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Abstract Self-similar solutions are obtained for one-dimen-
sional unsteady adiabatic flow behind a spherical shock
wave propagating in a dusty gas with conductive and radia-
tive heat fluxes under the influence of a gravitational field.
The shock is assumed to be driven out by a moving piston
and the dusty gas to be a mixture of non-ideal gas and small
solid particles, in which solid particles are uniformly dis-
tributed. It is assumed that the equilibrium flow-conditions
are maintained and variable energy input is continuously
supplied by the piston. The heat conduction is expressed in
terms of Fourier’s law and the radiation is considered to be
of the diffusion type for an optically thick grey gas model.
The thermal conductivity K and the absorption coefficient
αR are assumed to vary with temperature and density. The
medium is assumed to be under the influence of a gravi-
tational field due to central mass (m̄) at the origin (Roche
Model). It is assumed that the gravitational effect of the
mixture itself can be neglected compared with the attrac-
tion of the central mass. The initial density of the ambient
medium is taken to be always constant. The effects of the
variation of the gravitational parameter and nonidealness of
the gas in the mixture are investigated. Also, the effects of
an increase in (i) the mass concentration of solid particles
in the mixture and (ii) the ratio of the density of solid par-
ticles to the initial density of the gas on the flow variables
are investigated. It is shown that due to an increase in the
gravitational parameter the compressibility of the medium
at any point in the flow-field behind the shock decreases and
all other flow variables and the shock strength are increased.
Further, it is found that the presence of gravitational field
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increases the compressibility of the medium, due to which it
is compressed and therefore the distance between the piston
and the shock surface is reduced. The shock waves in dusty
gas under the influence of a gravitational field can be im-
portant for description of shocks in supernova explosions,
in the study of central part of star burst galaxies, nuclear
explosion, star formation in shocks and shocks in stellar ex-
plosion, rupture of a pressurized vessels and explosion in
the ionosphere etc. Also, the solution obtained can be used
to interpret measurements carried out by spacecraft in the
solar wind and in neighborhood of the Earth’s surface.

Keywords Shock wave · Piston problem · Self-similar
solution · Dusty gas · Gravitational effects · Roche model ·
Conductive and radiative heat fluxes · Mechanics of fluids

1 Introduction

Shock phenomena, such as a global shock resulting from
a stellar pulsation or supernova explosion passing outward
through a stellar envelope or perhaps a shock emanating
from a point source such as a man-made explosion in the
Earth’s atmosphere or an impulsive flare in the Sun’s at-
mosphere, have tremendous importance in astrophysics and
space science. Shocks are ubiquitous throughout the ob-
served universe and are thought to play a crucial role in the
transportation of energy into the interstellar medium, set-
ting in motion processes observed in nebulae that eventually
could lead to the creation of new stars. Shock waves pro-
duced by solar flares represent, in a very real sense, the most
extreme (one might even say the most pathological) mani-
festation of solar activity which occurs in the study of solar-
terrestrial physics. It is now generally accepted that more
than half of the energy released in small or large flares is
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distributed by shock waves. A shock driven by any amount
of flare ejecta would be classified as a piston driven shock
with a radially dependent shock velocity (Ws = (n + 1) rs

t
)

quite unlike that of blast produced shock (see Dryer 1958).
Radiation is key to this since it plays a significant role in en-
ergy transport over the vast distances encountered between
stellar objects, and can significantly modify the dynamics
of a shock or blast wave. Consequently the study of radia-
tive shocks has been an active area of numerical, theoreti-
cal and experimental research over many years. The influ-
ence of radiation on the shock wave and on the flow-field
behind it have been studied by similarity method by Mar-
shak (1958), Elliott (1960), Wang (1964), Helliwell (1969),
Nicastro (1970), Ghoniem et al. (1982), Gretler and Regen-
felder (2005), Vishwakarma and Nath (2010, 2012a), Vish-
wakarma and Singh (2009), Nath (2012a), Nath and Vish-
wakarma (2014) and many others.

Marshak (1958) studied the effect of radiation on the
shock propagation by introducing the radiation diffusion
approximation. Using the same mode of radiation Elliott
(1960) discussed the conditions leading to self-similarity
with a specified functional form of the mean free-path of
radiation and obtained a solution for self-similar spheri-
cal explosions. Wang (1964), Helliwell (1969) and Nicastro
(1970) treated the problems of radiating walls, either station-
ary or moving, generating shocks at the head of self-similar
flow-fields. The non-similar problem of a blast wave asso-
ciated with diffusive radiation was analyzed by Kim et al.
(1975), using matched expansions upon the assumption that
the radiation and conduction effects are significant only in
a boundary-layer around the centre of explosion. A similar
approach was also used by Kamel et al. (1977) to find self-
similar solutions for blast waves in a detonating medium.
Gretler and Wehle (1993) studied the propagation of blast
waves with exponential heat release by taking internal heat
conduction and thermal radiation in a detonating medium.
Ghoneim et al. (1982) obtained a self-similar solution for
spherical explosions taking into account the effects of both
conduction and radiation in the two limits of Rosseland ra-
diative diffusion and Plank radiative emission. Abdel-Raouf
and Gretler (1991) obtained a non-similar solution for blast
waves with internal heat transfer effects. Also, Vishwakarma
and Nath (2011) studied the cylindrical shock wave gener-
ated by a piston moving in a non-uniform self-gravitating
rotational axisymmetric gas in the presence of conduction
and radiation heat flux.

The study of shock waves in a mixture of a gas and small
solid particles is of great importance due to its applications
to nozzle flow, lunar ash flow, bomb blast, coal-mine blast,
under-ground, volcanic and cosmic explosions, metallized
propellant rocket, supersonic flight in polluted air, collision
of coma with a planet, description of star formation, particle
acceleration in shocks, formation of dusty crystals and many

other engineering problems (see Pai et al. 1980; Higashino
and Suzuki 1980; Miura and Glass 1983; Gretler and Re-
genfelder 2005; Popel and Gisko 2006; Vishwakarma and
Nath 2006, 2009, 2010, 2012a; Igra et al. 2004; Sommer-
feld 1985; Conforto 2000; Elperine et al. 1987; Miura 1990;
Vishwakarma et al. 2008; Nath 2010, 2012b, 2013, 2014).
The flow field, that develops when a moving shock wave hits
a two-phase medium of gas and particles, has a close prac-
tical relation to industrial applications (solid rocket engine
in which aluminum particles are used to reduce the vibra-
tion due to instability) as well as industrial accidents such as
explosions in coalmines and grain elevators (Park and Baek
2003). Shock waves often arise in nature because of a bal-
ance between non-linear wave breaking and wave damping
dissipative forces (Zel’dovich and Raizer 1967). Collisional
and collisionless shock waves can appear because of friction
between the particles and wave-particle interaction respec-
tively (Sagdeev 1966; Chen 1974). Miura and Glass (1985)
obtained an analytical solution of a planar dusty gas flow
with constant velocities of the shock and the piston moving
behind it. As they considered that the dust virtually has a
mass fraction but no volume fraction. Their results reflect
the influence of both the decrease of mixture compressibil-
ity and the increase of mixture’s inertia on the shock prop-
agation (Steiner and Hirschler 2002; Vishwakarma et al.
2008; Gretler and Regenfelder 2002, 2008). Vishwakarma
and Nath (2006, 2009, 2010, 2012a), Gretler and Regen-
felder (2005) obtained the similarity solution for strong
shock waves in radiating and non-radiating dusty gas (a mix-
ture of small solid particles and non-ideal or perfect gas).

In extreme conditions that prevail in most of the problems
associated with shock waves, the assumption that the gas is
ideal is no longer valid. In recent years, several studied have
been performed concerning the problem of shock waves
in non-ideal gases, in particular, by Anisimov and Spiner
(1972), Ranga Rao and Purohit (1976), Wu and Roberts
(1993), Madhumita and Sharma (2004), Arora and Sharma
(2006), Vishwakarma and Nath (2007, 2009, 2010, 2012a),
Nath (2012a, 2012b, 2012c, 2013), Nath and Vishwakarma
(2014), Singh et al. (2010a, 2010b), Ojha and Tiwari (2002)
and Roberts and Wu (1996) among others. Anisimov and
Spiner (1972) have taken the equation of state for non-ideal
gases in a simplified form, and investigated the effect of the
parameter for non-idealness on the problem of a strong point
explosion, which describe the behavior of the medium satis-
factorily at low densities. Vishwakarma and Nath (2009) ob-
tained the similarity solution for the propagation of a strong
shock wave in a mixture of a non-ideal gas and small solid
particles driven out by a piston moving according to power
law, in both the cases when the flow behind the shock was
isothermal or adiabatic. Ranga Rao and Purohit (1976) have
analyzed the self-similar flows of a non-ideal gas driven by
an expanding gas.
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In all of the works mentioned above, the influence of
gravitational field on the medium is not considered. The
gravitational force has considerable effect on many astro-
physical problems. Carrus et al. (1951) have studied the
propagation of shock waves in a gas under the gravitational
attraction of a central body of fixed mass (Roche model)
and obtained the similarity solutions by numerical method.
Rogers (1957) discussed a method for obtaining analytical
solution of the same problem. Ojha et al. (1998) have dis-
cussed the dynamical behavior of an unsteady magnetic star
by employing the concepts of the Roche model in an electri-
cally conducting atmosphere. Singh (1988) studied the self-
similar flow of a non-conducting perfect gas, moving under
the gravitational attraction of a central body of fixed mass,
behind spherical shock waves driven out by a propelling
contact surface into quite solar wind region. Vishwakarma
and Nath (2012b) obtained the similarity solutions by tak-
ing the shock Mach number not infinite, but finite and the
medium under the gravitational attraction towards the heavy
nucleus at the centre, and obtained the solutions in both the
isothermal and adiabatic cases, we presented the solutions
for the flow taken to be adiabatic.

In the present work, we have obtained the self-similar
solutions for the flow behind the spherical shock wave prop-
agating in a dusty gas (a mixture of non-ideal gas and small
solid particles) with conductive and radiative heat fluxes.
The medium is assumed to be under the influence of a grav-
itational field due to central mass (m̄) at the origin (Roche
model). The gravitational effect of the mixture itself is as-
sumed to be negligible in comparison with the attraction of
the central mass. In order to get some essential features of
the shock propagation, small solid particles are considered
as a pseudo-fluid, and the mixture at a velocity and temper-
ature equilibrium with a constant ratio of specific heats (Pai
1977). For this gas particle mixture to be treated as a so-
called idealized equilibrium gas (Geng and Groenig 1980),
it is necessary to consider the particle diameter much smaller
than a characteristic length of the flow-field. In this case, we
may assume that the viscous stress of the mixture is negli-
gible (but not the heat conduction of the medium). In spite
of the fact that the viscosity and heat conduction have the
same physical mechanism, the viscosity term are negligible
and may be dropped from the momentum and energy equa-
tions based on order of magnitude analysis applied to the
conservation equations (Kamel et al. 1977 have shown that
the inclusion of viscosity changes the flow-field parameters
only by order of 0.001 %). The heat transfer fluxes are ex-
pressed in terms of Fourier’s law for heat conduction and a
diffusion radiation model for an optically thick grey dusty
gas, which is typical of large-scale explosions. The ther-
mal conductivity and absorption coefficient of the gas are
assumed to be proportional to appropriate powers of tem-
perature and density (Ghoneim et al. 1982; Vishwakarma

et al. 2008). Also, it is assumed that the dusty gas is grey and
opaque, and the shock is isothermal. The assumption that the
shock is isothermal is a result of some physical process in
which the heat flux is taken to be proportional to the temper-
ature gradient; this excludes the possibility of temperature
jumps (Zel’dovich and Raizer 1967; Rosenau and Franken-
thal 1976, 1978; Vishwakarma et al. 2008; Vishwakarma
and Nath 2010, 2012a; Nath and Vishwakarma 2014;
Nath 2012a).

In our model radiative losses are not considered though
radiative transfer is taken into account because the radia-
tive losses from the shock surface are small in comparison
to the variation of the total energy of the disturbance (see
(67)). Due to increase in total energy of the disturbance a
radiative-precursor shock may occur when the flux of ion-
izing photons being radiated forward from the shock front
exceeds the flux of atoms approaching the shock front. This
requires that the shock velocity should exceed the threshold
velocity required to produce the necessary photon flux. The
radiative-precursor heats the medium ahead of the density
discontinuity to a temperature approximately equal to the
temperature at the forward shock front (Keiter et al. 2002).
Radiative-precursor shocks are relevant to astrophysics, for
example in supernova, supernova remnants and jets (Ens-
man et al. 1992; Sutherland et al. 1993; Feinstein et al. 1999;
Raga et al. 1999; Ghavamian et al. 2000; Reipurth and Bally
2001). The consideration of the effects of conductive and
radiative heat fluxes provided that there holds a simple re-
lationship between certain exponents in the expressions for
the piston speed, the thermal conductivity and the absorp-
tion coefficient, all of which supposed to be non-uniform.
The particular forms chosen for these are stated explicitly as
(39) and (20), respectively. The counter pressure (the pres-
sure ahead of the shock) is taken into account. The radiation
pressure and radiation energy are neglected (Elliott 1960;
Wang 1964; Ghoneim et al. 1982; Vishwakarma and Nath
2010, 2012a; Nath and Vishwakarma 2014; Nath 2012a).
The assumption of an optically thick grey gas is physically
consistent with the neglected radiation pressure and radia-
tion energy (Nicastro 1970). In order to obtain the similar-
ity solutions of the problem the density of the undisturbed
medium is taken to be constant. The effects of a change in
the value of the parameter of non-idealness of the gas in the
mixture b̄, the mass concentration of solid particles in the
mixture Kp , the ratio of the density of solid particles to the
initial density of the gas G1 and the gravitational parameter
G0 are obtained.

2 Fundamental equations and boundary
conditions

We consider the medium to be a dusty gas (a mixture of
small solid particles and non-ideal gas), which is under the
gravitational attraction of central mass (m̄) at the center.
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The equation of state of the non-ideal gas in the mixture is
taken to be (Anisimov and Spiner 1972; Vishwakarma and
Nath 2007; Nath 2012b)

pg = R∗ρg(1 + bρg)T , (1)

where pg and ρg are the pressure and density of the gas oc-
cupying the volume Vg , T is the temperature of the gas (and
of the solid particles as the equilibrium flow condition is
maintained), R∗ is the specific gas constant and ‘b’ is the
internal volume of the molecule of the gas. In this equa-
tion the deviation of an actual gas from the ideal state is
taken into account, which results from the interaction be-
tween its component molecules. It is assumed that the gas
is still so rarefied that triple, quadruple, etc., collisions be-
tween molecules are negligible, and their interaction is as-
sumed to occur only through binary collisions.

The specific volume of solid particles is assumed to re-
main unchanged by variations in temperature and pressure.
Therefore the equation of state of the solid particles in the
mixture is, simply,

ρsp = constant, (2)

where ρsp is the specific density of the solid particles. As
for any field in a mixture the gas take the (1 − Z)th a part of
the area, and the Zth part is occupied with the particles not
brining the contribution to the pressure p. Therefore p =
(1 − Z)pg , we obtain the equation of state of mixture as
(Nath 2012b)

p = (1 − Kp)

(1 − Z)

[
(1 − Z) + bρ(1 − Kp)

]
ρR∗T , (3)

where p and ρ are the pressure and density of the mixture,
Z = Vsp

V
is the volume fraction and Kp = (

msp

m
) is the mass

fraction (concentration) of the solid particles in the mixture,
where msp and Vsp are total mass and the volumetric exten-
sions of the solid particles and V and m are the total volume
and total mass of the mixture.

The relation between Kp and Z is given by Pai (1977)

Kp = Zρsp

ρ
. (4)

In the equilibrium flow, Kp is a constant in the whole flow-
field. Therefore from (4)

Z

ρ
= constant. (5)

Also, we have the relation (Pai 1977)

Z = Kp

(1 − Kp)G + Kp

, (6)

where G = ρsp

ρg
is the ratio of the density of the solid parti-

cles to the species density of the gas.

The internal energy per unit mass of the mixture may be
written as

em = (
KpCsp + (1 − Kp)Cv

)
T = CvmT , (7)

where Csp is the specific heat of the solid particles, Cv is
the specific heat of the gas at constant volume and Cvm is
the specific heat of the mixture at the constant volume.

The specific heat of the mixture at constant pressure is

Cpm = KpCsp + (1 − Kp)Cp, (8)

where Cp is the specific heat of the gas at constant pressure.
The enthalpy of the mixture per unit mass is

Hm = em + p

ρ
. (9)

The ratio of the specific heat of the mixture is given by Pai
(1977), Marble (1970)

Γ = Cpm

Cvm

= γ
1 + δα/γ

1 + δα
, (10)

where γ = Cp

Cv
, δ = Kp

(1−Kp)
and α = Csp

Cv
.

Now,

Cpm − Cvm = (1 − Kp)(Cp − Cv) = (1 − Kp)R∗, (11)

after neglecting the term containing b2ρ2 (Anisimov and
Spiner 1972; Vishwakarma and Nath 2007; Nath 2012b).
The internal energy and enthalpy per unit mass of the mix-
ture are, therefore, given by

em = p(1 − Z)

(Γ − 1)ρ[(1 − Z) + bρ(1 − Kp)] , (12)

and

Hm =
[
Cpm + bρ(1 − Kp)2

(1 − Z)
R∗

]
T

= p[(1 − Z)Γ + (Γ − 1)bρ(1 − Kp)]
(Γ − 1)ρ[(1 − Z) + bρ(1 − Kp)] . (13)

For b = 0, the state equation(3), the internal energy equa-
tion (12) and enthalpy equation (13) are identical to the
state equation, the internal energy equation and the enthalpy
equation of the perfect gas with a gas constant (1 − Kp)R∗
and with the ratio of heat capacities (the adiabatic exponent)
Γ . This fact is for one velocity and one temperature mixture
of the perfect gas with heterogeneous particles.

The fundamental equations governing the unsteady, adia-
batic spherically symmetric flow of the mixture of a non-
ideal gas and small particles in presence of a gravita-
tional field with heat conduction and radiation heat flux
taken into account may be expressed in Eulerian coordi-
nates as (cf. Ghoneim et al. 1982; Vishwakarma et al. 2008;
Vishwakarma and Nath 2010, 2012a; Rogers 1957; Carrus
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et al. 1951; Gretler and Wehle 1993; Steiner et al. 1998;
Gretler and Regenfelder 2008)

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+ 2ρu

r
= 0, (14)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂p

∂r
+ m̄Ḡ

r2
= 0, (15)

∂em

∂t
+ u

∂em

∂r
− p

ρ2

(
∂ρ

∂t
+ u

∂ρ

∂r

)
+ 1

r2ρ

∂

∂r

(
r2q

) = 0,

(16)

where r is the radial distance and t is the time, u is the fluid
velocity, m̄ is the mass of the heavy nucleus at the center,
Ḡ is the gravitational constant and q is the total heat flux.

The total heat flux q , which appear in the energy equation
may be decomposed as

q = qc + qR, (17)

where qc = conductive heat flux and qR = radiative heat
flux.

According to Fourier’s law of heat conduction

qc = −K
∂T

∂r
, (18)

where K is the coefficient of thermal conductivity of the gas
and T is the absolute temperature of the medium. It is im-
portant to remember that this expression for the conduction
heat flux can only be considered valid for a plasma state near
local thermodynamic equilibrium. Variations over space and
time must be greater than local mean-free-paths and mean-
free-times (Moses and Duderstadt 1977).

Assuming local thermodynamic equilibrium and using
the radiative diffusion model for an optically thick grey gas
(Pomraning 1973), which is typical for large-scale explo-
sion, the radiative heat flux qR may be obtained from the
differential approximation of the radiation transport equa-
tion in the diffusion limit as

qR = −4

3

(
σ

αR

)
∂T 4

∂r
, (19)

where σ is the Stefan-Boltzman constant and αR is the
Rosseland mean absorption coefficient.

The thermal conductivity K and absorption coefficient
αR of the medium are assumed to vary with temperature
and density. These can be written in the form of power law,
namely (Ghoneim et al. 1982; Vishwakarma et al. 2008;
Vishwakarma and Nath 2010, 2012a)

K = K0

(
T

T0

)βc
(

ρ

ρ0

)δc

, αR = αR0

(
T

T0

)βR
(

ρ

ρ0

)δR

,

(20)

where the subscript 0 denotes a reference state. In the above
equations the exponents and the constants K0, αR0 are to
be determined from gas-property data within the appropri-
ate temperature range; if a self-similar solution is sought
they must also satisfy the similarity requirements. The above
equation (20) is a consequence of data concerning optical
properties.

We assume that a spherical shock wave is propagating
outwards from the centre of symmetry in the undisturbed
medium (mixture of non-ideal gas and small solid particles)
with constant density, under the gravitational force. The flow
variables immediately ahead of the shock front are

u = 0, (21)

ρ = ρ1 = constant, (22)

p = p1 = ρ1m̄Ḡ

rs
, (23)

q = q1 = 0 (Laumbach and Probstein 1970), (24)

where rs is the shock radius, and the subscript ‘1’ denotes
the conditions immediately ahead of the shock.

The expression for the initial volume fraction of the solid
particles Z1 is given by, from (6),

Z1 = Vsp

V1
= Kp

(1 − Kp)G1 + Kp

, (25)

where G1 = ρsp

ρg1
is the ratio of the species density of the

solid particles to the initial species density of the gas ρg1 in
the mixture.

The shock is assumed to be isothermal (the formation of
an isothermal shock is a result of some physical process in
which the flux is taken to be proportional to the temperature
gradient. This exclude the possibility of a temperature jump,
see for example Zel’dovich and Raizer (1967), Rosenau and
Frankenthal (1976, 1978), Vishwakarma et al. (2008); Vish-
wakarma and Nath (2010, 2012a)) and hence, the boundary
conditions across it are

ρ2(Ws − u2) = ρ1Ws = ms(say), (26)

p2 + ρ2(Ws − u2)
2 = p1 + ρ1W

2
s , (27)

em2 + p2

ρ2
+ 1

2
(Ws − u2)

2 − q2

ρ1WS

= em1 + p1

ρ1
+ 1

2
W 2

s ,

(28)

Z2

ρ2
= Z1

ρ1
, (29)

T2 = T1, (30)

where the subscript ‘2’ denotes the condition immediately
behind the shock front and WS = drs

dt
denotes the velocity of
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the shock front. From (26)–(30), we obtain

u2 = (1 − β)Ws, (31)

ρ2 = ρ1

β
, (32)

p2 =
[
(1 − β) + 1

γM2

]
ρ1W

2
s , (33)

q2 = (1 − β)

[
b̄(1 − Kp)

γM2[(1 − Z1) + b̄(1 − Kp)]

− 1

2
(1 + β)

]
ρ1W

3
s , (34)

Z2 = Z1

β
, (35)

where M = (
ρ1W

2
s

γp1
)

1
2 is the shock-Mach number referred to

the frozen speed of sound (
γp1
ρ1

)
1
2 in the dust free perfect

gas. Also, the relation between shock Mach number M and
the effective shock-Mach number Me referred to the speed
of sound

a1 =
( [Γ (1 − Z1)2 + bρ1(1 − Kp){2Γ (1 − Z1) + Z1}]p1

ρ1(1 − Z1)[(1 − Z1) + bρ1(1 − Kp)]
) 1

2

,

in the mixture is

M2
e = (1 − Z1)[(1 − Z1) + bρ1(1 − Kp)]γM2

[Γ (1 − Z1)2 + bρ1(1 − Kp){2Γ (1 − Z1) + Z1}] ,

(36)

where M2
e is defined as

M2
e = W 2

s

a2
1

= (1 − Z1)ρ1W
2
S [(1 − Z1) + bρ1(1 − Kp)]

[Γ (1 − Z1)2 + bρ1(1 − Kp){2Γ (1 − Z1) + Z1}]p1
,

(37)

and, the density ratio β(0 < β < 1) across the shock is ob-
tained by the cubic equation

β3 − β2
(

1

γM2
+ 1 + Z1

)

+ β

[
Z1

(
1

γM2
+ 1

)
+ (1 − Z1)

γM2[(1 − Z1) + b̄(1 − Kp)]
]

+ (1 − Z1)[−Z1 + b̄(1 − Kp)]
γM2[(1 − Z1) + b̄(1 − Kp)] = 0, (38)

where b̄ = bρ1. For all values of the parameters γ , b̄, Kp ,
M2, G1, α within physical limit, (38) gives three different
values of β out of which only one lies in the required range
0 < β < 1 satisfying the physical condition of the problem.

3 Self-similarity transformations

The inner boundary of the flow-field behind the shock is as-
sumed to be an expanding piston. In frame work of self-
similarity (Sedov 1982) the velocity Wp = drp

dt
of the pis-

ton is assumed to obey a power law which results in Nath
(2012b)

Wp = drp

dt
= V0t

n, (39)

where rp is the radius of the piston, V0 is the dimensional
constant and n is a constant. The consideration of ambient
pressure p1 sets a value of n as n = − 1

3 (see (43)). Thus the
piston velocity jumps, almost instantaneously, from zero to
infinity leading to the formation of shock of high strength in
the initial phase. The piston is then decelerated. To justify
the introduction of the form (39) for piston speed it may be
observed that, in non-radiative hypersonic flow theory with
slender bodies possessing power law profiles, the flow in the
shocked layer is given by the solution of analogous unsteady
piston problems with the stated piston speed. It is thus nat-
ural to take the same form for the corresponding radiative
piston problems (following Wang 1964 and Helliwell 1969).
Concerning the shock boundary conditions, self-similarity
require that the velocity of the shock Ws is proportional to
the velocity of the piston, that is

Ws = drs

dt
= CV0t

n, (40)

where ‘C’ is a dimensionless constant. Using (40), the time
and space coordinates can be change into a dimensionless
self-similarity variable η as follows

η = r

rs
= (n + 1)r

CV0tn+1
. (41)

Evidently, η = ηp = rp
rs

at the piston and η = 1 at the shock.
To obtain the similarity solutions, we write the unknown
variables in the following form (Vishwakarma and Nath
2010, 2012a; Zel’dovich and Raizer 1967)

u = WsU(η), ρ = ρ1D(η), p = ρ1W
2
s P (η),

Z = Z1D(η), q = ρ1W
3
s Q(η),

(42)

where U , D, P and Q are functions of η only.
For the existence of similarity solution, Me should be a

constant, therefore

n = −1

3
. (43)

Thus
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M2
e = (1 − Z1)

[
(1 − Z1) + bρ1(1 − Kp)

]

× {
G0

[
Γ (1 − Z1)

2 + bρ1(1 − Kp)

× {
2Γ (1 − Z1) + Z1

}]
(n + 1)

}−1

= constant, (44)

where G0 = ( m̄Ḡ

C3V 3
0
) is the gravitational parameter. Equation

(44) shows that the solutions of the present problem can-
not be reduced to the non-gravitational case (i.e. the case in
which G0 = 0).

The conservation equations (14)–(16) can be transformed
into a system of ordinary differential equations with respect
to η

(U − η)
dD

dη
+ D

dU

dη
+ 2DU

η
= 0, (45)

(U − η)
dU

dη
+ 1

D

dP

dη
+

(
n

n + 1

)
U + (n + 1)G0

η2
= 0,

(46)

dP

dη
+ J

dD

dη
+ S

dQ

dη
+ P

(U − η)
+ 2QS

η
= 0, (47)

where

J = J (η)

= {
b̄2D2(1 − Kp)

[−Z1 + b̄(1 − Kp)
]

− Γ
[
(1 − Z1D) + b̄D(1 − Kp)

]2}
P

× {
D(1 − Z1D)

[
(1 − Z1D) + b̄D(1 − Kp)

]}−1

and

S = S(η) = (Γ − 1)[(1 − Z1D) + b̄D(1 − Kp)]
(1 − Z1D)(U − η)

.

By using (18)–(20) in (17), we obtain

q = − K0

T
βc

0 ρ
δc

0

T βcρδc
∂T

∂r
− 16σT

βR

0 ρ
δR

0

3αR0

T 3−βRρ−δR
∂T

∂r
.

(48)

Using (3) and (42) in (48), we obtain

Q = −
[

K0(CV0)
1/n

T
βc

0 ρ
δc

0 R∗(βc+1)
ρ

(δc−1)
1 (1 − Kp)−(βc+1)

× W
(2βc−2−1/n)
s

{
P(1 − Z1D)

[(1 − Z1D) + b̄D(1 − Kp)]
}βc

× Dδc−βc + 16σT
βR

0 ρ
δR

0 (CV0)
1/n

3αR0R
∗(4−βR)

× ρ
−1−δR

1 (1 − Kp)βR−4W
(4−2βR−1/n)
s

×
{

P(1 − Z1D)

[(1 − Z1D) + b̄D(1 − Kp)]
}3−βR

D−δR−3+βR

]

× (n + 1)
d

dη

[
P(1 − Z1D)

D[(1 − Z1D) + b̄D(1 − Kp)]
]
. (49)

Equation (49) shows that the similarity solution of the
present problem exists only when

βc = 1 + 1

2n
and βR = 2 − 1

2n
. (50)

Similar expressions of βR were obtained earlier by Sedov
(1982), Elliott (1960), Helliwell (1969) and Nicastro (1970)
by the use of dimensional analysis. Also, Ghoniem et al.
(1982) obtained the similar type of expression for βc and βR .
The expressions given above show the effect of the process
of energy exchange, reflected by the dependence of βc and
βR on the piston velocity index n.

Therefore (49) becomes

Q = −X

[
(1 − Z1D)

D[(1 − Z1D) + b̄D(1 − Kp)]
dP

dη

− P [(1 − Z1D) + b̄D(1 − Kp)] + P

D2[(1 − Z1D) + b̄D(1 − Kp)]2
(1 − Z1D)

× D
[−Z1 + b̄(1 − Kp)

]dD

dη

]
, (51)

where

X = (n + 1)
[
ΓcD

δc−1−( 1
2n

) + ΓRDδR−1−( 1
2n

)
]

× (1 − Kp)−2−( 1
2n

)

×
[

P(1 − Z1D)

[(1 − Z1D) + b̄D(1 − Kp)]
](1+ 1

2n
)

,

and Γc and ΓR are the conductive and radiative non-
dimension heat transfer parameters, respectively. The pa-
rameter Γc and ΓR depend on the thermal conductivity K

and the mean free path of radiation 1
αR

respectively, and
also on the exponent n, and they are given by

Γc = K0ρ
(δc−1)
1

T0ρ
δc

0 R∗2

(
CV0√
T0R∗

)1/n

and

ΓR = 16σT 2
0 ρ

δR

0

3αR0R
∗2

ρ
(δR+1)
1

(
CV0√
T0R∗

)1/n

.

Using the self-similarity transformation (42), (31)–(35) can
be written as

U(1) = (1 − β), (52)
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D(1) = 1

β
, (53)

P(1) =
[
(1 − β) + 1

γM2

]
, (54)

Q(1) = (1 − β)

[
b̄(1 − Kp)

γM2[(1 − Z1) + b̄(1 − Kp)]

− 1

2
(1 + β)

]
. (55)

By solving (45)–(47) and (51) for dU
dη

, dP
dη

, dQ
dη

and dD
dη

, we
have

dU

dη
= − (U − η)

D

dD

dη
− 2U

η
, (56)

dP

dη
= (U − η)2 dD

dη
+ UD

[
2(U − η)

η
−

(
n

n + 1

)]

− (n + 1)DG0

η2
, (57)

dQ

dη
= − 1

S

[
(U − η)2 + J

]dD

dη
+ UD

S

[(
n

n + 1

)

− 2(U − η)

η

]
+

[
(n + 1)DG0

η2
− P

(U − η)

]
1

S

− 2Q

η
, (58)

dD

dη
= D

[
(1 − Z1D) + b̄D(1 − Kp)

]

×
[
(1 − Z1D)

{
(n + 1)DG0

η2
− 2UD(U − η)

η

+
(

n

n + 1

)
UD

}

− QD[(1 − Z1D) + b̄D(1 − Kp)]
X

]

× {[
(1 − Z1D) + b̄D(1 − Kp)

]

× {
(1 − Z1D)D(U − η)2 − P

}

− PD(1 − Z1D)
{−Z1 + b̄(1 − Kp)

}}−1
. (59)

For an isentropic change of state of the mixture of the
non-ideal gas and small solid particles, under the thermody-
namic equilibrium condition, we may calculate the equilib-
rium sound speed of the mixture, as follows

am =
(

∂p

∂ρ

)1/2

S

=
[ {Γ (1 − Z)2 + [2Γ (1 − Z) + Z]bρ(1 − Kp)}p

(1 − Z)ρ[(1 − Z) + bρ(1 − Kp)]
]1/2

,

(60)

neglecting b2ρ2, where ‘S’ refers to the process of constant
entropy. In addition, the isothermal speed of sound may also
play a role, where thermal radiation is taken into account.
The isothermal sound speed in the mixture is

aiso =
(

∂p

∂ρ

)1/2

T

=
[
p{(1 − Z)2 + bρ(1 − Kp)(2 − Z)}
(1 − Z)ρ[(1 − Z) + bρ(1 − Kp)]

]1/2

, (61)

where the subscript ‘T ’ refers to the process of constant tem-
perature.

By using (42) in (61), we get the expression for reduced
isothermal speed of sound as

aiso

Ws

=
[
P {(1 − Z1D)2 + b̄D(1 − Kp)(2 − Z1D)}
D(1 − Z1D){(1 − Z1D) + b̄D(1 − Kp)}

]1/2

.

(62)

The adiabatic compressibility of the mixture of non-
ideal gas and small solid particles may be calculated as (cf.
Moelwyn-Hughes 1961)

Cadi = −ρ

(
∂

∂p

(
1

ρ

))

S

= 1

ρa2
m

= (1 − Z)[(1 − Z) + bρ(1 − Kp)]
[Γ (1 − Z)2 + {2Γ (1 − Z) + Z}bρ(1 − Kp)]p .

(63)

Using (42) in (63), we get the expression for the adiabatic
compressibility as,

(Cadi)p1

= (1 − Z1D)
[
(1 − Z1D) + b̄D(1 − Kp)

]

× {[
Γ (1 − Z1D)2 + b̄D(1 − Kp)

× {2Γ (1 − Z1D) + Z1D}]γM2P
}−1

. (64)

The principle of global conservation of energy can be ex-
pressed in terms of the following integral relation

E = 4π

∫ rs

rp

ρ

[
em + 1

2
u2 − Ḡm̄

r

]
r2dr

= 4π

∫ rs

0
ρ1

[
emi

− Ḡm̄

r

]
r2dr + E0t

s , (65)

where E is the total energy of the flow between the piston
and the shock front, emi

is the initial internal energy per unit
mass, ‘s’ is so-called energy-input parameter, E0 is a pro-
portionality constant and

E0t
s = 4π

∫ rp

0
r2
pppdr, (66)
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is the work done by the piston.
Using (42) and (12), in (65) the total energy of the distur-

bance

E = 4π

∫ rs

rp

ρ

[
em + 1

2
u2 − Ḡm̄

r

]
r2dr

is transformed into

E = 4πρ1(CV0)
( 2

n+1 )(n + 1)(
2n

n+1 )r
3+ 2n

n+1
s λ, (67)

where

λ =
∫ 1

ηp

[
1

2
DU2 + P(1 − Z1D)

(Γ − 1)[(1 − Z1D) + b̄D(1 − Kp)]

− G0(n + 1)D

η

]
η2dη.

Hence, the total energy of the shock wave is non-constant

and varies as r
3+ 2n

n+1
s . This increase of total energy may be

achieved by the pressure exerted on the fluid by inner ex-
panding surface (a contact surface or piston). This surface
may be physically, the surface of the stellar corona or the
condensed explosives or the diaphragm containing a very
high-pressure driver gas. By sudden expansion of the stellar
corona or the detonation products or the driver gas into the
ambient gas, a shock wave is produced in the ambient gas.
The shocked gas is separated from this expanding surface
which is a contact discontinuity. This contact surface acts
as a ‘piston’ for the shock wave. Thus the flow is headed
by a shock front and has an expanding surface as an inner
boundary (piston).

The piston path coincides at ηp = rp
rS

with a particle path.
Using (39) to (42) the relation

U(ηp) = ηp = 1

C
=

(
Wp

Ws

)
, (68)

can be derived. In addition to the shock conditions (52) to
(55), the kinematic condition (68) at the piston surface must
be satisfied.

For exhibiting the numerical solutions, it is convenient to
write the field variables in non-dimensional form as

u

u2
= U(η)

U(1)
,

ρ

ρ2
= D(η)

D(1)
,

p

p2
= P(η)

P (1)
,

q

q2
= Q(η)

Q(1)
.

(69)

4 Results and discussion

The distribution of the flow variables between the shock
front (η = 1) and the piston (η = ηp) is obtained by nu-
merical integration of (56) to (59) with the boundary con-
ditions (52) to (55) by the Runge-Kutta method of fourth

order. Parameters of the inert mixture (alumina Al2O3 or
glass) were within the following range: dust particle size
is in the order of 10 µm (Higashino and Suzuki 1980; Fe-
dorov and Kratova 2012), the material density of solid par-
ticles ρsp = 2.5 g/cm3 and the mass fraction (concentration)
of solid particles in the mixture is varied from Kp = 0 to
Kp = 0.3. This case may be realized in an air flow with a
suspension of alumina or glass particles. The diameter of
small solid particles used in the present study d = 10 µm is
two orders of magnitude larger than the shock wave thick-
ness which is of the order of 0.066 µm, it can be assumed
that the small solid particles are unaffected when they pass
through the shock fronts. In addition to the above param-
eters, the following values may be taken as initial condi-
tions: P = 1 atm, Tinitial = 300 K, Csp = 800 J/(kg K),
specific gas constant R∗ = 8314 J/(kg mol K), Cp is calcu-

lated from Cp = γR∗
(γ−1)Ma

, where Ma(= 29) is the effective
molecular weight of air (Elperin et al. 1988). Also, the par-
ticle size 1 µm to 10 µm corresponds to interplanetary dust
(Popel and Gisko 2006). The typical values of the physi-
cal quantities involved in the computation are taken as (Pai
et al. 1980; Miura and Glass 1983; Vishwakarma and Nath
2006, 2007, 2009, 2010, 2012b) γ = 1.4; Kp = 0,0.1,0.3;
G1 = 1,10,100; α = 1; δC = 1, δR = 2; ΓR = 10; Γc = 1;
M2 = 25; b̄ = 0,0.05,0.1; G0 = 0.1,1,5,10,20,50 and
n = − 1

3 . The values γ = 1.4; α = 1 may correspond to the
mixture of air and glass particles (Miura and Glass 1985).
The value Kp = 0, b̄ = 0 corresponds to the perfect gas case
and Kp = 0 to the dust-free case. The value n = − 1

3 cor-
responds to a decelerated piston (shock produced by solar
flares). The value M = 5 of the shock Mach-number is ap-
propriate, because we have treated the flow of a non-ideal
gas and a pseudo-fluid (small solid particles) at a veloc-
ity and temperature equilibrium. The assumption of veloc-
ity and temperature equilibrium may be a good approxima-
tion for strong shock waves, because the thickness of the
relaxation zone behind the shock front becomes very small
for higher Mach-numbers (Vishwakarma and Nath 2010,
2012a). The exponent δC and δR are arbitrary within appro-
priate temperature range, unlike βC and βR . The set of val-
ues δC = 1, δR = 2 is the representative of the case of high-
temperature, low-density medium (Ghoneim et al. 1982).
Also, the set of values Γc = 1, ΓR = 10 is the representa-
tive of the case in which there is heat transfer by both the
radiative diffusion and conduction.

Table 1 shows the variation of density ratio β = (
ρ1
ρ2

)

across the shock front and the position of the piston (ηp)
for different values of Kp , G1 and b̄ with γ = 1.4; α = 1;
δC = 1, δR = 2; ΓR = 10; Γc = 1; M2 = 25; n = − 1

3 and
G0 = 1. Figures 1(a)–(f) show the variation of the flow vari-
ables u

u2
, ρ

ρ2
, p

p2
, q

q2
, aiso

Ws
and the adiabatic compressibil-

ity (Cadi)P1 with η at various values of the parameters Kp ,
G1 and b̄ with γ = 1.4; α = 1; δC = 1, δR = 2; ΓR = 10;
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Table 1 Variation of the
density ratio β(= ρ1

ρ2
) across the

shock front and the position of
the piston surface ηp for
different values of Kp , G1 and
b̄ with α = 1; δC = 1, δR = 2;
ΓR = 10; Γc = 1; M2 = 25;
n = − 1

3 ; G0 = 1 and γ = 1.4

Kp Γ G1 Z1 b̄ β Position of the piston ηp

0 1.4 – 0 0 0.0285714 0.99052

0.05 0.0538411 0.982022

0.1 0.672148 0.9775

0.1 1.36 1 0.1 0 0.0285714 0.99052

0.05 0.115628 0.960165

0.1 0.126518 0.95641

10 0.010989 0 0.0285714 0.99052

0.05 0.0561218 0.98123

0.1 0.0693828 0.9767

100 0.00110988 0 0.0285714 0.99052

0.05 0.0525261 0.98246

0.1 0.0653386 0.9781

0.3 1.28 1 0.3 0 0.0285714 0.99052

0.05 0.304923 0.8861

0.1 0.309254 0.8845

10 0.0410959 0 0.0285714 0.99052

0.05 0.0671655 0.97735

0.1 0.0793649 0.9732

100 0.00426743 0 0.0285714 0.99052

0.05 0.0498538 0.98336

0.1 0.0614118 0.97945

Γc = 1; M2 = 25; n = − 1
3 and G0 = 1. Also, Figs. 2(a)–

(f) show the variation of the flow variables u
u2

, ρ
ρ2

, p
p2

, q
q2

,
aiso

Ws
and the adiabatic compressibility (Cadi)P1 for different

value of gravitational parameter G0 with γ = 1.4; Kp = 0.1;
G1 = 10; b̄ = 0.05; α = 1; δC = 1, δR = 2; ΓR = 10;
Γc = 1; M2 = 25 and n = − 1

3 . These figures show that the
flow variables u

u2
, ρ

ρ2
, p

p2
, aiso

Ws
increase and the adiabatic

compressibility (Cadi)P1, the total heat flux q
q2

decrease as
we move from the shock front to the piston, whereas the den-
sity ρ

ρ2
decreases for G0 = 0.5 and the heat flux q

q2
decreases

after attaining the maximum near the shock for higher val-
ues of G0(> 5). The heat flux profiles behavior is similar to
those obtained by Elliott (1960), Ghoniem et al. (1982), and
Vishwakarma and Nath (2010, 2012a).

4.1 Distribution of flow variables with the parameter of
non-idealness of the gas

The fluid velocity u
u2

, the pressure p
p2

and the density ρ
ρ2

in the disturbed region decrease, in general as we move in-
ward from the shock front, whereas the total heat flux q

q2
in-

creases with an increases in the parameter of non-idealness
b̄ of the gas (see Figs. 1(a), (b), (c), (d)). The isothermal
speed of sound aiso

Ws
increases near shock and decreases

near piston, whereas the adiabatic compressibility (Cadi)P1

shows reverse behavior with an increase in b̄ in general (see
Figs. 1(e), (f)). Also, the density ratio β across the shock

front and the distance of the piston from the shock front in-
crease with an increase in the parameter of non-idealness b̄

of the gas in the mixture i.e. there is a decrease in the shock
strength and the flow-field behind the shock become some-
what rarefied (see Table 1).

4.2 The effect of mass concentration of solid particles
on the distribution of flow variables

The fluid velocity u
u2

, the pressure p
p2

, the total heat flux
q
q2

and the adiabatic compressibility (Cadi)P1 decrease for

G1 = 10, b̄ �= 0 with an increase in the mass concentration
Kp of solid particles in the mixture as we move inward from
the shock front in the disturbed region, whereas these flow
variables increases for G1 = 100, b̄ �= 0 (see Figs. 1(a), (c),
(d), (f)). With an increase in Kp in the case of non-ideal gas
(b̄ �= 0), the density ρ

ρ2
decreases and the isothermal speed

of sound aiso

Ws
increases in general (see Figs. 1(b), (e)). The

flow variables velocity u
u2

, density ρ
ρ2

, pressure p
p2

and the
shock strength remain unaffected by an increase in Kp in
the case of perfect gas (b̄ = 0) but the heat flux q

q2
and adia-

batic compressibility (Cadi)P1 increases (see Figs. 1(a), (b),
(c), (d), (f)) and Table 1). Also, the density ratio β and the
distance of the piston from the shock front increase with an
increase in Kp for G1 = 10, b̄ �= 0 i.e. there is a decrease in
the shock strength, whereas the reverse behavior is observed
for G1 = 100, b̄ �= 0 (see Table 1).
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Fig. 1 Distribution of the flow
variables in the region behind
the shock front with α = 1,
δC = 1, δR = 2; ΓR = 10;
Γc = 1; M2 = 25; n = − 1

3 ;
G0 = 1 and γ = 1.4. (a) The
fluid velocity u

u2
, (b) the density

ρ
ρ2

, (c) the pressure p
p2

, (d) the

total heat flux q
q2

, (e) the

isothermal speed of sound aiso

Ws
,

(f) the adiabatic compressibility
(Cadi)P1. 1. Kp = 0, b̄ = 0
(perfect gas); 2. Kp = 0,
b̄ = 0.05; 3. Kp = 0, b̄ = 0.1;
4. Kp = 0.1, G1 = 10, b̄ = 0;
5. Kp = 0.1, G1 = 10, b̄ = 0.05;
6. Kp = 0.1, G1 = 10, b̄ = 0.1;
7. Kp = 0.1, G1 = 100, b̄ = 0;
8. Kp = 0.1, G1 = 100,
b̄ = 0.05; 9. Kp = 0.1,
G1 = 100, b̄ = 0.1;
10. Kp = 0.3, G1 = 10, b̄ = 0;
11. Kp = 0.3, G1 = 10,
b̄ = 0.05; 12. Kp = 0.3,
G1 = 10, b̄ = 0.1; 13. Kp = 0.3,
G1 = 100, b̄ = 0; 14. Kp = 0.3,
G1 = 100, b̄ = 0.05;
15. Kp = 0.3, G1 = 100,
b̄ = 0.1

4.3 Effect of the ratio of density of solid particles to the
initial density of the gas on the flow variables

Figures 1(a)–(f) and Table 1 show that in the case of per-
fect gas (b̄ = 0) the flow variables and the shock strength
are remain unchanged with an increase in the ratio of den-

sity of solid particles to the initial density of the gas in the
mixture G1. In the case of non-ideal gas (b̄ �= 0) with an
increase in G1 the flow variables u

u2
, ρ

ρ2
, p

p2
, (Cadi)P1 in-

crease, in general as we move inward from the shock front,
whereas the total heat flux q

q2
and the isothermal speed of

sound aiso

Ws
decrease (see Figs. 1(a)–(f)). The density ratio β
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Table 2 Position of the piston surface ηp for different values of grav-
itational parameter G0 with Kp = 0.1; G1 = 10; b̄ = 0.05; α = 1;
δC = 1, δR = 2; ΓR = 10; Γc = 1; M2 = 25; n = − 1

3 ; and γ = 1.4

G0 Position of the piston ηp

0.1 0.98025

1 0.98123

5 0.9822

10 0.982645

20 0.983045

50 0.98354

and the distance of the piston from the shock front decrease
with an increase in the parameter G1 i.e. there is an increase
in the shock strength (see Table 1).

The above effects are more impressive at higher value of
Kp these effects may be physically interpreted as follows:

By an increase in G1 (at constant Kp), there is highly
decrease in Z1, i.e. the volume fraction of solid particles
in the undisturbed medium becomes, comparatively very
small. This causes comparatively more compression of the
mixture in the region between shock and the piston, which
display the above effects.

4.4 Effect of gravitational parameter on the flow
variables

Figures 2(a)–(f) and Table 2 show that the flow variables
u
u2

, ρ
ρ2

, p
p2

, aiso

Ws
and shock strength increase with an increase

in the gravitational parameter G0 as we move inward from
shock front, whereas the total heat flux q

q2
and the adiabatic

compressibility (Cadi)P1 decrease in general, which is an
excellent agreement from our earlier work (Vishwakarma
and Nath 2012b).

The above behavior of the flow variables may be inter-
preted as follows:

As G0 is proportional to 1
C3 , an increase in G0 de-

creases C, and a decrease in C increases the speed of the pis-
ton in comparison with that of the shock. Thus, the distance
between the piston and shock is decreased and the flow vari-
ables between them are increased. Also, then the strength of
the shock is increased and the adiabatic compressibility is
decreased.

5 Conclusion

The present study investigates the self-similar flow behind a
spherical shock wave, propagating in a mixture of non-ideal
gas and small solid particles with heat conduction and radi-
ation heat flux, under the influence of a gravitational field
due to central mass at the origin (Roche model). The effect

of non-idealness parameter b̄ of the gas, the mass concen-
tration of solid particles in the mixture Kp , the density ratio
of solid particles to the initial density of the gas G1 and the
gravitational parameter G0 are studied. The constructed dia-
gram of variations in the flow variables and the tables give a
clear representation of global variations in the flow-field and
the shock strength. It is shown that in the non-ideal dusty
gas under gravitational field, the propagating shock wave is
found to be most influenced by the gravitational parameter.
As the gravitational parameter is increased the shock wave
strength is increased. On the basis of this study, one may
draw the following conclusions:

1. The consideration of the medium under the influence of
gravitational field due to central mass at the origin, the
adiabatic compressibility (Cadi)P1 and total heat flux q

q2
decrease, whereas the other flow variables and the shock
strength increases.

2. The consideration of ambient pressure p1 imposes a
restriction on the piston velocity index n as n = − 1

3 ;
whereas in the case when p1 is neglected n can take any
value such that n > −1 (see Steiner and Hirschler 2002).

3. In the case of non-ideal gas an increase in the gravita-
tional parameter G0 and in the ratio of the density of solid
particles to the initial density of the gas G1 has signifi-
cant effect on the flow variables in the flow-field behind
the shock front. Also, an increase in these parameters ex-
hibit similar effect on shock strength and on the distance
between the piston and shock.

4. An increase in the parameter of non-idealness b̄ of the
gas has significant effects on the flow variables between
the piston and the shock. The non-idealness of the gas
causes a decrease in the shock strength and widens the
disturbed region between the piston and the shock.

5. In the case of non-ideal gas an increase in the mass con-
centration of solid particles in the mixture Kp has signif-
icant effects on the flow-variables between the shock and
the piston. When G1 = 1, b̄ �= 0 the effects of an increase
in the value of Kp , on the shock strength and on the dis-
tance between piston and shock front are similar to those
of an increase in the value of b̄.

We give examples to make clear the nature of shock waves in
dusty medium. However, they serve mainly as illustrations
of how the shock waves in dusty medium can be described.
In reality, many other processes may be important and a
more comprehensive analysis of the shock may be needed
for its applications in astrophysics or elsewhere. The pres-
ence of self-gravitational field increases the compressibility
of the medium, due to which it is compressed and therefore
the distance between the inner contact surface and the shock
surface is reduced. The shock waves in self-gravitating dusty
gas can be important for description of shocks in supernova
explosions, in the study of central part of star burst galax-
ies, nuclear explosion, rupture of a pressurized vessel and



Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles Page 13 of 14 31

Fig. 2 Distribution of the flow
variables in the region behind
the shock front with Kp = 0.1,
G1 = 10, b̄ = 0.05, α = 1,
δC = 1, δR = 2; ΓR = 10;
Γc = 1; M2 = 25; n = − 1

3 and
γ = 1.4. (a) The fluid velocity
u
u2

, (b) the density ρ
ρ2

, (c) the

pressure p
p2

, (d) the total heat

flux q
q2

, (e) the isothermal speed

of sound aiso

Ws
, (f) the adiabatic

compressibility (Cadi)P1.
1. G0 = 0.1; 2. G0 = 1;
3. G0 = 5; 4. G0 = 10;
5. G0 = 20; 6. G0 = 50

explosion in the ionosphere. Other potential applications of
this study include analysis of data from the measurements
carried out by spacecraft in the solar wind and in neighbor-
hood of the Earth’s surface (Korolev and Pushkar 2014). The
present study is related to and our results may be helpful to

some questions being investigated in astrophysical plasmas
(Popel et al. 1998; Popel and Gisko 2006):

Star formation in shocked molecular clouds One be-
lieves that most of new stars are formed in dust-molecular
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clouds and shock waves initiate this process. They create
the increase in density, sufficient for the gravitational self-
compression (Jeans instability). The observations show that
the presence of dust is well correlated with star formation in
dusty clouds. The problem is to determine which process is
more important: condensation due to the dust attraction or
the gravitational self-compression in the shock wave.

Shocks from supernova explosions The layer of dust be-
hind the supernova shock is observed usually. The problem
is to verify whether the layer of dust is related to the process
of dust condensation behind the shock wave front.

Acknowledgement This research was supported by UGC, New
Delhi, India, through the Major Research Project, Ref. No. MRP-
MAJOR-MATH-2013-18258 dated: 18.12.2014.

References

Abdel-Raouf, A.M., Gretler, W.: J. Appl. Math. Mech. 36, 273 (1991)
Anisimov, S.I., Spiner, O.M.: J. Appl. Math. Mech. 36, 883 (1972)
Arora, R., Sharma, V.D.: SIAM J. Appl. Math. 66, 1825 (2006)
Carrus, P., Fox, P., Hass, F., Kopal, Z.: Astrophys. J. 113, 496 (1951)
Chen, F.F.: Introduction to Plasma Physics. Plenum, New York (1974),

Chap. 8
Conforto, F.: Int. J. Non-Linear Mech. 35, 925 (2000)
Dryer, M.: Space Sci. Rev. 15, 403 (1958)
Elliott, L.A.: Proc. R. Soc. Lond. A 258, 287 (1960)
Elperin, T., Ben-Dor, G., Igra, O.: Int. J. Heat Fluid Flow 8, 303 (1987)
Elperin, T., Ben-Dor, G., Igra, O.: Fluid Dyn. Res. 4, 239 (1988)
Ensman, L., Burrows, A., et al.: Astrophys. J. 393, 742 (1992)
Fedorov, A.V., Kratova, Yu.V.: Heat Transf. Res. 43, 123 (2012)
Feinstein, C., et al.: Astrophys. J. 526, 623 (1999)
Geng, J.H., Groenig, H.: Exp. Fluids 28, 360 (1980)
Ghavamian, P., et al.: Astrophys. J. 535, 266 (2000)
Ghoneim, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: J. Fluid

Mech. 117, 473 (1982)
Gretler, W., Regenfelder, R.: Fluid Dyn. Res. 30, 293 (2002)
Gretler, W., Regenfelder, R.: Eur. J. Mech. B, Fluids 24, 205 (2005)
Gretler, W., Regenfelder, R.: Phys. Scr. 77, 055402 (2008)
Gretler, W., Wehle, P.: Shock Waves 3, 95 (1993)
Helliwell, J.B.: J. Fluid Mech. 37, 497 (1969)
Higashino, F., Suzuki, T.: Z. Naturforsch. A 35, 1330 (1980)
Igra, O., Hu, G., Falcovitz, J., Wang, B.Y.: Int. J. Multiph. Flow 30,

1139 (2004)
Kamel, M.M., Khater, H.A., Siefien, H.G., Rafat, N.M., Oppenheim,

A.K.: Acta Astronaut. 4, 425 (1977)
Keiter, P.A., Drake, R.P., Knauer, J.: Phys. Rev. Lett. 89, 165003

(2002)
Kim, K.B., Berger, S.A., Kamel, M.M., Korobeinikov, V.P., Oppen-

heim, A.K.: J. Fluid Mech. 71, 65 (1975)
Korolev, A.S., Pushkar, E.A.: Fluid Dyn. 49, 270 (2014)
Laumbach, D.D., Probstein, R.F.: J. Fluid Mech. 40, 833 (1970)
Madhumita, G., Sharma, V.D.: J. Hyperbolic Differ. Equ. 1, 521 (2004)
Marble, F.E.: Annu. Rev. Fluid Mech. 2, 397 (1970)
Marshak, R.E.: Phys. Fluids 1, 24 (1958)
Miura, H.: Fluid Dyn. Res. 6, 251 (1990)
Miura, H., Glass, I.I.: Proc. R. Soc. Lond. A 385, 85 (1983)

Miura, H., Glass, I.I.: Proc. R. Soc. Lond. A 397, 295 (1985)
Moelwyn-Hughes, E.A.: Physical Chemistry. Pergamon, London

(1961)
Moses, G.A., Duderstadt, J.J.: Phys. Fluids 20, 762 (1977)
Nath, G.: Res. Astron. Astrophys. 10, 445 (2010)
Nath, G.: Adv. Space Res. 49, 108 (2012a)
Nath, G.: Meccanica 47, 1797 (2012b)
Nath, G.: Ain Shams Eng. J. 3, 393–401 (2012c)
Nath, G.: Adv. Space Res. 52, 1304 (2013)
Nath, G.: Shock Waves 24, 415 (2014)
Nath, G., Vishwakarma, J.P.: Commun. Nonlinear Sci. Numer. Simul.

19, 1347 (2014)
Nicastro, J.R.: Phys. Fluids 13, 2000 (1970)
Ojha, S.N., Tiwari, M.S.: Earth Moon Planets 62, 273 (2002)
Ojha, S.N., Takhar, H.S., Nath, O.: J. Magnetohydrodyn. Plasma Res.

8, 1 (1998)
Pai, S.I.: Two Phase Flows. Vieweg Tracts in Pure Appl. Phys., vol. 3.

Vieweg, Braunschweig (1977), Chap. V
Pai, S.I., Menon, S., Fan, Z.Q.: Int. J. Eng. Sci. 18, 1365 (1980)
Park, J.S., Baek, S.W.: Int. J. Heat Mass Transf. 46, 4717 (2003)
Pomroning, G.C.: The Equations of Radiation Hydrodynamics. Inter-

national Series of Monographs in Natural Philosophy, vol. 54.
Pergamon, Oxford (1973)

Popel, S.I., Gisko, A.A.: Nonlinear Process. Geophys. 13, 223 (2006)
Popel, S.I., Tsytovich, V.N., Yu, M.Y.: Astrophys. Space Sci. 256, 107

(1998)
Raga, A.C., et al.: Rev. Mex. Astron. Astrofís. 35, 123 (1999)
Ranga Rao, M.P., Purohit, N.K.: Int. J. Eng. Sci. 14, 91 (1976)
Reipurth, B., Bally, J.: Annu. Rev. Astron. Astrophys. 39, 403 (2001)
Roberts, P.H., Wu, C.C.: Phys. Lett. A 213, 59 (1996)
Rogers, M.H.: Astrophys. J. 152, 478 (1957)
Rosenau, P., Frankenthal, S.: Astrophys. J. 208, 633 (1976)
Rosenau, P., Frankenthal, S.: Phys. Fluids 21, 559 (1978)
Sagdeev, R.Z.: In: Leontovich, M.A. (ed.) Reviews of Plasma Physics,

vol. 4, p. 23. Consultants Bureau, New York (1966)
Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Mir,

Moscow (1982)
Singh, J.B.: Astrophys. Space Sci. 88, 269 (1988)
Singh, L.P., Singh, M., Husain, A.: Astrophys. Space Sci. 331, 597–

603 (2010a)
Singh, L.P., Husain, A., Singh, M.: Meccanica 46, 437–445 (2010b)
Sommerfeld, M.: Exp. Fluids 3, 197 (1985)
Steiner, H., Hirschler, T.: Eur. J. Mech. B, Fluids 21, 371 (2002)
Steiner, H., Gretler, W., Hirschler, T.: Shock Waves 8, 139 (1998)
Sutherland, R.S., Bicknell, G.V., Dopita, M.A.: Astrophys. J. 414, 510

(1993)
Vishwakarma, J.P., Nath, G.: Phys. Scr. 74, 493 (2006)
Vishwakarma, J.P., Nath, G.: Meccanica 42, 331 (2007)
Vishwakarma, J.P., Nath, G.: Meccanica 44, 239 (2009)
Vishwakarma, J.P., Nath, G.: Phys. Scr. 81, 045401 (2010)
Vishwakarma, J.P., Nath, G.: Adv. Eng. Res. 2, 537–576 (2011)
Vishwakarma, J.P., Nath, G.: Commun. Nonlinear Sci. Numer. Simul.

17, 154 (2012a)
Vishwakarma, J.P., Nath, G.: Commun. Nonlinear Sci. Numer. Simul.

17, 2382 (2012b)
Vishwakarma, J.P., Singh, A.K.: J. Astrophys. Astron. 30, 53 (2009)
Vishwakarma, J.P., Nath, G., Singh, K.K.: Phys. Scr. 78, 035402

(2008)
Wang, K.C.: J. Fluid Mech. 20, 447 (1964)
Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70, 3424 (1993)
Zel’dovich, Y.B., Raizer, Yu.P.: Physics of Shock Waves and High

Temperature Hydrodynamic Phenomena, vol. II. Academic Press,
New York (1967)


	Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the inﬂuence of gravitational ﬁeld with conductive and radiative heat ﬂuxes
	Abstract
	Introduction
	Fundamental equations and boundary conditions
	Self-similarity transformations
	Results and discussion
	Distribution of ﬂow variables with the parameter of non-idealness of the gas
	The effect of mass concentration of solid particles on the distribution of ﬂow variables
	Effect of the ratio of density of solid particles to the initial density of the gas on the ﬂow variables
	Effect of gravitational parameter on the ﬂow variables

	Conclusion
	Star formation in shocked molecular clouds
	Shocks from supernova explosions

	Acknowledgement
	References


