θ = ui
;i = (

c3tanh(2c3τ + k6)
)√

c3sech(2c3τ + k6) (60)

σ 2 = 1

2
σ ijσij

= 7

18

(
c3tanh(2c3τ + k6)

)2(
c3sech(2c3τ + k6)

)
(61)

The Hubble’s parameter (H ) is given by

H = ȧ

a
= (c3tanh(2c3τ + k6))

√
c3sech(2c3τ + k6)

3
(62)

The deceleration parameter (q) is given by

q = −aä

ȧ2

= (sech(2c3τ + k6))
1
3

c3

[
1 − 6cosech2(2c3τ + k6)

]
(63)

6 Conclusions

In this paper we have presented Bianchi type-II,VIII and IX
cosmological models in f (R,T ) modified theory of grav-
itation proposed by Harko et al. (2011) for an appropri-
ate choice of the function f (R,T ) = f1(R) + f2(T ) =
λ1R + λ2T with variable Λ(T ). We have shown that the
field equations in this model reduce to the usual Einstein
field equations for λ2

1+λ1
= −8π with an time-dependent cos-

mological constant which can be expressed in terms of the
energy density and pressure. From Fig. 7, it is observed that
the volume of Bianchi type-II, VIII and IX models zero for
small values of τ whereas all the remaining physical pa-
rameters are diverge at this initial epoch and tend to zero
as τ → ∞, which shows that at early stages the Universe
starts evolving with zero volume and expands continuously
approaching to infinite volume at late times. All three mod-
els have point type singularity (MacCallum 1971) at τ = 0.
The pressure has negative values for Bianchi type-II and
VIII models, which shows that the Universe is accelerated
expanding for late times with the dominance of dark energy.
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Fig. 7 Plot of volume versus τ

Fig. 8 Plot of Deceleration parameter versus τ

The energy density of the three models positive throughout
the evolution of the Universe and vanishes for large values
of τ . Also, we found that the cosmological constant has at-
tains positive value for Bianchi type-II and IX models, this
is consistent with the ΛCDM model. The deceleration pa-
rameter is depends on τ for all three models, from Fig. 8,
we observed that for Bianchi type-II model the decelera-
tion parameter is positive at the early stages and negative at
late times, i.e., the Universe exhibits transition from decel-
eration to acceleration, which is consistent with the observa-
tions made by Perlmutter et al. (1999) and Riess et al. (1998)
and the present day Universe is undergoing accelerated ex-
pansion. For Bianchi type-VIII and IX models the deceler-
ation parameter is initially negative but later on they attain
a constant positive value, i.e. the models represent accelera-
tion in early times and deceleration in later times, however

they will accelerate in finite time due to cosmic re-collapse
(Nojiri and Odintsov 2003). So these Bianchi type-VIII and
IX models are also useful to explain early stages of evolution
of the Universe.
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