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Abstract The spatially homogeneous shear-free, rotating
and expanding Bianchi type-IX universe has been consid-
ered in the presence of perfect fluid in f (R,T ) theory of
gravity. The exact solution of the field equations has been
obtained and the functional form of f (R,T ) = R + 2f (T )

gravity has been reconstructed. The existence of such a so-
lution suggests that the general relativistic shear-free perfect
fluid conjecture which claims that a shear-free perfect fluid
cannot rotate and expand at the same time, is not valid in
this modified theory.

Keywords f (R,T ) gravity · Bianchi type-IX model ·
Shear-free perfect fluid · Rotation

1 Introduction

The cosmological observations suggest that current uni-
verse is undergoing an accelerated expansion. The indica-
tions of this late time accelerated expansion of the universe
is provided by observations from Supernova type-Ia experi-
ments (Perlmutter et al. 1997, 1998, 1999; Riess et al. 1998,
2004), cosmic microwave background (CMB) anisotropies
(Bennett et al. 2003; Spergel et al. 2003, 2007), large
scale structure (Hawkins et al. 2003; Tegmark et al. 2004;
Cole et al. 2005). In view of this, it is now believed that
∼76 % of the cosmic energy density is dark energy (DE).
In recent years, as well as introducing exotic energy compo-
nent in the universe such as quintessence, phantom, tachyon,
Chaplygin gas (Padmanabhan 2002, 2008; Bento et al. 2002;
Caldwell 2002; Nojiri and Odintsov 2003; Feng et al. 2005),
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modifying General Relativity (GR) is attracting more atten-
tion to explain the late time acceleration and existence of
dark energy.

Among the various modifications, one of the most pop-
ular modified gravity theory is f (R) theory of gravity
(Maartens and Taylor 1994; Rippl et al. 1996; Nojiri and
Odintsov 2007; Capozziello and Francaviglia 2008; Sotiriou
2009; Felice and Tsujikawa 2010), which is obtained by
modifying Einstein-Hilbert (EH) action by replacing Ricci
curvature scalar R with an f (R) function, which is an arbi-
trary function of R. It was shown that the late time acceler-
ation of the universe can be explained within this modified
theory (Carroll et al. 2004).

Recently Harko et al. (2011) have presented a new mod-
ified theory of gravity known as f (R,T ) gravity. In this
theory, EH action is modified by introducing an arbitrary
function of the Ricci Scalar R and of the trace of the
energy-momentum tensor of T . Several problems have been
considered by multiple authors in the f (R,T ) theory of
gravity (Sharif and Zubair 2012a, 2014a, 2014b; Reddy
et al. 2012, 2014; Singh and Sharma 2014; Hossienkhani
et al. 2014; Shamir and Raza 2015; Sahoo and Sivakumar
2015).

In this paper, we investigate shear-free perfect fluid con-
jecture in the context of f (R,T ) gravity. In contrast to New-
tonian theory of gravitation (Narlikar 1963; Senovilla et al.
1998; Heckmann and Schücking 1959), μ and p are being
the energy density and the pressure, respectively, this con-
jecture, which was originated by Treciokas and Ellis (1971),
states that a general relativistic shear-free perfect fluid, with
μ+p �= 0, is either non-expanding or non-rotating. There is
a wide range of studies that support the consequence using
either a particular tetrad or coordinate system or a fully co-
variant approach in particular cases for instance, dust, spa-
tial homogeneity, incoherent radiation, vorticity and accel-
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eration are parallel, the magnetic part of the Weyl tensor
or divergence of electric or magnetic part of Weyl tensor
is vanishes, fluid velocity parallel with a conformal Killing
vector field, functionally dependent expansion and energy
density, Petrov types N and III, . . . etc. (Ellis 1967, 2011;
King and Ellis 1973; Collins 1984, 1985, 1986, 1988; White
and Collins 1984; Carminati 1987, 1988, 1990; Coley 1991;
Senovilla et al. 1998; Sopuerta 1998; Van den Bergh 1999;
Van den Bergh et al. 2007; Carminati et al. 2009; Herrera
et al. 2010, 2014; Slobodeanu 2014), but a general proof or
a counter-example has not appeared up till now.

On the other hand, in the context of modified f (R) grav-
ity theory, as far as we know, there are two studies that have
dealt with this conjecture. In the first of them, Abebe et al.
(2011) have shown that in R3 gravity, there is at least one
physically realistic non-vacuum case (stiff fluid) which is a
flat Milne-universe solution can have rotation and expansion
simultaneously at the level of linearized perturbation about
a Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground. In the second study, Sofuoğlu and Mutuş (2014)
have shown that there exist two types of f (R) models in
which shear-free rotating Bianchi type-IX universe filled
with perfect fluid exhibits always coasting anisotropic ex-
pansion like a flat Milne universe. These solutions, respec-
tively, are the first and the second counter-examples that
violated the general relativistic shear-free perfect fluid con-
jecture in f (R) gravity.

Inspired by these situations, in the present paper, to in-
vestigate existence of simultaneously rotating and expand-
ing solutions, we have considered a spatially homogeneous
rotating Bianchi type-IX metric in the context of f (R,T )

modified gravity by following the same method used by So-
fuoğlu and Mutuş (2014).

The outline of this paper is as follows: In Sect. 2, we
present a brief description of f (R,T ) gravity. In Sect. 3, we
derive f (R,T ) gravity tetrad equations for rotating Bianchi
type-IX metric and the solutions of the tetrad equations for
the model are obtained. In Sect. 4 conclusions are summa-
rized.

We use the natural units system with c = 8πG = 1.
Latin indices a, b, c, . . . run from 0 to 3 while Greek indices
μ,ν,ρ, . . . from 1 to 3. (ab) and 〈ab〉 denotes symmetriza-
tion and orthogonal, symmetric, trace-free parts over the in-
dices a and b, respectively.

2 Field equations of f (R,T ) gravity

The action of f (R,T ) modified theory of gravity is given
by Harko et al. (2011)

S = 1

2

∫
d4x

√−g
[
f (R,T ) + 2Lm

]
, (1)

where Lm is the matter Lagrangian density. The stress-
energy tensor of matter is given by

T m
ab = 2√−g

δ(
√−gLm)

δgab
= μmuaub + pmhab

+ qm
a ub + qm

b ua + πm
ab, (2)

where μm, pm, qm
a and πm

ab are the energy density, isotropic
pressure, heat flux and anisotropic pressure of standard mat-
ter, respectively, ua is the four velocity of observers comov-
ing with the fluid, with uau

a = −1 and ub∇aub = 0, and
hab ≡ gab + uaub is the standard projection tensor on the
rest three-space of the observers.

Variation of the action (1) with respect to the metric ten-
sor gab leads to the following field equations of f (R,T )

gravity

fR(R,T )Rab − 1

2
f (R,T )gab + (gab� − ∇a∇b)fR(R,T )

= T m
ab − fT (R,T )

(
T m

ab + Θab

)
, (3)

where fR(R,T ) = ∂f (R,T )
∂R

, fT (R,T ) = ∂f (R,T )
∂T

, � =
gab∇a∇b , ∇a is the covariant derivative, and Θab = −2T m

ab +
gabLm − 2gmn ∂2Lm

∂gmn∂gab . In the case of perfect fluid, i.e.

qm
a = 0 = πm

ab , the stress-energy tensor (2) takes the form

T m
ab = (

μm + pm
)
uaub + pmgab, (4)

and the matter Lagrangian can be taken as Lm = −pm. Then
Θab has the explicit form

Θab = −2T m
ab − gabp

m. (5)

Substituting Eq. (5) for Θab into Eq. (3), we obtain

fR(R,T )Rab − 1

2
f (R,T )gab + (gab� − ∇a∇b)fR(R,T )

= T m
ab + fT (R,T )

(
T m

ab + gabp
m
)
. (6)

One can write this equation in the form of standard Einstein
field equations such as

Gab ≡ Rab − 1

2
Rgab

= T m
ab

fR(R,T )
+ fT (R,T )

fR(R,T )

(
T m

ab + pmgab

)

+ 1

fR(R,T )

{
1

2

[
f (R,T ) − RfR(R,T )

]
gab

− (gab� − ∇a∇b)fR(R,T )

}
, (7)

where Gab is Einstein tensor. If the right hand side of (7) is
considered as effective total energy-momentum tensor T t

ab ,
then it can be written as Gab = T t

ab .
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It may be noted that when f (R,T ) ≡ f (R), Eqs. (7)
yield the field equations of f (R) gravity. We mention here
that three explicit specification of the functional form of
f (R,T ) function has been considered in Harko et al. (2011).
In this paper we consider the function f (R,T ) of the form

f (R,T ) = R + 2f (T ). (8)

Then the field Eqs. (7) become

Gab = T m
ab + 2fT (T )T m

ab + [
2pmfT (T ) + f (T )

]
gab, (9)

where

T t
ab ≡ T m

ab + 2fT (T )T m
ab + [

2pmfT (T ) + f (T )
]
gab, (10)

is being the effective total energy-momentum tensor which
can be split, similarly (2), as

T t
ab = μtuaub + pthab + qt

aub + qt
bua + πt

ab. (11)

Here μt , pt , qt
a and πt

ab are total effective dynamic quan-
tities, namely, effective total energy density, pressure, heat
flux, and anisotropic pressure, respectively. On the other
hand, dynamic quantities defined by corresponding energy-
momentum tensor, as

μ = uaubTab, p = 1

3
habTab,

qa = −hb
au

cTbc, πab = hc〈ahd
b〉Tcd .

(12)

Now, using (12) and (4), Eq. (11) gives us the following ef-
fective total dynamic quantities of R + 2f (T ) gravity:

μt = μm + 2fT (T )
(
μm − pm

) − f (T ), (13a)

pt = pm + 4fT (T )pm + f (T ), (13b)

qt
a = 0, (13c)

πt
ab = 0. (13d)

On the other hand, in this paper we will use non-linear tetrad
evolution and constraint equations instead of components of
field equations. In view of this, we shall assume familiar-
ity with tetrad evolution and constraint equation of GR as
given by Ellis and van Elst (1999). The tetrad evolution and
constraint equations of f (R,T ) gravity can be obtained by
writing the effective total dynamical quantities μt , pt , qt

α

and πt
αβ in place of μ, p, qα and παβ in tetrad equations

of GR. We list the evolution and the constraint equations of
f (R,T ) gravity in Appendix A (see (38)–(54)).

3 Metric and solutions

We consider rotating spatially homogeneous Bianchi type-
IX universe, in a one-forms basis ωa , given by

ds2 = −(
ω0 − a(t)vαωα

)2 + a2(t)k2
α

(
ωα

)2
, (14)

with the following explicit realization (MacCallum 1979)

ω0 = dt,

ω1 = cosy cos zdx − sin zdy,

ω2 = cosy sin zdx + cos zdy,

ω3 = − sinydx + dz,

(15)

where the scale factor a is only function of cosmic time t and
kα’s are positive constant parameters. Now, we can write the
ansatz for the line element (14)

ds2 = ηabσ
aσ b, ηab = diag(−1,1,1,1), (16)

choosing an orthonormal comoving (e0 = u) tetrad frame
with the following σa one-forms

σ 0 = ω0 − a(t)v1ω
1 − a(t)v2ω

2 − a(t)v3ω
3,

σ 1 = a(t)k1ω
1, σ 2 = a(t)k2ω

2,

σ 3 = a(t)k3ω
3,

(17)

and the ea basis vectors (σa(eb) = δa
b )

e0 = ∂t ,

e1 = v1

k1
∂t + 1

k1a(t)

(
cos z

cosy
∂x − sin z∂y

+ cos z siny

cosy
∂z

)
,

e2 = v2

k2
∂t + 1

k2a(t)

(
sin z

cosy
∂x + cos z∂y

+ siny sin z

cosy
∂z

)
,

e3 = v3

k3
∂t + 1

k3a(t)
∂z.

(18)

For such a frame, commutators of the basis vectors ea are
given by Ellis and van Elst (1999) in terms of the kinematic
quantities of the fluid as measured with respect to e0:

[e0, eβ ] = u̇βe0 +
[
ε
γ
βδ

(
Ωδ + ωδ

) − σ
γ
β − 1

3
δ
γ
β θ

]
eγ , (19a)

[eα, eβ ] = 2εαβγ ωγ e0

+ (
εαβδn

γ δ + aαδ
γ
β − aβδγ

α

)
eγ , (19b)

where the kinematic quantities u̇a , θ , σab (σ 2 = (1/2)σab ×
σab) and ωa (ω2 = ωaω

a) are acceleration, expansion, shear
and vorticity, respectively, and nαβ and aα are the commu-
tation variables and Ωα is the local angular velocity of the
spatial triad {eα}.
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Using the basis vectors (18), the commutation relations
(19a) and (19b) give us the following kinematics for the Ro-
tating Bianchi type-IX model:

σαβ = 0, θ = 3
ȧ

a
,

u̇1 = v1

k1

ȧ

a
= −a1, u̇2 = v2

k2

ȧ

a
= −a2,

u̇3 = v3

k3

ȧ

a
= −a3,

ω1 = v1

2k2k3

1

a
= −Ω1, ω2 = v2

2k3k1

1

a
= −Ω2,

ω3 = v3

2k1k2

1

a
= −Ω3,

n11 = − k1

k2k3

1

a
, n22 = − k2

k3k1

1

a
,

n33 = − k3

k1k2

1

a
, others = 0.

(20)

Here and hereafter the dot ( ˙) denotes derivative with re-
spect to the cosmic time t .

As a first step we specialize to the case

v1 �= 0, v2 = 0, v3 = 0. (21)

Following the same procedure in Sofuoğlu and Mutuş
(2014), using the basis vectors ea given by (18) and the
kinematic quantities (20) in the full set of the constraint
equations (47)–(54) and the evolution Eq. (40) which con-
verted into a constraint in the case of vanishing shear, we
obtain the total effective dynamic quantities of the model.
We list nontrivial of them for the case (21) in Appendix B
(see (55)–(61)).

Our solution seeking for rotating Bianchi type-IX model
in f (R,T ) gravity, is based on comparing the total effec-
tive dynamic quantities, which is given by the Eqs. (13a)–
(13d) and (55)–(61). Then, comparing Eqs. (13c) with (57)
and (13d) with (58)–(61), we have the following system of
equations:

ä

a
− ȧ2

a2
= k2

1

4k2
2k2

3

1

a2
(22)

− 4
v2

1

k2
1

(
ä

a
− ȧ2

a2

)
+

(
2k2

1 − v2
1

k2
2k2

3

− k2
2

k2
3k2

1

− k2
3

k2
1k2

2

+ 2

k2
1

− 1

k2
2

− 1

k2
3

)
1

a2
= 0 (23)

2
v2

1

k2
1

(
ä

a
− ȧ2

a2

)
+

(
2k2

2

k2
3k2

1

− k2
3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

+ 2

k2
2

− 1

k2
3

− 1

k2
1

)
1

a2
= 0 (24)

2
v2

1

k2
1

(
ä

a
− ȧ2

a2

)
+

(
2k2

2

k2
3k2

1

− k2
3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

+ 2

k2
2

− 1

k2
3

− 1

k2
1

)
1

a2
= 0 (25)

v1(k
2
2 − k2

3)

k2k3k
2
1

ȧ

a2
= 0. (26)

As it is seen immediately, the analysis of the Eqs. (22)–(26),
shows that they are consistent under the conditions

k2 = k3, v2
1 = k2

1 − k2
2 . (27)

On the other hand, the second order differential equa-
tion (22) can be straightforwardly integrated as

a(t) = k1

2k2
2c1

cosh(c1t + c2), (28)

where c1 and c2 are constants of integration. It is worthwhile
to note that this is the same solution found by Sofuoğlu and
Mutuş (2014) and Obukhov et al. (2002) for GR in the case
violated the shear-free conjecture condition μm + pm �= 0.

Now, let us turn our analysis. Comparison the combina-
tions of Eqs. (55) and (56) with of (13a) and (13b) by using

(22) for ä
a

− ȧ2

a2 , yields

0 = [
1 + 2fT (T )

](
μm + pm

)
. (29)

Since we have assumed that μm + pm �= 0, we have from
(29)

1 + 2fT (T ) = 0, (30)

which integrates to give

f (T ) = −1

2
T + c, (31)

where c is an integration constant which can choose −2Λ,
Λ being the cosmological constant, then (31) read

f (T ) = −1

2
T − 2Λ. (32)

Substituting the f (T ) function (31) into Eq. (8), with c =
−2Λ, we have

f (R,T ) = R − T − 2Λ. (33)

By this way, we have reconstructed simultaneously rotating
and expanding f (R,T ) gravity model.

Up until now, we have not used the conservation equa-
tions. Inserting the expressions (55)–(61) into the required
places of the total effective matter and momentum conser-
vation equations given (43) and (44), respectively, coming
from

∇aGab = 0 ⇒ ∇aT t
ab = 0, (34)
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we see that these equations are identically satisfied as other
evolution equations (38), (39), (41)–(46). On the other hand,
to be informed of μm and pm, keeping in mind that, as it
can be seen from (4), trace of the energy-momentum tensor
is

T = −μm + 3pm, (35)

which, using with (31) and (34), one can take the covariant
derivative of (10) to give the following barotropic equation
of state (EoS) pm = pm(μm):

pm = 1

5
μm + c3, (36)

where c3 is an integration constant. Then using the con-
sistency conditions (27), the f (T ) function (32), the solu-
tion (28) and the EoS (36), from comparison the expressions
(13a) (or (13b)) with (55) (or (56)) we get

Λ = 3

2
c2

1
k2

2

k2
1

− 1

4
c3. (37)

As it is easily seen from (36) and (37), for any standard
matter energy density, provided that the natural assumption
μm > 0, there are cases that have positive pressure with pos-
itive or negative Λ. For instance, if 0 < c3 < 6c2

1k
2
2/k2

1 , then
we have pm > 0 with Λ > 0; if 6c2

1k
2
2/k2

1 < c3, then we
have again pm > 0 but this time Λ < 0. Particularly, if we
choose c3 = 0 in (36), then we get the linear barotropic EoS
pm = wμm with w = 1/5 which corresponds to physical
case pm > 0 again.

4 Conclusions

In this paper, following the works of Sofuoğlu and Mu-
tuş (2014), we have considered rotating Bianchi type-IX
universe with a perfect fluid source in the framework of
f (R,T ) theory of gravity to investigate the existence of
shear-free, rotating and expanding perfect fluid solutions of
the field equations of this modified theory.

By using tetrad equations, we obtain an exact solution
of the field equations and we have reconstructed an f (R,T )

model for f (R,T ) = R+2f (T ) gravity such as f (R,T ) =
R − T − 2Λ. This shear-free Bianchi type-IX solution is
the first one which can rotate and expand at the same time
in f (R,T ) gravity for any matter content provided that
μm > 0 and μm + pm �= 0. This suggests that the shear-free
perfect fluid conjecture of GR do not have a counterpart in
this theory, as in Newtonian and f (R) theories of gravity.

It would be discussed here about energy conditions of
this model. The energy conditions of f (R,T ) gravity are
given by Sharif and Zubair (2012b) as, null energy condi-
tion (NEC): μt + pt ≥ 0, weak energy condition (WEC):

μt ≥ 0, μt + pt ≥ 0, dominant energy condition (DEC):
μt − pt ≥ 0, μt + pt ≥ 0, μt ≥ 0 and strong energy con-
dition (SEC): μt + 3pt ≥ 0. For the shear-free, rotating
and expanding Bianchi type-IX model, using (13a), (13b),
(32), (36) and (37) we get μt = 2c3 + 3c2

1k
2
2/k2

1 and pt =
−2c3 − 3c2

1k
2
2/k2

1 . It is straightforwardly seen that NEC is
always trivially satisfied. WEC and DEC are satisfied ex-
cept the interval −3c2

1k
2
2/2k2

1 < c3 < 0. SEC is satisfied only
if −3c2

1k
2
2/2k2

1 ≤ c3 < 0. The SEC implies that the expan-
sion of the universe is decelerating conversely recent ob-
servational data indicating the accelerating universe. Then
the SEC is violated on present cosmological scales (Visser
1997; Visser and Barcelo 2000). Thus, we can conclude that
our model is substantially compatible with recent cosmolog-
ical observations.

Acknowledgements I would like to thank the anonymous referee
for fruitful suggestions. The author is supported by Istanbul University
Scientific Research Projects (BAP) under project number 52210.

Appendix A: Evolution and constraint equations
of f (R,T ) gravity

A.1 Evolution equations

e0θ − eαu̇α = −1

3
θ2 + (u̇α − 2aα)u̇α − 2σ 2 + 2ω2

− 1

2

(
μt + 3pt

)
, (38)

e0ω
α − 1

2
εαβγ eβu̇γ = εαβγ

(
Ωβωγ − 1

2
aβu̇γ

)
− 1

2
nα

βu̇β

− 2

3
θωα + σα

β ωβ, (39)

e0σαβ − e〈αu̇β〉

= εγ δ〈α
(
2Ωγ σβ〉δ − nβ〉γ u̇δ

) + a〈αu̇β〉 + u̇〈αu̇β〉

− 2

3
θσαβ − σγ 〈ασβ〉γ − ω〈αωβ〉

−
(

Eαβ − 1

2
πt

αβ

)
, (40)

e0

(
Eαβ + 1

2
πt

αβ

)
− εγ δ〈αe|γ |Hβ〉δ + 1

2
e〈αqt

β〉

= −3nγ 〈αHβ〉γ + 1

2
nγ

γ Hαβ − 1

2
(a〈α + 2u̇〈α)qt

β〉

− 1

2

(
μt + pt

)
σαβ − θ

(
Eαβ + 1

6
πt

αβ

)

+ 3σγ 〈α
(

Eβ〉γ − 1

6
πt

β〉γ
)
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+ εγ δ〈α
[
(2Ωγ + ωγ )

(
Eβ〉δ + 1

2
πt

β〉δ
)

+ 1

2
nβ〉γ qt

δ + (2u̇γ − aγ )Hβ〉δ
]
, (41)

e0Hαβ + εγ δ〈αe|γ |
(

Eβ〉δ − 1

2
πt

β〉δ
)

= 3nγ 〈α
(

Eβ〉γ − 1

2
πt

β〉γ
)

− 1

2
nγ

γ

(
Eαβ − 1

2
πt

αβ

)

− θHαβ + 3σγ 〈αHβ〉γ + 3

2
ω〈αqt

β〉

+ εγ δ〈α
[
(2Ωγ + ωγ )Hβ〉δ + aγ

(
Eβ〉δ − 1

2
πt

β〉δ
)

+ 1

2
σβ〉γ qt

δ − 2u̇γ Eβ〉δ
]
, (42)

e0μ
t + δαβeβqt

α + (
μt + pt

)
θ + σαβπt

αβ

+ 2(u̇α − aα)qt
α = 0, (43)

e0q
t
α + eαpt + δβγ eγ πt

αβ + (
μt + pt

)
u̇α + 4

3
θqt

α

+ σαβqt
β + (

u̇β − 3aβ
)
πt

αβ

− εα
βγ

[
(Ωβ − ωβ)qt

γ + nδ
βπt

δγ

] = 0, (44)

e0aα + 1

2
εαβ

γ (eγ + u̇γ − 2aγ )Ωβ + 1

2
εαβγ

(
u̇β + aβ

)
ωγ

− 1

2
σα

β(u̇β + aβ) + 1

3
(u̇α + aα)θ − 1

2
nαβωβ

+ 1

2
εαβλσ

β
γ nγλ = 0, (45)

e0n
αβ + 1

3
nαβθ + δαβ

[
(eγ + u̇γ )

(
Ωγ + ωγ

)]

− δγ (β
[
(eγ + u̇γ )

(
Ωα) + ωα)

)] + εγ δ(α(eγ + u̇γ )σ β)
δ

− 2σ (α
γ nβ)γ + 2εγλ(αnβ)

γ (Ωλ + ωλ) = 0. (46)

A.2 Constraint equations

eβσα
β − 2

3
eαθ + εα

βγ eβωγ − 3aβσα
β − nαβωβ

− εα
βγ

[
nβδσ

δ
γ + (aβ − 2u̇β)ωγ

] + qt
α = 0, (47)

eαωα − (2aα + u̇α)ωα = 0, (48)

Hαβ + e〈αωβ〉 − εγ δ〈αe|γ |σβ〉δ + (2u̇〈α + a〈α)ωβ〉

+ 3nγ 〈ασβ〉γ − 1

2
nγ

γ σαβ

− εγ δ〈α(nβ〉γ ωδ − aγ σβ〉δ) = 0, (49)

δβγ eγ

(
Eαβ + 1

2
πt

αβ

)
− 1

3
eαμt − 3aβ

(
Eαβ + 1

2
πt

αβ

)

+ 1

3
θqt

α − 1

2
σβ

α qt
β − 3ωβHαβ − εα

βγ

[
σ δ

βHδγ − 3

2
ωβqt

γ

+ nβ
δ

(
Eδγ + 1

2
πt

δγ

)]
= 0, (50)

δβγ eγ Hαβ + 1

2
εα

βγ eβqt
γ − 3aβHα

β + (
μt + pt

)
ωα

− 1

2
nα

βqt
β + 3ωβ

(
Eαβ − 1

6
πt

αβ

)

+ εα
βγ

[
σβ

δ

(
Eδγ + 1

2
πt

δγ

)
− 1

2
aβqt

γ − nβ
δHδγ

]
= 0,

(51)

eβnαβ + εαβγ eβaγ − 2εα
βγ ωβΩγ + 2σα

βωβ

+ 2

3
θωα − 2nαβaβ = 0, (52)

e〈αaβ〉 + b〈αβ〉 + (eγ − 2aγ )nλ〈αεγ
β〉λ

+ 1

3
θσαβ − σγ 〈ασβ〉γ + 2ω〈αΩβ〉 − ω〈αωβ〉

−
(

Eαβ + 1

2
πt

αβ

)
= 0, (53)

4eαaα − 6aαaα − nαγ nαγ + 1

2
nγ

γ nα
α − 4ωλΩλ − 2μt

+ 2

3
θ2 + 2σ 2 + 2ω2 = 0, (54)

where Eab and Hab are the electric (Eab = Caebdueud ) and
the magnetic (Hab = (1/2)εa

cdCcdbeu
e) parts of the confor-

mal Weyl curvature tensor Cabcd .

Appendix B: Dynamic quantities of the rotating
Bianchi type-IX model

μt = −v2
1

k2
1

(
2
ä

a
+ ȧ2

a2

)
+ 3

ȧ2

a2
− 1

4

[
k2

1 − 3v2
1

k2
2k2

3

+ k2
2

k2
1k2

3

+ k2
3

k2
1k2

2

− 2

k2
1

− 2

k2
2

− 2

k2
3

)

]
1

a2
, (55)

pt = 1

3

v2
1

k2
1

(
4
ä

a
+ 5

ȧ2

a2

)
− 2

ä

a
− ȧ2

a2
+ 1

12

[
k2

1 + v2
1

k2
2k2

3

+ k2
2

k2
1k2

3

+ k2
3

k2
1k2

2

− 2

k2
1

− 2

k2
2

− 2

k2
3

)

]
1

a2
, (56)

qt
1 = 2

v1

k1

(
ä

a
− ȧ2

a2

)
− k1v1

2k2
2k2

3

1

a2
, (57)
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πt
11 = −4

3

v2
1

k2
1

(
ä

a
− ȧ2

a2

)
+ 1

3

(
2k2

1 − v2
1

k2
2k2

3

− k2
2

k2
3k2

1

− k2
3

k2
1k2

2

+ 2

k2
1

− 1

k2
2

− 1

k2
3

)
1

a2
, (58)

πt
22 = 2

3

v2
1

k2
1

(
ä

a
− ȧ2

a2

)
+ 1

3

(
2k2

2

k2
3k2

1

− k2
3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

+ 2

k2
2

− 1

k2
3

− 1

k2
1

)
1

a2
, (59)

πt
33 = 2

3

v2
1

k2
1

(
ä

a
− ȧ2

a2

)
+ 1

3

(
2k2

3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

− k2
2

k2
3k2

1

+ 2

k2
3

− 1

k2
1

− 1

k2
2

)
1

a2
, (60)

πt
23 = v1(k

2
2 − k2

3)

k2k3k
2
1

ȧ

a2
. (61)
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