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Abstract The rotating mass dipole is possibly used to ap-
proximate the potential distribution of nearly axisymmetri-
cal elongated celestial bodies. To increase the accuracy of
the approximation, an updated dipole system is proposed
by taking the oblateness of one primary into account. The
system is composed with a point mass and a spheroid with
oblateness connected with a massless rod. Dynamic equa-
tions of the updated dipole system in body-fixed frame are
derived in canonical system units. The potential distribution
is determined with three parameters, including the mass ra-
tio, the force ratio and the oblateness of the primary. Equi-
librium points along with zero-velocity curves are given in
the equatorial plane. The influence of the above three pa-
rameters on the distribution of equilibria are illustrated via
numerical simulations. The stability of the system equilib-
ria is discussed under linearized dynamic equations around
each equilibrium point.

Keywords Updated rotating mass dipole · Oblateness of
primary · Equilibrium points · Stability of equilibria

1 Introduction

The Philae probe was successfully landed on the nucleus of
Comet 67P/Churyumov–Gerasimenko as the first time in the
world on November 12, 2014. The Rosetta mission launched
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by ESA on 2004 aimed to explore the physical properties,
materials and environments of the comet which undoubtedly
stimulate the development of deep space explorations. For
these missions around minor celestial bodies, the estimation
and construction of the central body’s gravitational poten-
tial are of great importance for the success of missions (Cui
and Qiao 2014). The accurate gravitational model is usually
obtained by orbiting the central body with a spacecraft for
a period of time, like the Rosetta or Hayabusa launched by
JAXA in 2003. The orbiting data is used to amend the initial
model based on the ground-based observation and labora-
tory analysis. The widely adopted method to generate the
initial model is the polyhedral method proposed by Werner
and Scheeres (Werner 1994; Werner and Scheeres 1997).
The accuracy of the approximation highly depends on the
number of faces and vertices by discretizing the geometri-
cal surface of the concerned body. Although the method is
suitable for specific missions, it may not be used to obtain
some common characteristics of minor celestial bodies due
to their different shape and compositions.

Aiming to understand common properties around irreg-
ular shaped bodies, the dynamics around some simple bod-
ies have been studies for the past decades, including but not
limited to disks (Eckhardt and Pestaña 2002), homogeneous
cube (Liu et al. 2011), dumbbell-shaped bodies (Li et al.
2013), ellipsoids (Guibout and Scheeres 2003) and material
segments (Bartczak and Breiter 2003; Breiter et al. 2005;
Bartczak et al. 2006). The simplest model should be the ro-
tating mass dipole with an explicit expression of the poten-
tial function. This dipole system is a generalization of the
circular restricted three body problem (CRTBP) (Szebehely
1967; Battin 1999) since there is a massless rod connecting
the two point masses. The rotating dipole was proposed by
Chermnykh (1987) to approximate the rotating dumbbell.
Following researches were conducted by Kokoriev and Kir-
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pichnikov (1988) and Kirpichnikov and Kokoriev (1988) by
considering a rotating system consisted with a spheroid and
a dumbbell. Goździewski and Maciejewski (1998, 1999) and
Goździewski (2003) made an extensive study on the rotating
system with a point mass and a rigid body.

In 1994, Prieto-Llanos and Gómez-Tierno (1994) revis-
ited the dipole system focusing on the stability of equilib-
rium points and orbital control around collinear equilibria.
Based on their work, Hirabayashi et al. (2010) found there
is linearly stable region at the collinear equilibrium point
E1 (locating between the two primaries) with small values
of the force ratio. Recently, Zeng et al. (2015) proposed a
method to approximate the external potential distribution of
natural elongated bodies by using the rotating mass dipole.
There are only two independent parameters of the dipole
system, i.e., the mass ratio between the two primaries and
the force ratio between the gravitational force and the cen-
trifugal force. Consequently, some inherent errors between
the relatively accurate model and the dipole can not be elim-
inated by increasing the accuracy of the two parameters.

An updated rotating mass dipole (abbreviated as
‘URMDP’ hereafter throughout this paper) is introduced
in this paper to improve the accuracy of the classical ro-
tating mass dipole (CRMDP), such as the distribution of
equilibrium points. The URMDP is composed with a point
mass and a spheroid with oblateness. The spheroid can be
oblate or prolate which guarantees the stable spinning state
of the system. A massless rod connects the point mass and
the spheroid, which can provide cohesive or compressive
strengths to keep a constant distance between the two pri-
maries. The equatorial plane of the spheroid is consistent
with the plane of the rotating system.

In fact, the problem with one oblate primary (or even
both oblate spheroids) for the CRTBP has been studied
since 1970s, including Vidyakin (1974), and Sharma and
Subba Rao (1975). Sharma and Subba Rao (1976, 1978),
Sharma (1981) and Subba Rao and Sharma (1997) made a
series of contributions on this problem by considering the
oblateness of the more massive body whose equatorial plane
coincides with the plane of the rotating primaries. Such the-
oretical discussions (Arredondo et al. 2012) seem of no prac-
tical applications before the publication of Oberti and Vi-
enne (2003). In their work, the consideration of Saturn’s
oblateness on the motion of its moons, including Helene,
Telesto and Calypso, has shown great significance of the the-
ory which is also useful for some certain satellites. Recent
investigations in terms of the oblateness have been extended
to realistic applications, such as Saturn system (Beevi and
Sharma 2012) and binary asteroid system (Taylor and Mar-
got 2014).

In this study, the consideration of the oblateness of one
primary gives another freedom of the system, i.e., the grav-
itational potential of the URMDP is determined by three in-

dependent parameters, including the mass ratio, the force ra-
tio and the oblateness. Section 2 derives the dynamic equa-
tions of the URMDP along with its Jacobi integral. The dis-
tribution of equilibrium points are analyzed in Sect. 3 where
numerical examples are presented to clearly show the loca-
tion of each equilibrium point. Some new equilibrium points
are obtained due to the oblateness of the primary based on
numerical simulations. Section 4 discusses the influence of
the three parameters on the equilibrium points in a paramet-
ric way. Finally, the stability of collinear and non-collinear
equilibria will be investigated via numerical simulations in
Sect. 5.

2 Dynamical model of the updated rotating mass
dipole

The rotating mass dipole is composed of two primaries m1

and m2 with total system mass of M = m1 + m2. The char-
acteristic distance between these two primaries is fixed in a
constant value of d . The dynamics for a massless particle
is usually described in a synodic reference frame oxyz with
origin at the barycenter of the system. The plane oxy con-
tains the two primaries whereas axis ox is collinear with the
two primaries pointing from m1 to m2 (naturally assuming
m1 ≥ m2). The axis oz is aligned with the angular velocity
of the rotating system ω = ωz, and axis oy is determined
with the right-handed frame. The equations of motion for
the massless particle in the synodic frame with uniformly
rotating can be written as

r̈ + 2ω × ṙ + ω × (ω × r) = −∇U (1)

where r = [x, y, z]T is the position vector from the barycen-
ter of the system to the particle, and ∇U is the gradient of
the gravitational potential of the central body.

To enhance the computational efficiency, dimensionless
units are usually applied to the above system. The mass unit
is set to be M , the length unit is taken as the characteristic
distance d , and the time unit is ω−1 resulting in that the pe-
riodic time of the spinning primaries is 2π . Define the mass
ratio μ = m2/M so that m1 and m2 remain fixed positions
at [−μ,0,0]T and [1 − μ,0,0]T, respectively. The admis-
sible region for μ in this study is (0,0.5] by neglecting the
trivial case of μ = 0 (recalling m1 ≥ m2). The position vec-
tor of the particle with respect to the two primaries can be
expressed as{

r1 = [x + μ, y, z]T

r2 = [x + μ − 1, y, z]T
(2)

Since the centrifugal term in Eq. (1) is conservative, a
reduced dynamical equation in dimensionless units can be
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introduced with

r̈ + 2ω × ṙ = −∇V (3)

where the new co-rotating potential is

V = U − 1

2
‖ω × r‖2 (4)

For the case of both oblate primaries, the effective poten-
tial can be explicitly given as

V12 = −ω2

2

(
x2 + y2) − κω2

{
1 − μ

r1

[
1 + A1

2r2
1

(
1 − 3z2

r2
1

)]

+ μ

r2

[
1 + A2

2r2
2

(
1 − 3z2

r2
2

)]}
(5)

where the parameters r1 and r2 are the respective magni-
tude of position vectors in Eq. (2). Here, A1 and A2 are the
oblateness coefficient of m1 and m2, respectively. The per-
turbed mean motion of the rotating mass dipole in Eq. (5) is
given by

ω =
√

1 + 3

2
(A1 + A2) (6)

The definition of the oblateness coefficient Ai (i = 1,2)
based on Sharma and Subba Rao (1976) is

Ai = (ρe
i )

2 − (ρ
p
i )2

5d2
, i = 1,2 (7)

where ρe and ρp are the dimensionless equatorial and po-
lar radii of the oblate primary. For major planets in the so-
lar system, all of them are oblate spheroids rotating about
its minor axis in the relatively stable state of lowest energy,
even their large moons, such as the Moon and Tethys. Con-
sequently, the value of Ai (i = 1,2) should be positive for
both primaries. However, for the rotating mass dipole con-
nected with the massless rod, the fixed primaries without
spinning can be prolate spheroids corresponding to a stable
system. It indicates that the value of Ai (i = 1,2) for the
dipole system can be less than zero. More detailed discus-
sions about the value of Ai will be given in the next section.

The definition of the dimensionless parameter κ in
Eq. (5) is

κ = GM

ω2d3
(8)

representing the ratio between the gravitational force and the
centrifugal force, referred to as ‘the force ratio’. The param-
eter G is the gravitational constant (6.674 × 10−11 m3 kg−1

s−2). When κ is exactly equal to one, only the gravitational
attraction is between the two primaries (Prieto-Llanos and
Gómez-Tierno 1994). If the value of κ is greater than unity,

there should be compressive stress in the massless rod to
keep the constant distance between the primaries. On the
contrary, the rod would provide tensile stress to overcome
the extra centrifugal force tending to separate the two pri-
maries.

In this paper, the oblateness of the second primary is con-
sidered where the first primary is treated as a point mass. In
such a case the value of A1 is zero and A2 �= 0, the effective
potential of Eq. (5) can be reduced to

W = −ω2

2

(
x2 + y2) − κω2

{
1 − μ

r1

+ μ

r2

[
1 + A2

2r2
2

(
1 − 3z2

r2
2

)]}
(9)

and through the following transformation [μ, r1, r2, A2]T

→ [1 − μ, r2, r1, A1]T, the above equation can give the
effective potential with oblate primary m1. Therefore, the
above equation is actually a representation of the case where
the oblateness of only one primary is considered for the ro-
tating dipole system. Particularly, if both primaries are point
masses, the model will be degenerated into the simple ro-
tating mass dipole (Prieto-Llanos and Gómez-Tierno 1994).
Furthermore, if the force ratio κ is unity, the model corre-
sponds to the classical CRTBP.

Substituting Eq. (9) into Eq. (3), one can obtain the com-
ponential form of the dynamical equations in dimensionless
units[
ẍ ÿ z̈

]T + [−2ωẏ 2ωẋ 0
]T

= − [∇Wx ∇Wy ∇Wz

]T
(10)

where the gradients of the effective potential are listed be-
low:

∇Wx = −ω2
{
x − κ
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r3
1
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r3
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where the dimensionless term of ω2 is given by 1 + 3A2/2
as A1 is assumed to be zero. Equation (10) admits the well-
known Jacobi integral

C = 1

2
ṙ ṙ + W (14)
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which defines the admissible region for possible motions. In
other words, for a given set of initial conditions, the orbit of
the infinitesimal particle can not exceed the boundary deter-
mined by the zero-velocity surface of C = V2.

3 Equilibrium points of the updated dipole system

For the classical CRTBP there are five equilibrium points in
the equatorial plane, i.e., three points (Euler libration points)
collinear with the two primaries and two triangular points
(Lagrange points) equidistant from both primaries. In this
section, the equilibrium points in the equatorial plane of the
dipole system are first investigated in terms of their loca-
tions. The influence of oblateness of the primary on the equi-
librium points is illustrated via numerical examples.

3.1 Locations of the equilibrium points

The equilibrium points in the equatorial plane must satisfy
the condition of z = 0. Equation (10) can be degenerated
into two dimensional equations as

ẍ − 2ωẏ = ω2x − κω2
[
(1 − μ)(x + μ)

r3
1

+ μ(x + μ − 1)

r3
2

(
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2r2
2

)]
(15)

ÿ + 2ωẋ = ω2y
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2
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2r2
2

)]}
(16)

where the equilibria can be obtained with ẋ = ẏ = ẍ = ÿ =
0 by setting the right terms of Eqs. (15) and (16) to be zero.
Consequently, the equilibrium points in the equatorial plane
are determined by the following equations
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r3
2
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2r2
2
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2
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2r2
2

)]}
= 0 (18)

When y = 0 corresponding to the vanishment of Eq. (18),
Eq. (17) gives the locations of the collinear points with

x − κ

[
(1 − μ)s1

(x + μ)2
+ μs2

(x + μ − 1)2
+ 3μA2s2

2(x + μ − 1)4

]
= 0

(19)

where the sign functions are

s1 = sign(x + μ), s2 = sign(x + μ − 1) (20)

After some derivations, Eq. (19) can be rewritten as

7∑
i=0

cix
i = 0 (21)

whose coefficients are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c7 = 1

c6 = 6μ − 4

c5 = 15μ2 − 20μ + 6

c4 = 20μ3 − 40μ2 + 24μ − 4 − σ4

c3 = 15μ4 − 40μ3 + 36μ2 − 12μ + 1 − 4μσ4 − σ3

c2 = 6μ5 − 20μ4 + 24μ3 − 12μ2 + 2μ

− 6μ2σ4 − 3μσ3 − σ2

c1 = μ6 − 4μ5 + 6μ4 − 4μ3 + μ2 − 4μ3σ4 − 3μ2σ3

− 2μσ2 − σ1

c0 = −∑4
j=0 μjσj

(22)

where the auxiliary parameters σj (j = 0,1, . . . ,4) in the
above equation are given as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ4 = κ(1 − μ)s1 + κμs2

σ3 = −4κ(1 − μ)s1 − 2κμs2

σ2 = 6κ(1 − μ)s1 + κμs2 + 3κμA2s2/2

σ1 = −4κ(1 − μ)s1

σ0 = κ(1 − μ)s1

(23)

According to the definition specified in Eq. (7), the cases
of A2 > 0, A2 = 0 and A2 < 0 correspond to oblate, spher-
ical and prolate bodies, respectively. Since physical planets
(such as the Earth, Mars or Jupiter) are oblate bodies with
the stable spinning state, the value of A2 in previous analy-
ses is never less than zero. However, such a constraint can
be also removed in the current study. Because even the sec-
ond primary is a prolate body, the rotating dipole system can
also keep a stable spinning with the maximum momentum
of inertial along axis oz. Moreover, the magnitude of A2 is
not necessary to be small in the level of 10−8∼10−3 as in
the physical planet systems (Arredondo et al. 2012), such
as the systems of Earth-Moon, Saturn-Phoebe or Jupiter-
Ganymede (Sharma and Subba Rao 1976) where the influ-
ence of A1 was discussed on the restricted three body prob-
lem.

When y �= 0, after some derivations by combining
Eq. (17) and Eq. (18), one can get (Idrisi 2014)

r3
1 = κ (24)

and

2r5
2 − 2κr2

2 − 3κA2 = 0 (25)
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where the value of r2 can be obtained by solving the above
quintic polynomial. Equation (24) indicates that the non-
collinear equilibrium points lie on the cycle whose center is
m1 and its radius is 3

√
κ . It also illuminates that the distances

of the triangular equilibria with respect to the second pri-
mary are only relevant to the parameters [κ, A2] and inde-
pendent of the mass ratio. According to the Descartes’ rule
of signs, the above equation has only one positive solution
for A2 > 0 since κ is always positive. As for A2 is negative,
there are two positive roots for the above equation. If these
two roots are not multiple roots, it indicates that additional
equilibrium points exist for this updated rotating dipole sys-
tem. After obtaining r2, combining Eq. (2) with the values
of r1 and r2, the x-coordinate of the triangular equilibrium
point can be given by

xT = r2
1 − r2

2

2
+ 1

2
− μ (26)

where the subscript ‘T’ denotes the triangular equilibrium
points. Then the corresponding y-coordinate of the equilib-
rium point can be easily determined with

yT = ±
√

r2
2 − (xT + μ − 1)2 (27)

For the CRTBP without oblateness, Eq. (26) and Eq. (27)
will be deduced to [1/2 −μ, ±√3/2] which coincides with
previous investigations (Prieto-Llanos and Gómez-Tierno
1994; Szebehely 1967). Additionally, if A2 = 0 for the clas-
sical rotating mass dipole, Eq. (25) will be degenerated into
r3

2 = κ which indicates that Eq. (26) is always 1/2 − μ.
With the possibility of two roots of Eq. (25), there will be
two pairs of equilibrium points symmetrical with respect to
the axis ox. Although these equilibrium points may be not
equidistant with the two primaries, they are also termed as
‘triangular equilibrium points’ throughout this study.

3.2 Numerical examples

Numerical examples are presented with respect to the sim-
plest case where the force ratio κ is set to be unity and the
mass ratio is 0.5. Both positive and negative values of A2

are considered for the updated dipole system. The limiting
case for the oblate spheroid is a circular disk locating in the
equatorial plane. The limiting case for the prolate spheroid
should be a massive straight segment perpendicular to the
massless rod in the plane oxz. The barycenter of the mas-
sive segment must be at the axis ox and also coincides with
its geometric midpoint. The radius of the circular disk and
the length of the massive segment determine the values of
A2 for the two different cases. For instance, if the radius
of the disk is 0.5d with equal mass to the first primary, the
value of A2 is 0.05 based on Eq. (7). Similarly, if the length
of the perpendicular massive segment is d , the value of A2

Fig. 1 Zero-velocity curves and equilibrium points of the updated ro-
tating mass dipole with A2 = 0.05

is −0.05. For convenience, the physical dimension of the
oblate/prolate primary is not discussed hereafter.

The first scenario is for the oblate primary with A2 =
0.05. The equilibrium points along with some zero-velocity
curves in the equatorial plane are shown in Fig. 1. The sketch
of the updated dipole system is also illustrated in the figure
whose physical dimensions are neglected. Five equilibrium
points Ei (i = 1,2, . . . ,5), i.e., two triangular points (i =
4,5) and three collinear points (i = 1,2,3) are obtained at
similar locations with respect to the traditional five Lagrange
points. The coordinates of these equilibria will be compared
to the CRMDP in later discussions.

The second case is for the prolate primary with A2 =
−0.05. Figure 2 illustrates the distributions of the equilib-
rium points of the system and zero-velocity curves. It is
found that there are two pair of new equilibrium points be-
sides the classical equilibria E1∼E5. All these four new
equilibrium points are near the prolate spheroid. The two
collinear equilibria, i.e., E8 and E9 are on either side of the
prolate primary between E1 and E2. As for the other two
points E6 and E7, they are on the circle with a radius of
unity and centered at the first primary. These two equilibria
are also referred to as ‘triangular equilibrium points’. The
locations of the new equilibria Ei (i = 6,7,8,9) in this par-
ticular case are listed in Table 1 in dimensionless length unit.

To investigate the influence of oblateness of the second
primary on the locations of the classical five equilibrium
points, the coordinates of the equilibria are summarized in
Table 2 for three cases, including A2 = 0.05, 0.0, −0.05.
Compared to the dipole system without oblateness, all equi-
libria get shifted away from m2 for the case of A2 = 0.05.
On the contrary, all equilibria move towards m2 for A2 =
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Table 1 Locations of new equilibrium points E6∼E9 of the updated
rotating mass dipole due to the prolate primary m2 with A2 = −0.05

E6 E7 E8 E9

x 0.4617 0.4617 0.2047 0.7853

y 0.2741 −0.2741 0.0 0.0

Fig. 2 Zero-velocity curves and equilibrium points of the updated ro-
tating mass dipole with A2 = −0.05

−0.05 corresponding to the prolate primary. As for the x-
coordinate of each equilibrium point, the change is in the
level of 10−2 except E3 whose change is approximately
10−3. The change of the y-coordinate for E4 and E5 is
also in the level of 10−2. Therefore, the influence of the
oblate primary is greater on E1, E2, E4 and E5 than on E3.
Such an observation is consistent with the results given by
Sharma and Subba Rao (1976) with respect to the CRTBP
with oblateness. In fact, it should be easy to understand as
E3 is the farthest equilibrium point away from m2.

From the above discussions, it can be seen that the oblate-
ness of one primary has changed the topological structure
of the potential distribution of the rotating dipole system.
On the one hand, there are new equilibrium points for both
oblate and prolate cases. On the other hand, the locations
of the classical five equilibrium points (corresponding to the
Lagrange points) are also changed based on Table 2.

4 Parametric study

Besides the above qualitative study about the URMDP,
quantitative investigations will be made in a parametric way
to illustrate the relationship between the equilibria distribu-
tion and the system parameters. There are total three param-
eters κ , μ and A2 determining the potential distribution of

the URMDP. In the following studies, two of them are fixed
and the other is a free parameter. The admissible regions
for the first two parameters are specified as: κ ∈ (0,+∞)

and μ ∈ (0,0.5]. Note that the value of κ for a realistic
rotating dipole system can not be too large since it rep-
resents the force ratio between the gravitational and cen-
trifugal terms. The investigated region of A2 is set to be
[−0.05,0.05] which should be enough to analyze its influ-
ence on the dipole system.

4.1 Influence of [κ, μ] on equilibrium points

The influence of the parameters [κ, μ] on the classical five
equilibrium points E1 to E5 has been well investigated by
Prieto-Llanos and Gómez-Tierno (1994) as well as the lin-
earized stabilities of these equilibria. Some conclusive re-
marks in terms of the classical rotating mass dipole (CR-
MDP) are summarized as a reference to the current study.
The CRMDP involves only two parameters [κ, μ] which
fully determine the potential distribution of the system. With
the increasing of κ with a fixed μ, the equilibria Ei (i =
2, . . . ,5) shift away from the dipole and vice versa where
E1 is kept at a fixed position. For the case of decreasing
μ with a fixed κ , the variational trend of the equilibria is
more complicated than the former scenario. All equilibria
Ei (i = 1,2, . . . ,5) move right along the direction of axis
ox. At the same time, E1 and E2 move towards the smaller
primary while E3 shifts away from m2. The two triangular
equilibrium points E4 and E5 remain at a fixed position rel-
ative to the dipole system.

For the URMDP with a fixed value of A2, the variation
trend of the locations of equilibria should be similar to that
of the CRMDP. Some particular cases, such as the vanish-
ment of the triangular equilibria relevant to the parameters
of the URMDP, are the focus of this section. Moreover, the
influence of the parameters [κ, μ, A2] on the new equilib-
ria Ei (i = 6,7,8,9) will be studies to better understand the
properties of the URMDP. Prieto-Llanos and Gómez-Tierno
(1994) investigated the properties of the CRMDP for κ ≥ 1
in detail. Hirabayashi et al. (2010) extended their work by
focusing on the case of κ < 1. They have pointed out that
the triangular equilibria will vanish when κ ≤ 0.125 for the
CRMDP. Due to the oblateness of the second primary, the
critical value of κ corresponding to the equilibrium bifurca-
tion of E4 and E5 is first investigated.

From the geometrical point of view, the equilibria E4 and
E5 are the intersection points of two specific circles. The
center of the first circle is at the first primary with a radius
of ρ1 satisfying Eq. (24), while the center of the second cir-
cle is at the barycenter of the second primary with a radius
of ρ21 satisfying Eq. (25). When the sum of ρ1 and ρ21 is
not greater than the characteristic distance d , the equilibria
E4 and E5 will vanish. Therefore, the critical value of κ cor-
responds to ρ21 = d −ρ1. Combining Eq. (24) and Eq. (25),
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Table 2 Locations of the five classical equilibrium points E1∼E5 of the updated rotating mass dipole with respect to three different cases of
A2 = 0.05, 0.0, −0.05

A2 E1 E2 E3 E4 E5

0.05 [−0.0282, 0] [1.2316, 0.0] [−1.1995, 0.0] [−0.0236, 0.8792] [−0.0236, −0.8792]
0.0 [0.0, 0.0] [1.1984, 0.0] [−1.1984, 0.0] [0.0, 0.8660] [0.0, −0.8660]

−0.05 [0.0550, 0] [1.1520, 0.0] [−1.1973, 0.0] [0.0268, 0.8500] [0.0268, −0.8500]

one can get the polynomial equation involving only κ and
A2 as

(
1 − 3

√
κ

)5 − κ
(
1 − 3

√
κ

)2 − 3

2
κA2 = 0 (28)

When A2 is given, the critical value of κ can be deter-
mined by solving the above equation. For example, when A2

is zero, the value of κ is 0.125 as is known for the CRDMP.
When A2 is 0.05, the value of κ is approximately 0.1104
whereas κ is approximately 0.1536 for A2 = −0.05. Based
on numerical simulations, the critical value of κ (resulting
in the vanishment of E4 and E5) decreases with positive A2

and increases with negative A2 compared to the CRMDP.
For the case with a negative A2 and a fixed κ , E8 and E9

move towards the prolate primary while E6 and E7 are fixed
relative to the prolate primary by decreasing μ. To investi-
gate the influence of κ on the equilibria variation for the neg-
ative A2, both values of A2 and μ are fixed. Figure 3 gives
an example with A2 = −0.05 and μ = 0.5 by varying κ in
the region of [0.36, 2.16] with a step of 0.1. A schematic
map of the rotating mass dipole is also shown by neglecting
the physical size of the prolate primary. By increasing κ the
equilibria E8 and E9 move to approach m2 with relatively
small amplitude change.

Significant changes in terms of the bifurcation of E6 and
E7 can be seen from Fig. 3, including generation, variation
and vanishment. The critical value κg is approximately 0.37
corresponding to the equilibria generation. With the increase
of κ , E6 and E7 move along the circle centered at the prolate
primary with a radius of ρ22. When ρ1 satisfies ρ1 = d+ρ22,
E6 and E7 will be degenerated into a single point corre-
sponding to κv = 2.07. If κ still increases, this equilibrium
point vanishes as there is no intersection point between the
two circles with respect radius of ρ1 and ρ22. Half circles
centered at m1 with radius of ρ1 are plotted to show the re-
lationships between the two pair of triangular equilibria.

The variational trend of the two pairs of triangular equi-
libria can be intuitively explained by Fig. 4. Since the exis-
tence of triangular equilibria only depends on the parame-
ters [κ, A2] involving Eqs. (24) and (25). Assuming Q to
be functional value of Eq. (25), Fig. 4 illustrates the varia-
tional trend of Q as a function of κ with A2 = −0.05. For
a fixed A2, the radius of ρ22 is a fixed value with variation
of κ . That is why the two equilibria E6 and E7 move on a

Fig. 3 Equilibria variation of the updated rotating mass dipole by
varying κ ∈ [0.36, 2.16] with A2 = −0.05 and μ = 0.5

Fig. 4 Variation trend of Q and the two roots of Eq. (25) as a function
of κ with A2 = −0.05 and μ = 0.5

circle. Another root of Eq. (25) ρ21 increases along the in-
crease of κ corresponding to the movement of E4 and E5

given in Fig. 3.

4.2 Variation of equilibria E1∼E5 by varying A2

Without loss of generality, the parameters [κ, μ] of the up-
dated rotating dipole are still assumed to be [1, 0.5] which
admit the existence of system equilibria. The investigated re-
gion for the oblateness coefficient A2 is [−0.05, 0.05]. The
variation of coordinates of each equilibrium point is studied
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Fig. 5 Influence of A2 ∈ [−0.05, 0.05] on the equilibria E1 to E5 of
the URMDP compared to the CRMDP with κ = 1 and μ = 0.5

by varying the value of A2 in its admissible region. The def-
inition of the coordinate variation of each equilibrium point
is

�q(Ei) = q(Ei) − q0(Ei),

{
q = x, y

i = 1,2, . . . ,5
(29)

Figure 5 summarizes the coordinate variations of E1 to
E4 since E5 is symmetrical with E4 with respect to the
axis ox. The intersection point is [0, 0] corresponding to the
case of A2 = 0. For each of the five coordinates, the coor-
dinate variation depends nearly linearly on the value of A2

in the domain of [−0.05, 0.05]. But in fact, the influence
of the negative A2 is slightly greater than its positive case
for these five classical equilibria. The coordinates of each
equilibrium point at the boundaries with A2 = ±0.05 are
the same as given in Table 2. It is intuitively noted that the
variation of the collinear equilibria �x(E1) and �x(E2) is
the biggest whereas �x(E3) is nearly zero. Particularly, the
value of |�x(E4)| is slightly greater than its corresponding
|�y(E4)| for the same value of A2.

4.3 Dependence of E6∼E9 on negative A2

Figure 6 shows the equilibria variation along with the varia-
tion of A2 from 0 to −0.05 for the case of prolate primary.
The values of [κ, μ] are taken to be [1, 0.5], respectively.
The variational step of A2 is −0.005 which is enough to il-
lustrate the variational trend of the equilibria. E3 seems to
be a fixed point due to the artifact of the scale of the fig-
ure. Thus, zoomed-in views about E3 and E4 are given with
higher resolution. The overall trend for E1 to E5 is to ap-
proach the prolate primary by decreasing A2. Conversely,
the equilibria E6 to E9 shift away from the prolate primary.
Moreover, in terms of the magnitude of equilibriums’ posi-
tion change due to the variation of A2, the four equilibria
E6 to E9 change most whereas E3 is the last which coincide
with the results summarized in Fig. 5.

Fig. 6 Equilibria variation of the updated rotating mass dipole with
κ = 1 and μ = 0.5 by decreasing A2 from 0 to −0.05

Based on the above discussions, it is necessary to make
a brief summary with respect to the equilibria variations of
the URMDP. Variational trends of E1 to E5 dependent on
[κ, μ, A2] are specified as follows:

(a) [μ, A2] are fixed: By increasing κ , E1 moves towards
the prolate primary (A2 < 0) while away from the oblate
primary (A2 > 0). Other equilibria E2 to E5 shift away
from the barycenter of the dipole system.

(b) [κ, A2] are fixed: By decreasing μ, E1 and E2 approach
the second primary m2 (i.e., the oblate or prolate pri-
mary) whereas E3 is away from m2. E4 and E5 keep at
respective fixed points relative to the barycenter of the
dipole system.

(c) [κ, μ] are fixed: By decreasing A2, E1 to E5 move to-
wards m2.

As for the four new equilibria E6 to E9 due to the
prolate primary, their variational trends and bifurcation
conditions are also given here:

(d) [μ, A2] are fixed: There are two boundary values κg

(lower value) and κv (upper value) corresponding to the
case that E6 and E7 merge into a single point. When
κg < κ < κv, E6 and E7 move to the right along axis ox

along a circle centered at m2 by increasing κ . If κ < κg

or κ > κv, the equilibria E6 and E7 will vanish. E8 and
E9 move towards m2 along with the increase of κ .

(e) [κ, A2] are fixed: By decreasing μ, E8 and E9 move
towards the prolate primary while E6 and E7 keep at
respective fixed points relative to the barycenter of the
dipole system.

(f) [κ, μ] are fixed: By decreasing A2, E6 to E9 are all
away from m2.

5 Stability of the equilibrium points

To investigate the motion around an equilibrium point
[xE, yE]T in the equatorial plane, let an initial perturbing
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vector [ξ, η]T add to the nominal position as ξ = x − xE

and η = y − yE . Then the linearized equations of motion in
dimensionless units can be derived from Eqs. (15) and (16):{

ξ̈ − 2ωη̇ = −Wxxξ − Wxyη

η̈ + 2ωξ̇ = −Wyxξ − Wyyη
(30)

where the coefficients of the right terms are

Wxx = ∂Wx

∂x
= −ω2 + κω2

[
1 − μ

r3
1

− 3(1 − μ)(x + μ)2

r5
1

+ μ

r3
2

− 3μ(x + μ − 1)2

r5
2

+ . . .
3μA2

2r5
2

− 15μA2(x + μ − 1)2

2r7
2

]
(31)

Wyy = ∂Wy

∂y
= −ω2 + κω2

[
1 − μ

r3
1

− 3(1 − μ)y2

r5
1

+ μ

r3
2

− 3μy2

r5
2

+ 3μA2

2r5
2

− 15μA2y
2

2r7
2

]
(32)

Wxy = Wyx = ∂Wx

∂y
= −3κω2y

[
(1 − μ)(x + μ)

r5
1

+ μ(x + μ − 1)

r5
2

+ 5μA2(x + μ − 1)

2r7
2

]
(33)

By introducing the state variable vector χ = [ξ, η, ξ̇ , η̇]T,
the variational equations (30) can be transformed into a set
of first-order equations χ̇ = Φχ where the state transition
matrix Φ is (Szebehely 1967)

Φ =
[

02×2 I2×2

−∇2W −Ω

]
4×4

(34)

whose eigenvalues are specified as λj (j = 1,2,3,4). The
equilibrium point is linearly stable if and only if Reλj < 0
while unstable if and only if Reλj > 0 (j = 1,2,3,4).
When Reλj = 0 the system of Eq. (30) yields asymptotic
stability. Here, 02×2 and I2×2 are the second-order zero ma-
trix and identity matrix, respectively. The well-known Hes-
sian matrix ∇2W and the skew symmetric matrix Ω in
Eq. (34) are defined as

∇2W =
[
Wxx Wxy

Wxy Wyy

]
; Ω =

[
0 −2ω

2ω 0

]
(35)

The characteristic equation of Eq. (30) is

λ4 + (
4ω2 +Wxx +Wyy

)
λ2 + (

Wxx ·Wyy −W 2
xy

) = 0 (36)

Fig. 7 Stable region at E1 by varying μ ∈ (0,0.5] and κ with respect
to A2 = 0 and A2 = 0.05

where the above quartic equation in the variable λj (j =
1,2,3,4) is also a quadratic equation in λ2. Let λa = λ2

1 =
λ2

2 and λb = λ2
3 = λ2

4 where λ1 = −λ2 and λ3 = −λ4.
According to Murray and Dermott (1999), the equilibrium
point is stable if all the eigenvalues are purely imaginary in-
dicating that λa and λb (λa �= λb) must be negative. Such a
condition is the same as that given by using Eq. (34) with
non-positive eigenvalues.

5.1 Collinear equilibrium points

For collinear equilibrium points, one can immediately know
that the term Wxy is zero with y = 0. Equation (31) and
Eq. (32) can be reduced to

Wxx = −ω2
{

1 + 2κ

[
1 − μ

r3
1

+ μ

r3
2

+ 3μA2

r5
2

]}
(37)

Wyy = −ω2
{

1 − κ

[
1 − μ

r3
1

+ μ

r3
2

+ 3μA2

2r5
2

]}
(38)

where r1 = |x+μ| and r2 = |x+μ−1| for collinear equilib-
rium points. Combining Eqs. (35), (37) with (38), the eigen-
values of Eq. (34) can be determined via numerical sim-
ulations. For the case of A2 = 0, it has been proved that
the equilibria E2 and E3 are unstable (Prieto-Llanos and
Gómez-Tierno 1994) whereas E1 is conditionally stable for
k ≤ 0.125 (Hirabayashi et al. 2010).

Through our numerical simulations, there is no case
where the roots are all imaginary for E2 and E3 with μ ∈
(0,0.5], A2 ∈ [0,0.05] and a wide range of κ ∈ (0,100].
Consequently, E2 and E3 are unstable in the case of oblate
second primary. Figure 7 shows the stable region at E1 in
the cases of A2 = 0 and A2 = 0.05 with μ ∈ (0,0.5]. The
closed area with boundaries of solid lines is the stable region
for A2 = 0 and the other with boundaries of dashed lines is
for A2 = 0.05. The shapes of these two areas are similar to
each other. It should be emphasized that there is still stable
region for E1 with oblateness of the second primary. Due to
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Fig. 8 Stable region at E1 by varying μ ∈ (0, 0.5] and κ with respect
to A2 = 0 and A2 = −0.05

the oblateness the stable region shifts down where the max-
imum value of κ drops down from 0.125 to approximately
0.11.

In Fig. 8, the closed area with boundaries of solid line
is still the stable region at E1 with A2 = 0 which is the
same as that given in Fig. 7. The stable region correspond-
ing to A2 = −0.05 is given by dashed-line boundaries with
μ ∈ (0,0.5]. Obviously, the stable region is enlarged due to
the prolate primary compared to the CRMDP. Particularly,
the variational trend of the lower boundary along with the
increase of μ with A2 = −0.05 is different from the case of
A2 = 0. Taking μ = 0.5 as an example, the stable domain is
approximately 0.055 for κ with A2 = −0.05 while it is only
0.015 with A2 = 0. The stable region at E1 with other values
of A2 can be determined by using the same method. More-
over, according to the simulations, it is found that the upper
boundary for the stable region at E1 is always constant with
a fixed A2 by varying the mass ratio. The above cases with
small values of κ regarding the stability of E1 may be help-
ful to understand dynamical properties of elongated minor
celestial bodies.

There are another two collinear equilibria E8 and E9 for
the case of prolate primary. Taking A2 = −0.05 as an exam-
ple, the stable region at E8 is given in Fig. 9 with filled area.
The lower boundary is a constant value of approximately
0.369 starting from the left point of μ ≈ 0.097. When μ is
greater than 0.175, the maximum value of κ goes up sharply
from 10 to 50 which is relatively a very high value for a
realistic spinning system. Thus, higher values of κ corre-
sponding to the upper boundary of the stable area are not
presented in the figure. According to numerical simulations,
the lower boundary of the stable region shifts up along with
the decrease of |A2| while the left boundary is towards the
axis oy. Additionally, the stable region at E9 is nearly the
same as that at E8 as well as variational trends as a function
of system parameters. Therefore, the stability of E9 is not
discussed any more.

Fig. 9 Stable region at E8 by varying μ ∈ (0, 0.5] and κ with respect
to A2 = −0.05

5.2 Stability of the non-collinear equilibrium points

The stability regarding E4 and E5 is investigated based on
the Eqs. (31) to (34). For the CRMDP with A2 = 0, the sta-
ble condition for E4(E5) can be explicitly given as (Prieto-
Llanos and Gómez-Tierno 1994)

9μ(1 − μ) · κ−2/3 · (4 − κ−2/3) ≤ 1 (39)

corresponding to the scenario that all eigenvalues of Eq. (34)
are purely imaginary. Particularly, when κ is unity, Eq. (39)
illustrates the stability of the triangular equilibrium points in
the CRTBP. Due to the oblateness of the primary, the stable
condition for E4(E5) of the URMDP can not be deduced to
an explicit form as simple as Eq. (39). Consequently, numer-
ical simulations are performed to identify the stable region
at E4(E5).

Figure 10 shows the stable region at E4(E5) with dif-
ferent values of A2. The filled area with short dashed-line
boundary is the region of unstable motion for the case of
A2 = −0.05, the solid line is for A2 = 0 and the long
dashed-line is for A2 = 0.05. The values of A2 = −0.05 and
0.05 are taken as representatives to illustrate the influence
of A2 on the stable region. With a negative A2 (prolate pri-
mary), the unstable area reduces compared to the case of
A2 = 0. Conversely, the unstable area increases with a pos-
itive A2 (oblate primary). Particularly, there is a small area
next to the axis oy where no triangular equilibria E4(E5)

exist. A zoom-in plotting is given in Fig. 10(b) to show the
details around the axis oy. By increasing A2 from negative to
positive, the boundary value of κ for the existence of E4(E5)

decreases whose line moves to the left. Except the unstable
region and the area where E4(E5) can not exist, other re-
gions are linearly stable areas for E4(E5).

The existence of the other two triangular equilibria
E6(E7) is within κ ∈ [0.37, 2.07] according to Sect. 3.1
which is independent of the mass ratio. The eigenvalues
of Eq. (34) are calculated with κ ∈ [0.37,2.07] and μ ∈
(0,0.5]. Neglecting the truncation error of the calculations,
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Fig. 10 Stable region at E4(E5) by varying μ ∈ (0,0.5] and κ with
respect to A2 = 0, 0.05, −0.05

there are always a pair of pure imaginaries and a pair of real
numbers. Therefore, E6 and E7 are unstable based on the
numerical evidence.

A brief summary regarding the stability of the equilibria
is given. The collinear equilibrium point E1 is conditionally
stable with small values of the force ratio κ . The maximum
value of κ corresponding to the upper boundary of the sta-
ble region increases along with the decrease of the oblate-
ness A2 from positive to negative. The triangular equilibria
E4 and E5 are conditionally stable. With the increase of A2

from negative to positive, the stable region at E4(E5) en-
larges slightly whereas the minimum value of κ determin-
ing the existence of E4(E5) decreases. The non-collinear
equilibria E8 and E9 are conditionally stable while all other
equilibria of the URMDP, including E2, E3, E6 and E7, are
unstable according to our numerical results.

6 Conclusions

Dynamic properties of the updated rotating mass dipole have
been studied in this paper. The updated dipole system is
composed of a point mass and a spheroid with oblateness
which corresponds to the less massive primary. The gravita-
tional potential of this system depends on three free param-
eters, i.e., the mass ratio, the force ratio and the oblateness.

There are five equilibrium points for the updated dipole with
an oblate spheroid, including three collinear points and two
triangular points. Besides the above five equilibria, there are
up to four new equilibrium points around the primary of a
prolate spheroid. The boundary values of the oblateness in
this study are taken to be −0.05 to 0.05.

The non-collinear equilibria E6 and E7 exist when the
force ratio is approximately in the region of [0.37, 2.07]
which are independent of the mass ratio. The variation trend
in terms of the locations of equilibria is categorized into six
cases by varying the three independent parameters. Particu-
larly, when the mass ratio and the force ratio are fixed, the
equilibria E1 to E5 move towards the oblate or prolate pri-
mary where E6 to E9 away from it along with the decrease
of the oblateness. The collinear equilibrium point E1 is con-
ditionally stable with small values of the force ratio. The
triangular equilibria E4 and E5 are also conditionally stable
whose stable region increases along with the decrease of the
oblateness. All other equilibrium points are unstable based
on the numerical simulations.
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Goździewski, K., Maciejewski, A.J.: Nonlinear stability of the La-
grangian libration points in the Chermnykh problem. Celest.
Mech. Dyn. Astron. 70(1), 41–58 (1998)
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